Skip to main content

Formation of Giant Planets — An Attempt in Matching Observational Constraints

  • Chapter
Book cover The Outer Planets and their Moons

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 19))

Abstract

We present models of giant planet formation, taking into account migration and disk viscous evolution. We show that migration can significantly reduce the formation timescale bringing it in good agreement with typical observed disk lifetimes. We then present a model that produces a planet whose current location, core mass and total mass are comparable with the one of Jupiter. For this model, we calculate the enrichments in volatiles and compare them with the one measured by the Galileo probe. We show that our models can reproduce both the measured atmosphere enrichments and the constraints derived by Guillot et al. (2004), if we assume the accretion of planetesimals with ices/rocks ratio equal to 4, and that a substantial amount of CO2 was present in vapor phase in the solar nebula, in agreement with ISM measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alibert, Y., Mordasini, C., and Benz, W.: 2004a, ‘Migration and giant planet formation’, Astron. Astrophys. 417, L25–L28.

    Article  ADS  Google Scholar 

  • Alibert, Y., Mousis, O., and Benz, W.: 2004b, ‘Volatiles enrichments in Jupiter’, in preparation.

    Google Scholar 

  • Allamandola, L.J., Bernstein, M.P., Sandford, S.A., and Walker, R.L.: 1999, ‘Evolution of interstellar ices’, Space Sci. Rev. 90, 219–232.

    Article  ADS  Google Scholar 

  • Anders, E., and Grevesse, N.: 1989, ‘Abundances of the elements — meteoritic and solar’, Geochim. Cosmochim. Acta 53, 197–214.

    Article  ADS  Google Scholar 

  • Atreya, S.K., Wong, M.H., Owen, T.C., Mahaffy, P.R., Niemann, H.B., de Pater, I., Drossart, P., and Encrenaz, T.: 1999, ‘A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin’, Planet. Space Sci. 47 1243–1262.

    Article  ADS  Google Scholar 

  • Bell, K.R. and Lin, D.N.C.: 1994, ‘Using FU Orionis outbursts to constrain self-regulated protostellar disk models’, Astrophys. J. 427, 987–1004.

    Article  ADS  Google Scholar 

  • Bodenheimer, P. and Pollack, J.B.: 1986, ‘Calculations of the accretion and evolution of giant planets: The effects of solid cores’, Icarus 67, 391–408.

    Article  ADS  Google Scholar 

  • Boss, A.P.: 2002, ‘Evolution of the solar nebula: V. Disk instabilities with varied thermodynamics’, Astrophys. J. 576, 462–472.

    Article  ADS  Google Scholar 

  • Boss, A.P.: 2004, ‘Rapid formation of outer giant planets by disk instability’, Astrophys. J. 599, 577–581.

    Article  ADS  Google Scholar 

  • Chabrier, G., Saumon, D., Hubbard, W.B., and Lunine, J.I.: 1992, ‘The molecular-metallic transition of hydrogen and the structure of Jupiter and Saturn’, Astrophys. J. 391, 817–826.

    Article  ADS  Google Scholar 

  • Chick, K.M. and Cassen, P.: 1997, ‘Thermal processing of interstellar dust grains in the primitive solar environment’, Astrophys. J. 447, 398–409.

    Article  ADS  Google Scholar 

  • Fegley, B., Jr.: 2000, ‘Kinetics of gas-grain reaction in the solar nebula’, Space Sci. Rev. 92, 177–200.

    Article  ADS  Google Scholar 

  • Gautier, D., Hersant, F., Mousis, O., and Lunine J.I.: 2001a, ‘Enrichments in volatiles in Jupiter: A new interpretation of the Galileo measurements’, Astrophys. J. 550, L227–L230.

    Article  ADS  Google Scholar 

  • Gautier, D., Hersant, F., Mousis, O., and Lunine J.I.: 2001b, ‘Erratum: Enrichments in volatiles in Jupiter: A new interpretation of the Galileo measurements’, Astrophys. J. 559, L183–L183.

    Article  ADS  Google Scholar 

  • Gibb, E.L., Whittet, D.C.B., Boogert, A.C.A., and Tielens, A.G.G.M.: 2004, ‘Interstellar ice: The infrared space observatory legacy’, Astrophys. J. Supp. 151, 35–73.

    Article  ADS  Google Scholar 

  • Greenzweig, Y. and Lissauer, J.J.: 1992, ‘Accretion rates of protoplanets. II-Gaussian distributions of planetesimal velocities’, Icarus 100, 440–463.

    Article  ADS  Google Scholar 

  • Guillot, T. and Gladman, B.: 2000, ‘Delivery of planetesimals and Giant planet formation’, in F. Garzón, C. Eiroa, D. de Winter, and T.J. Mahoney (eds.), Disks, Planetesimals, and Planets, ASP Conf. Proc. 219, 475.

    Google Scholar 

  • Guillot, T., Stevenson, D.J., Hubbard, W.B., and Saumon, D.: 2004, ‘The interior of Jupiter’, in F. Bagenal, T.E. Dowling, and W.B. McKinnon (eds.), Jupiter, in press.

    Google Scholar 

  • Haisch, K.E., Lada, E.A., and Lada, C.J.: 2001, ‘Disk frequencies and lifetimes in young clusters’, Astrophys. J. 553, L153–L156.

    Article  ADS  Google Scholar 

  • Henderson, C.B.: 1976, ‘Drag coefficient of spheres in continuum and rarefied flows’, AIAA Journal 14, 707–707.

    Article  ADS  Google Scholar 

  • Hersant, F., Gautier, D., and Huré, J.M.: 2001, ‘A 2-D model for the primordial nebula constrained by D/H measurements in the solar system: implications for the formation of giant planets’, Astrophys. J. 554, 391–407.

    Article  ADS  Google Scholar 

  • Hersant, F., Gautier, D., and Lunine J.I.: 2004, ‘Enrichment in volatiles in the giant planets of the solar system’, Planet. Space Sci. 52, 623–641.

    Article  ADS  Google Scholar 

  • Hills, J.G. and Goda, M.P.: 1993, ‘The fragmentation of small asteroids in the atmosphere’, Astron. J. 105, 1114–1144.

    Article  ADS  Google Scholar 

  • Horner, J., Alibert, Y., and Benz, W.: 2004, in preparation.

    Google Scholar 

  • Hubickyj, O., Bodenheimer, P., and Lissauer, J.: 2003, ‘Small Core for Jupiter using the Core Instability Model’, Proc.35th DPS meeting, 25.06.

    Google Scholar 

  • Inaba, S., Wetherill, G.W., and Ikoma, M.: 2003, ‘Formation of gas Giant planets: Core accretion models with fragmentation and planetary envelope’, Icarus 166, 46–62.

    Article  ADS  Google Scholar 

  • Ida, S. and Lin, D.N.C.: 2004, ‘Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets’, Astrophys. J. 604, 388–413.

    Article  ADS  Google Scholar 

  • Klahr, H. and Bodenheimer, P.: 2003, ‘A three phase model for planet formation — the formation of a planet in the eye of a hurricane’, in M. Fridlund and T. Henning (eds.), Earths: DARWIN/TPF and the Search for Extrasolar Terrestrial Planets, ESA SP-539, 481–483.

    Google Scholar 

  • Lin, D.N.C. and Papaloizou, J.: 1985, ‘On the dynamical origin of the solar system’, in D.C. Black and M.S. Matthews (eds.), Protostars and planets II, Tucson, AZ, University of Arizona Press, 981–1072.

    Google Scholar 

  • Lin, D.N.C. and Papaloizou, J.: 1986, ‘On the tidal interaction between protoplanets and the protoplanetary disk. III-Orbital migration of protoplanets’, Astrophys. J. 309 846–857.

    Article  ADS  Google Scholar 

  • Lin, D.N.C., Bodenheimer, P., and Richardson, D.C.: 1996, ‘Orbital migration of the planetary companion of 51 Pegasi to its present location’, Nature 380 606–607.

    Article  ADS  Google Scholar 

  • Lunine, J.I. and Stevenson, D.J.: 1985, ‘Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system’, Astrophys. J. Supp. 58, 493–531.

    Article  ADS  Google Scholar 

  • Mahaffy, P.R., Niemann, H.B., Alpert, A., Atreya, S.K., Demick, J., Donahue, T.M., Harpold, D.N., and Owen, T.C.: 2000, ‘Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo Probe Mass Spectrometer’, J. Geophys. Res. 105, 15,061–15,072.

    Article  ADS  Google Scholar 

  • MacLow, M.M. and Zahnle, K.J.: 1994, ‘Explosion of comet Shoemaker-Levy 9 on entry into the Jovian atmosphere’, Astrophys. J. 434, L33–L36.

    Article  ADS  Google Scholar 

  • Menou, K. and Goodman, J.: 2003, ‘Low-mass proto-planet migration in T-Tauri α-disks’, Astrophys. J. 606, 520–531.

    Article  ADS  Google Scholar 

  • Mousis, O., Gautier, D., and Bockelée-Morvan, D.: 2002, ‘An evolutionary turbulent model of Saturn’s subnebula: Implications for the origin of the atmosphere of Titan’, Icarus 156, 162–175.

    Article  ADS  Google Scholar 

  • Mousis, O. and Gautier, D.: 2004, ‘Constraints on the presence of volatiles in Ganymede and Callisto from an evolutionary turbulent model of the Jovian subnebula’, Planet. Space Sci. 52, 361–370.

    Article  ADS  Google Scholar 

  • Nelson, R.P. and Papaloizou, J.C.B.: 2003, ‘The interaction of planets with a disc with MHD turbulence IV: Migration rates of embedded protoplanets’, Mon. Not. Roy. Astron. Soc. 350, 849–864.

    Article  ADS  Google Scholar 

  • Owen, T.C., Mahaffy, P.R., Niemann, H.B., Atreya, S.K., Donahue, T.M., Bar-Num, A., and de Pater, I.: 1999, ‘A low temperature origin for the planetesimals that formed Jupiter’, Nature 402, 269–270.

    Article  ADS  Google Scholar 

  • Papaloizou, J.C.B. and Terquem, C.: 1999, ‘Critical protoplanetary core masses in protoplanetary disks and the formation of short-period Giant planets’, Astrophys. J. 521, 823–838.

    Article  ADS  Google Scholar 

  • Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., and Greenzweig, Y.: 1996, ‘Formation of the giant planets by concurrent accretion of solids and gas’, Icarus 124, 62–85.

    Article  ADS  Google Scholar 

  • Tanaka, H., Takeuchi, T. and Ward, W.R.: 2002, ‘Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration’, Astrophys. J. 565, 1257–1274.

    Article  ADS  Google Scholar 

  • Thommes, E.W., Duncan, M.J., and Levison, H.F.: 2003, ‘Oligarchic growth of giant planets’, Icarus 161, 431–455.

    Article  ADS  Google Scholar 

  • Trilling, D.E., Benz, W., Guillot, T., Lunine, J.I., Hubbard, W.B., and Burrows, A.: 1998, ‘Orbital evolution and migration of Giant planets: Modeling extrasolar planets’, Astrophys. J. 500, 428–439.

    Article  ADS  Google Scholar 

  • Veras, D. and Armitage, P.J.: 2003, ‘Outward migration of extrasolar planets to large orbital radii’, Mon. Not. Roy. Astron. Soc. 347, 613–624.

    Article  ADS  Google Scholar 

  • Ward, W.R.: 1997, ‘Survival of planetary systems’, Astrophys. J. 482 L211–L217.

    Article  ADS  Google Scholar 

  • Weidenschilling, S.J., Marzari, F., and Davis, D.R.: 2004, ‘Accretion of the Outer planets: Oligarchy or monarchy?’, Lunar Planet. Inst. Conf. Abstr. 35, 1174.

    ADS  Google Scholar 

  • Zahnle, K.J.: 1992, ‘Airburst origin of dark shadows on Venus’, J. Geophys. Res. 97, 10243–10255.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Alibert, Y., Mordasini, C., Mousis, O., Benz, W. (2005). Formation of Giant Planets — An Attempt in Matching Observational Constraints. In: Encrenaz, T., Kallenbach, R., Owen, T.C., Sotin, C. (eds) The Outer Planets and their Moons. Space Sciences Series of ISSI, vol 19. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4038-5_6

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4038-5_6

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3362-9

  • Online ISBN: 978-1-4020-4038-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics