Skip to main content

Transition to Turbulence in Pipe Flow

  • Conference paper

Part of the book series: Fluid Mechanics and its Applications ((FMIA,volume 77))

Abstract

Transitional pipe flow is investigated in two different experimental set-ups. In the first the stability threshold and the initial growth of localized perturbations are studied.

Good agreement is found with an earlier investigation of the transition threshold. The measurement technique applied in the last part of this study allows the reconstruction of the streamwise vorticity in a turbulent puff.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chapman, J., Private Communication.

    Google Scholar 

  • Darbyshire, A. and Mullin, T. (1995). Transition turbulence in a constant-mass-flux pipe flow. J. Fluid Mech. 289, 83–114.

    Google Scholar 

  • Draad, A.A., Kuiken, G.D.C. and Nieuwstadt, F.T.M. (1998). Laminar-turbulent transition in pipe flow for Newtonian and non-Newtonian fluids. J. Fluid Mech. 377, 261.

    Article  Google Scholar 

  • Drazin, P.G. and Reid, W.H. (1981). Hydrodynamic Stability. Cambridge University Press, Cambridge.

    Google Scholar 

  • Faisst, H. (2003). Turbulence transition in pipe flow. PhD Thesis, Philipps Universität Marburg.

    Google Scholar 

  • Faisst, H. and Eckhardt, B. (2003). Travelling waves in pipe flow. Phys. Rev. Lett. 91, 224502.

    Article  Google Scholar 

  • Faisst, H. and Eckhardt, B. (2004). Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J. Fluid Mech. 504, 343–352.

    Article  Google Scholar 

  • Hamilton, J.M., Kim, J. and Waleffe, F. (1995). Regenaration mechanism of near-wall turbulence structures. J. Fluid Mech. 287, 317.

    Google Scholar 

  • Henningson, D.S., Lundbladh, A. and Johansson, A.V. (1993). A mechanism for bypass transition from localized disturbances in wall bounded shear flows. J. Fluid Mech. 250, 169–207.

    Google Scholar 

  • Hof, B., Juel, A. and Mullin, T. (2003). Scaling of the turbulence transition treshold in a pipe. Phys. Rev. Lett. 91, 244502.

    Article  Google Scholar 

  • Hof, B., van Doorne, C.W.H., Westerweel, J., Nieuwstadt, F.T.M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R.R. and Waleffe, F. (2004). Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305, 1594.

    Article  Google Scholar 

  • Mullin, T. and Peixinho, J. (2005). Recent observations in transition to turbulence in a pipe. In Proceedings of the IUTAM Symposium in Laminar Turbulence Transition, Bangalore, India, Springer, Dordrecht, forthcoming.

    Google Scholar 

  • Reynolds, O. (1883). An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channels. Proc. R. Soc. Lond. 35, 84–99.

    Google Scholar 

  • Shan, H., Zang, Z. and Nieuwstadt, F.T.M. (1998). Direct numerical simulation of transition in pipe flow under the influence of wall disturbances. Int. J. Heat Fluid Flow 19, 320.

    Article  Google Scholar 

  • Trefethen, L.N., Trefethen, A.E. and Driscoll, T.A. (1993). Hydrodynamic stability without eigenvalues. Science 261, 578–584.

    MathSciNet  Google Scholar 

  • Waleffe, F. (1997). On a self-sustaining mechanism in shear flows. Phys. Fluids 9, 883.

    Article  Google Scholar 

  • Wedin, H. and Kerswell, R.R. (2004). Exact coherent solutions in pipe flow: Travelling wave solutions. J. Fluid Mech. 508, 333.

    Article  Google Scholar 

  • Wygnanski, I.J. and Champagne, F.H. (1973). On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281–335.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Hof, B. (2005). Transition to Turbulence in Pipe Flow. In: Mullin, T., Kerswell, R. (eds) IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions. Fluid Mechanics and its Applications, vol 77. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4049-0_12

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4049-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4048-1

  • Online ISBN: 978-1-4020-4049-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics