Skip to main content

Subcritical Instabilities in Plane Couette Flow of Visco-Elastic Fluids

  • Conference paper
IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions

Part of the book series: Fluid Mechanics and its Applications ((FMIA,volume 77))

  • 650 Accesses

Abstract

A non-linear stability analysis of plane Couette flow of the Upper-Convected Maxwell model is performed. The amplitude equation describing time-evolution of a finite-size perturbation is derived. It is shown that above the critical Weissenberg number, a perturbation in the form of an eigenfunction of the linearized equations of motion becomes subcritically unstable, and the threshold value for the amplitude of the perturbation decreases as the Weissenberg number increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashrafi, N. and Khayat, R.E. (2000). A low-dimensional approach to nonlinear plane-Couette flow of viscoelastic fluids. Phys. Fluids 12, 345–365.

    Article  MathSciNet  Google Scholar 

  • Atalik, K. and Keunings, R. (2002). Non-linear temporal stability analysis of viscoelastic plane channel flows using a fully-spectral method. J. Non-Newtonian Fluid Mech. 102, 299–319.

    MATH  Google Scholar 

  • Bertola, V., Meulenbroek, B., Wagner, C., Storm, C., Morozov, A.N., van Saarloos, W. and Bonn, D. (2003). Experimental evidence for an intrinsic route to polymer melt fracture phenomena: A nonlinear instability of viscoelastic Poiseuille flow. Phys. Rev. Lett. 90, 114–502.

    Article  Google Scholar 

  • Bird, R.B., Armstrong, R.C. and Hassager, O. (1987). Dynamics of Polymeric Liquids, volume 1, John Wiley & Sons, Inc., 2nd edition.

    Google Scholar 

  • Conte, S.D. (1966). The numerical solution of linear boundary value problems. SIAM Rev. 8, 309–321.

    Article  MathSciNet  MATH  Google Scholar 

  • Denn, M.M. (1990). Issues in visco-elastic fluid-mechanics. Annu. Rev. Fluid Mech. 22, 13–34.

    Article  Google Scholar 

  • Denn, M.M. (2001). Extrusion instabilities and wall slip. Annu. Rev. Fluid Mech. 33, 265–287.

    Article  MATH  Google Scholar 

  • Godunov, S. (1961). On the numerical solution of boundary value problems for systems of linear ordinary differential equations. Uspehi Mat. Nauk 16, 171–174.

    MathSciNet  MATH  Google Scholar 

  • Gorodtsov, V.A. and Leonov, A.I. (1967). On a linear instability of a parallel Couette flow of viscoelastic fluid. J. Appl. Math. Mech. 31, 310–319.

    Article  MATH  Google Scholar 

  • Graham, M.D. (1998). Effect of axial flow on viscoelastic Taylor—Couette instability. J. Fluid Mech. 360, 341–374.

    Article  MathSciNet  MATH  Google Scholar 

  • Grillet, A.M., Bogaerds, A.C.B., Peters, G.W.M. and Baaijens, F.P.T. (2002). Stability analysis of constitutive equations for polymer melts in viscometric flows. J. Non-Newtonian Fluid Mech. 103, 221–250.

    MATH  Google Scholar 

  • Groisman, A. and Steinberg, V. (1997). Solitary vortex pairs in viscoelastic Couette flow. Phys. Rev. Lett. 78, 1460–1463.

    Article  Google Scholar 

  • Groisman, A. and Steinberg, V. (2000). Elastic turbulence in a polymer solution flow. Nature 405, 53.

    Article  Google Scholar 

  • Groisman, A. and Steinberg, V. (2004). Elastic turbulence in curvilinear flows of polymer solutions. New J. Phys. 6, 29.

    Article  Google Scholar 

  • Herbert, T. (1980). Nonlinear stability of parallel flows by high-order amplitude expansions. AIAA J. 18, 243–248.

    Article  MATH  Google Scholar 

  • Ho, T.C. and Denn, M.M. (1977/1978). Stability of plane Poiseuille flow of a highly elastic liquid. J. Non-Newtonian Fluid Mech. 3, 179–195.

    Google Scholar 

  • Hof, B., Juel, A. and Mullin, T. (2003). Scaling of the turbulence transition threshold in a pipe. Phys. Rev. Lett. 91, 244502.

    Article  Google Scholar 

  • Joo, Y.L. and Shaqfeh, E.S.G. (1992). A purely elastic instability in Dean and Taylor—Dean flow. Phys. Fluids A 4, 524.

    MATH  Google Scholar 

  • Kumar, K.A. and Graham, M. (2000). Solitary coherent structures in viscoelastic shear flow: Computation and mechanism. Phys. Rev. Lett. 85, 4056.

    Article  Google Scholar 

  • Larson, R. (2000). Turbulence without inertia. Nature 405, 27.

    Article  Google Scholar 

  • Larson, R.G., Shaqfeh, E.S.G. and Muller, S.J. (1990). A purely elastic instability in Taylor—Couette flow. J. Fluid Mech. 218, 573–600.

    MathSciNet  MATH  Google Scholar 

  • McKinley, G.H., Byars, J.A., Brown, R.A. and Armstrong, R.C. (1991). Observations on the elastic instability in cone-and-plate and parallel plate flows of a polyisobutylene Boger fluid. J. Non-Newtonian Fluid Mech. 40, 201–229.

    MATH  Google Scholar 

  • Meulenbroek, B., Storm, C., Bertola, V., Wagner, C., Bonn, D. and van Saarloos, W. (2003). Intrinsic route to melt fracture in polymer extrusion: A weakly nonlinear subcritical instability of viscoelastic Poiseuille flow. Phys. Rev. Lett. 90, 024502.

    Article  Google Scholar 

  • Meulenbroek, B., Storm, C., Morozov, A.N. and van Saarloos, W. (2004). Weakly nonlinear subcritical instability of visco-elastic Poiseuille flow. J. Non-Newtonian Fluid Mech. 116, 235–268.

    MATH  Google Scholar 

  • Nagata, M. (1990). Three-dimensional finite-amplitude solutions in plane Couette flow: Bifurcation from infinity. J. Fluid Mech. 217, 519–527.

    MathSciNet  Google Scholar 

  • Owens, R.G. and Phillips, T.N. (2002). Computational Rheology, Imperial College Press.

    Google Scholar 

  • Pakdel, P. and McKinley, G.H. (1996). Elastic instability and curved streamlines. Phys. Rev. Lett. 77, 2459.

    Article  Google Scholar 

  • Petrie, C.J.S. and Denn, M.M. (1976). Instabilities in polymer processing. AICHE J. 22, 209–236.

    Article  Google Scholar 

  • Renardy, M. (1992). A rigorous stability proof for plane Couette flow of an upper convected Maxwell fluid at zero Reynolds number. Eur. J. Mech. B 11, 511–516.

    MathSciNet  MATH  Google Scholar 

  • Renardy, M. and Renardy, Y. (1986). Linear stability of plane Couette flow of an upper convected Maxwell fluid. J. Non-Newtonian Fluid Mech. 22, 23–33. Verlag, New York.

    Google Scholar 

  • Stuart, J.T. (1960). On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. J. Fluid Mech. 9, 353–370.

    MathSciNet  MATH  Google Scholar 

  • Waleffe, F. (1997). On a self-sustaining process in shear flows. Phys. Fluids 9, 883–900.

    Article  Google Scholar 

  • Wilson, H.J., Renardy, M. and Renardy, Y. (1999). Structure of the spectrum in zero Reynolds number shear flow of the UCM and Oldroyd-B liquids. J. Non-Newtonian Fluid Mech. 80, 251–268.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Morozov, A.N., van Saarloos, W. (2005). Subcritical Instabilities in Plane Couette Flow of Visco-Elastic Fluids. In: Mullin, T., Kerswell, R. (eds) IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions. Fluid Mechanics and its Applications, vol 77. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4049-0_17

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4049-0_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4048-1

  • Online ISBN: 978-1-4020-4049-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics