Skip to main content

Formation and Composition of Planetesimals

Trapping Volatiles by Clathration

  • Chapter
The Outer Planets and their Moons

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 19))

  • 764 Accesses

Abstract

The composition of planetesimals depends upon the epoch and the location of their formation in the solar nebula. Meteorites produced in the hot inner nebula contain refractory compounds. Volatiles were present in icy planetesimals and cometesimals produced in the cold outer nebula. However, the mechanism responsible for their trapping is still controversial. We argue for a general scenario valid in all regions of the turbulent nebula where water condensed as a crystalline ice (Hersant et al., 2004). Volatiles were trapped in the form of clathrate hydrates in the continuously cooling nebula. The epoch of clathration of a given species depends upon the temperature and the pressure required for the stability of the clathrate hydrate. The efficiency of the mechanism depends upon the local amount of ice available. This scenario is the only one so far which proposes a quantitative interpretation of the non detection of N2 in several comets of the Oort cloud (Iro et al., 2003). It may explain the large variation of the CO abundance observed in comets and predicts an Ar/O ratio much less than the upper limit of 0.1 times the solar ratio estimated on C/2001 A2 (Weaver et al., 2002). Under the assumption that the amount of water ice present at 5 AU was higher than the value corresponding to the solar O/H ratio by a factor 2.2 at least, the clathration scenario reproduces the quasi uniform enrichment with respect to solar of the Ar, Kr, Xe, C, N and S elements measured in Jupiter by the Galileo probe. The interpretation of the non-uniform enrichment in C, N and S in Saturn requires that ice was less abundant at 10 AU than at 5 AU so that CO and N2 were not clathrated in the feeding zone of the planet while CH4, NH3 and H2S were. As a result, the 14N/15N ratio in Saturn should be intermediate between that in Jupiter and the terrestrial ratio. Ar and Kr should be solar while Xe should be enriched by a factor 17. The enrichments in C, N and S in Uranus and Neptune suggest that available ice was able to form clathrates of CH4, CO and the NH3 hydrate, but not the clathrate of N2. The enrichment of oxygen by a factor 440 in Neptune inferred by Lodders and Fegley (1994) from the detection of CO in the troposphere of the planet is higher by at least a factor 2.5 than the lower limit of O/H required for the clathration of CO and CH4 and for the hydration of NH3. If CO detected by Encrenaz et al. (2004) in Uranus originates from the interior of the planet, the O/H ratio in the envelope must be around of order of 260 times the solar ratio, then also consistent with the trapping of detected volatiles by clathration. It is predicted that Ar and Kr are solar in the two planets while Xe would be enriched by a factor 30 to 70. Observational tests of the validity of the clathration scenario are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas, M.M., et al.: 2004, ‘The nitrogen isotopic ratio in Jupiter’s atmosphere from observations by the composite infrared spectrometer on the Cassini spacecraft’, Astrophys. J. 602, 1063–1074.

    Article  ADS  Google Scholar 

  • Alibert, Y., Mordasini, C., Mousis, O., and Benz, W.: 2004, ‘Formation of giant planets — an attempt in matching observational constraints’, this volume.

    Google Scholar 

  • Anders, E. and Grevesse, N.: 1989, ‘Abundances of the elements — meteoritic and solar’, Geochim. Cosmochim. Acta 53, 197–214.

    Article  ADS  Google Scholar 

  • Atreya, S.K., Wong, M.H., Owen, T.C., Mahaffy, P.R., Niemann, H.B., de Pater, I., Drossart, P., and Encrenaz, T.: 1999, ‘A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin’, Planet. Space Sci. 47, 1243–1262.

    Article  ADS  Google Scholar 

  • Barge, P. and Sommeria, J.: 1995, ‘Did planet formation begin inside persistent gaseous vortices?’, Astron. Astrophys. 295, L1–L4.

    ADS  Google Scholar 

  • Beckwith, S.V.W., Henning, T., and Nakagawa, Y.: 2000, ‘Dust properties and assembly of large particles in protoplanetary disks’, in V. Mannings, A.P. Boss, and S.B. Russell (eds.), Protostars and Planets IV, The University of Arizona Press, Tucson, Arizona, 533.

    Google Scholar 

  • Bell, K.R., Cassen, P.M., Wasson, J.T., and Woolum, D.S.: 2000, ‘The Fu Orionis phenomenon and solar nebula material’, in V. Mannings, A.P. Boss, and S.B. Russell (eds.), Protostars and Planets IV, The University of Arizona Press, Tucson, Arizona, 896.

    Google Scholar 

  • Benz, W.: 2000, ‘Low velocity collisions and the growth of planetesimals’, Space Sci. Rev. 92, 279–294.

    Article  ADS  Google Scholar 

  • Bézard, B., Lellouch, E., Strobel, D., Maillard, J., and Drossart, P.: 2002, ‘Carbon monoxide on Jupiter: evidence for both internal and external sources’, Icarus 159, 95–111.

    Article  ADS  Google Scholar 

  • Biver, N., Bockelée-Morvan, D., Crovisier, J., Colom, P., Henry, F., Moreno, R., Paubert, G., Despois, D., and Lis, C.: 2002, ‘Chemical composition diversity among 24 comets observed at radio wavelengths’, Earth, Moon and Planets 90, 323–333.

    Article  ADS  Google Scholar 

  • Bockelée-Morvan, D., et al.: 2000, ‘New molecules found in comet C/1995 O1 (Hale-Bopp). Investigating the link between cometary and interstellar material’, Astron. Astrophys. 353, 1101–1114.

    ADS  Google Scholar 

  • Bolton, S.J., et al.: 2001, ‘Jupiter: Atmospheric Sounding and Sensing of the Interior (JASSI)’, Forum on Innovative Approaches to Outer Planetary Exploration 2001–2020, 12.

    Google Scholar 

  • Bracco, A., Chavanis, P.H., Provenzale, A., and Spiegel, E.A.: 1999, ‘Particle aggregation in a turbulent Keplerian flow’, Phys. Fluids 11, 2280.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Briggs, F.H. and Sackett, P.D.: 1989, ‘Radio observations of Saturn as a probe of its atmosphere and cloud structure’, Icarus 80, 77.

    Article  ADS  Google Scholar 

  • Calvet, N., Hartmann, L., and Strom, S.E.: 2000, ‘Evolution of disk accretion’, in V. Mannings, A.P. Boss, and S.B. Russell (eds.), Protostars and Planets IV, The University of Arizona Press, Tucson, Arizona, 377.

    Google Scholar 

  • Chick, K.M. and Cassen, P.: 1997, ‘Thermal processing of interstellar dust grains in the primitive solar environment’, Astrophys. J. 477, 398–409.

    Article  ADS  Google Scholar 

  • Clampin, M., et al.: 2003, ‘Hubble Space Telescope ACS coronagraphic imaging of the circumstellar disk around HD 141569A’, Astron. J. 126, 385–392.

    Article  ADS  Google Scholar 

  • Cochran, A.L., Cochran, W.D., and Barker, E.S.: 2000, ‘N +2 and CO+ in comets 122P/1995 S1 (deVico) and C/1995 O1 (Hale-Bopp)’, Icarus 146, 583–593.

    Article  ADS  Google Scholar 

  • Cochran, A.L.: 2002, ‘A search for N +2 in spectra of comet C/2002 C1 (Ikeya-Zhang)’, Astrophys. J. 576, L165–L168.

    Article  ADS  Google Scholar 

  • Cuzzi, J.N., Hogan, R.C., Paque, J.M., and Dobrovolskis, A.R.: 2001, ‘Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence’, Astrophys. J. 546, 496–508.

    Article  ADS  Google Scholar 

  • D’Alessio, P., Canto, J., Calvet, N., and Lizano, S.: 1998, ‘Accretion disks around young objects. I. The detailed vertical structure’, Astrophys. J. 500, 411–427.

    Article  ADS  Google Scholar 

  • de Pater, I., Romani, P.N., and Atreya, S.K.: 1991, ‘Possible microwave absorption by H2S gas in Uranus’ and Neptune’s atmospheres’, Icarus 91, 220–233.

    Article  ADS  Google Scholar 

  • Drouart, A., Dubrulle, B., Gautier, D., and Robert, F.: 1999, ‘Structure and transport in the solar nebula from constraints on deuterium enrichment and Giant planets formation’, Icarus 140, 129–155.

    Article  ADS  Google Scholar 

  • Dutrey, A., Guilloteau, S., Prato, L., Simon, M., Duvert, G., Schuster, K., and Menard, F.: 1998, ‘CO study of the GM Aurigae Keplerian disk’, Astron. Astrophys. 338, L63–L66.

    ADS  Google Scholar 

  • Encrenaz, Th., Lellouch, E., Drossart, P., Feuchtgruber, H., Orton, G.S., Atreya, S.K.: 2004, ‘First detection of carbon monoxide in the atmosphere of Uranus’, The Messenger 115, 35–36.

    ADS  Google Scholar 

  • Fegley, B.J.: 2000, ‘Kinetics of gas-grain reactions in the solar nebula’, Space Sci. Rev. 92, 177–200.

    Article  ADS  Google Scholar 

  • Fegley, B. and Prinn, R.G.: 1986, ‘Chemical models of the deep atmosphere of Uranus’, Astrophys. J. 307, 852–865.

    Article  ADS  Google Scholar 

  • Fegley, B.J. and Lodders, K.: 1994, ‘Chemical models of the deep atmospheres of Jupiter and Saturn’, Icarus 110, 117–154.

    Article  ADS  Google Scholar 

  • Finocchi, F., Gail, H.-P., and Duschl, W.J.: 1997, ‘Chemical reactions in protoplanetary accretion disks. II. Carbon dust oxidation’, Astron. Astrophys. 325, 1264–1279.

    ADS  Google Scholar 

  • Fouchet, T., Lellouch, E., Bézard, B., Encrenaz, T., Drossart, P., Feuchtgruber, H., and de Graauw, T.: 2000, ‘ISO-SWS observations of Jupiter: measurement of the ammonia tropospheric profile and of the 15N/14N isotopic ratio’, Icarus 143, 223–243.

    Article  ADS  Google Scholar 

  • Fouchet, T., Irwin, P.G.J., Parrish, P., Calcutt, S.B., Taylor, F.W., Nixon, C.A., and Owen, T.: 2004, ‘Search for spatial variation in the jovian 14N/15N ratio from Cassini/CIRS observations’, Icarus, in press.

    Google Scholar 

  • Gail, H.-P.: 1998, ‘Chemical reactions in protoplanetary accretion disks. IV. Multicomponent dust mixture’, Astron. Astrophys. 332, 1099–1122.

    ADS  Google Scholar 

  • Gautier, D. and Owen, T.: 1989, ‘The composition of outer planet atmospheres’, in S.K. Atreya, J.B. Pollack, M.S. Matthews (eds.), Origin and Evolution of Planetary and Satellite Atmospheres, The University of Arizona Press, Tucson, Arizona, pp. 487–512.

    Google Scholar 

  • Gautier, D., Conrath, B.J., Owen, T., de Pater, I., and Atreya, S.K.: 1995, ‘The troposphere of Neptune’, in D.P. Cruikshank (ed.), Neptune and Triton, The University of Arizona Press, Tucson, Arizona, pp. 547–611.

    Google Scholar 

  • Gautier, D., Hersant, F., Mousis, O., and Lunine, J.I.: 2001, ‘Enrichments in volatiles in Jupiter: a new interpretation of the Galileo measurements’, Astrophys. J. 550, L227–L230.

    Article  ADS  Google Scholar 

  • Geiss, J. and Gloeckler, G.: 1998, ‘Abundances of deuterium and helium-3 in the protosolar cloud’, Space Sci. Rev. 84, 239–250.

    Article  ADS  Google Scholar 

  • Gibb, E.L., Mumma, M.J., dello Russo, N., Disanti, M.A., and Magee-Sauer, K.: 2003, ‘Methane in Oort cloud comets’, Icarus 165, 391–406.

    Article  ADS  Google Scholar 

  • Gulkis, S., Janssen, M.A., and Olsen, E.T.: 1978, ‘Evidence for the depletion of ammonia in the Uranus atmosphere’, Icarus 34, 10–19.

    Article  ADS  Google Scholar 

  • Haisch, K.E., Jr., Lada, E.A., and Lada, C.J.: 2001, ‘Disk frequencies and lifetimes in young clusters’, Astrophys. J. 553, L153–L156.

    Article  ADS  Google Scholar 

  • Hartmann, L.: 2000, ‘Observational constraints on transport (and mixing) in pre-main sequence disks’, Space Sci. Rev. 92, 55–68.

    Article  ADS  Google Scholar 

  • Hersant, F.: 2002, Turbulence dans la nébuleuse solaire primitive et formation du systéme solaire externe, Thése de l’Université Paris 7.

    Google Scholar 

  • Hersant, F., Gautier, D., and Huré, J.-M.: 2001, ‘A two-dimensional model for the primordial nebula constrained by D/H measurements in the solar system: implications for the formation of Giant planets’, Astrophys. J. 554, 391–407.

    Article  ADS  Google Scholar 

  • Hersant, F., Gautier, D., and Lunine, J.I.: 2004, ‘Enrichment in volatiles in the Giant planets of the solar system’, Planet. Space Sci., in press.

    Google Scholar 

  • Huré, J.-M.: 2000, ‘On the transition to self-gravity in low mass AGN and YSO accretion discs’, Astron. Astrophys. 358, 378–394.

    ADS  Google Scholar 

  • Iro, N., Gautier, D., Hersant, F., Bockelée-Morvan, D., and Lunine, J.I.: 2003, ‘An interpretation of the nitrogen deficiency in comets’, Icarus 161, 511–532.

    Article  ADS  Google Scholar 

  • Kawakita, H., Watanabe, J., Ootsubo, T., Nakamura, R., Fuse, T., Takato, N., Sasaki, S., and Sasaki, T.: 2004, ‘Evidence of icy grains in comet C/2002 T7 (LINEAR) at 3.52 AU’, Astrophys. J. 601, L191–L194.

    Article  ADS  Google Scholar 

  • Kerola, D.X., Larson, H.P., and Tomasko, M.G.: 1997, ‘Analysis of the near-IR spectrum of Saturn: a comprehensive radiative transfer model of its middle and upper troposphere’, Icarus 127, 190–212.

    Article  ADS  Google Scholar 

  • Kouchi, A., Yamamoto, T., Kozasa, T., Kuroda, T., and Greenberg, J.M.: 1994, ‘Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices’, Astron. Astrophys. 290, 1009–1018.

    ADS  Google Scholar 

  • Lammer, H., Stumptner, W., Molina-Cuberos, G.J., Bauer, S.J., and Owen, T.: 2000, ‘Nitrogen isotope fractionation and its consequence for Titan’s atmospheric evolution’, Planet. Space Sci. 48, 529–543.

    Article  ADS  Google Scholar 

  • Lellouch, E., Crovisier, J., Lim, T., Bockelée-Morvan, D., Leech, K., Hanner, M.S., Altieri, B., Schmitt, B., Trotta, F., and Keller, H.U.: 1998, ‘Evidence for water ice and estimate of dust production rate in comet Hale-Bopp at 2.9 AU from the Sun’, Astron. Astrophys. 339, L9–L12.

    ADS  Google Scholar 

  • Lodders, K. and Fegley, B.: 1994, ‘The origin of carbon monoxide in Neptune’s atmosphere’, Icarus 112, 368–375.

    Article  ADS  Google Scholar 

  • Lodders, K.: 2003, ‘Solar system abundances and condensation temperatures of the elements’, Astrophys. J. 591, 1220–1247.

    Article  ADS  Google Scholar 

  • Lunine, J.I. and Stevenson, D.J.: 1985, ‘Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system’, Astrophys. J. Suppl. 58, 493–531.

    Article  ADS  Google Scholar 

  • Lunine, J.I., Engel, S., Rizk, B., and Horanyi, M.: 1991, ‘Sublimation and reformation of icy grains in the primitive solar nebula’, Icarus 94, 333–344.

    Article  ADS  Google Scholar 

  • Lunine, J.I., Yung, Y.L., and Lorenz, R.D.: 1999, ‘On the volatile inventory of Titan from isotopic abundances in nitrogen and methane’, Planet. Space Sci. 47, 1291–1303.

    Article  ADS  Google Scholar 

  • Lutz, B.L., Womack, M., and Wagner, R.M.: 1993, ‘Ion abundances and implications for photochemistry in Comets Halley (1986 III) and Bradfield (1987 XXIX)’, Astrophys. J. 407, 402–411.

    Article  ADS  Google Scholar 

  • Magni, G. and Coradini, A.: 2004, ‘Formation of Jupiter by nucleated instability’, Planet. Space Sci. 52, 343–360.

    Article  ADS  Google Scholar 

  • Mahaffy, P.R., Niemann, H.B., Alpert, A., Atreya, S.K., Demick, J., Donahue, T.M., Harpold, D.N., and Owen, T.C.: 2000, ‘Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo Probe Mass Spectrometer’, J. Geophys. Res. 105, 15061–15072.

    Article  ADS  Google Scholar 

  • Makalkin, A. and Dorofeyeva, V.: 1991, ‘Temperatures in the protoplanetary disk: models, constraints, and consequences for the planets’, Isvestiya, Earth Phys. 27, 650.

    ADS  Google Scholar 

  • Malfait, K., Waelkens, C., Bouwman, J., de Koter, A., and Waters, L.B.F.M.: 1999, ‘The ISO spectrum of the young star HD 142527’, Astron. Astrophys. 345, 181–186.

    ADS  Google Scholar 

  • Marten, A., Hidayat, T., Biraud, Y., and Moreno, R.: 2002, ‘New millimeter heterodyne observations of Titan: vertical distributions of nitriles HCN, HC3N, CH3CN, and the isotopic ratio 15N/14N in its atmosphere’, Icarus 158, 532–544.

    Article  ADS  Google Scholar 

  • Michel, P., Benz, W., and Richardson, D.C.: 2003, ‘Disruption of fragmented parent bodies as the origin of asteroid families’, Nature 421, 608–611.

    Article  ADS  Google Scholar 

  • Mousis, O., Gautier, D., Bockelée-Morvan, D., Robert, F., Dubrulle, B., and Drouart, A.: 2000, ‘Constraints on the formation of comets from D/H ratios measured in H2O and HCN’, Icarus 148, 513–525.

    Article  ADS  Google Scholar 

  • Mousis, O., Gautier, D., and Bockelée-Morvan, D.: 2002, ‘An evolutionary turbulent model of Saturn’s subnebula: implications for the origin of the atmosphere of Titan’, Icarus 156, 162–175.

    Article  ADS  Google Scholar 

  • Natta, A., Grinin, V., and Mannings, V.: 2000, ‘Properties and evolution of disks around pre-main-sequence stars of intermediate’, in V. Mannings, A.P. Boss, and S.B. Russell (eds.), Protostars and Planets IV, The University of Arizona Press, Tucson, Arizona, 559.

    Google Scholar 

  • Notesco, G., Bar-Nun, A., and Owen, T.: 2003, ‘Gas trapping in water ice at very low deposition rates and implications for comets’, Icarus 162, 183–189.

    Article  ADS  Google Scholar 

  • Owen, T. and Bar-Nun, A.: 1995, ‘Comets, impacts and atmospheres’, Icarus 116, 215–226.

    Article  ADS  Google Scholar 

  • Owen, T., Mahaffy, P., Niemann, H.B., Atreya, S., Donahue, T., Bar-Nun, A., and de Pater, I.: 1999, ‘A low-temperature origin for the planetesimals that formed Jupiter’, Nature 402, 269–270.

    Article  ADS  Google Scholar 

  • Owen, T.C.: 2000, ‘On the origin of Titan’s atmosphere’, Planet. Space Sci. 48, 747–752.

    Article  ADS  Google Scholar 

  • Owen, T., Mahaffy, P.R., Niemann, P.R., Atreya, S., and Wong, M.: 2001, ‘Protosolar nitrogen’, Astrophys. J. 553, L77–L79.

    Article  ADS  Google Scholar 

  • Pasek, M., Milsom, D., Ciesla, F., Sharp, C., Lauretta, D., and Lunine, J.I.: 2004, ‘Sulfur chemistry in the solar nebula’, submitted to Icarus.

    Google Scholar 

  • Pollack, J.B., Hollenbach, D., Beckwith, S., Simonelli, D.P., Roush, T., and Fong, W.: 1994, ‘Composition and radiative properties of grains in molecular clouds and accretion disks’, Astrophys. J. 421, 615–639.

    Article  ADS  Google Scholar 

  • Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., and Greenzweig, Y.: 1996, ‘Formation of the Giant planets by concurrent accretion of solids and gas’, Icarus 124, 62–85.

    Article  ADS  Google Scholar 

  • Pringle, J.E.: 1981, ‘Accretion discs in astrophysics’, Ann. Rev. Astron. Astrophys. 19, 137–162.

    Article  ADS  Google Scholar 

  • Prinn, R.G. and Fegley, B. Jr,: 1989, ‘Solar nebula chemistry: origin of planetary, satellite and cometary volatiles’, in S.K. Atreya, J.B. Pollack and M.S. Matthews (eds.), Origin and evolution of planetary and satellites atmospheres, The University Arizona Press, Tucson, pp. 78–136.

    Google Scholar 

  • Robert, F., Gautier, D., and Dubrulle, B.: 2000, ‘The solar system D/H ratio: observations and theories’, Space Sci. Rev. 92, 201–224.

    Article  ADS  Google Scholar 

  • Schmitt, B., Quirico, E., Trotta, F., and Grundy, W.M.: 1998, ‘Optical properties of ices from UV to infrared’, in B. Schmitt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publishers, Dortrecht (Netherlands), pp. 199–240.

    Google Scholar 

  • Shakura, N.I. and Sunyaev, R.A.: 1973, ‘Black holes in binary systems, observational appearance’, Astron. Astrophys. 24, 337–355.

    ADS  Google Scholar 

  • Sloan, E.D.; Jr.: 1998, Clathrate Hydrates of Natural Gases, Marcel Dekker Inc., New York.

    Google Scholar 

  • Smith, M.D., Conrath, B.J., and Gautier, D.: 1996, ‘Dynamical influence on the isotopic enrichment of CH3D in the Outer planets’, Icarus 124, 598–607.

    Article  ADS  Google Scholar 

  • Squires, K.D. and Eaton, J.K.: 1991, ‘Preferential concentration of particles by turbulence’, Phys. Fluids 3, 1169–1178.

    Article  ADS  Google Scholar 

  • Tanga, P., Babiano, A., Dubrulle, B., and Provenzale, A.: 1996, ‘Forming planetesimals in vortices’, Icarus 121, 158–170.

    Article  ADS  Google Scholar 

  • Van der Waals, J.H. and Platteuw, J.C.: 1959, ‘Clathrate solutions’, in Advances in Chemical Physics, Volume 2, Interscience Publishers Inc., New York, pp. 1–57.

    Google Scholar 

  • Weaver, H.A., Feldman, P.D., Combi, M.R., Krasnopolsky, V., Lisse, C.M., and Shemansky, D.E.: 2002, ‘A search for argon and O VI in three comets using the far ultraviolet spectroscopic explorer’, Astrophys. J. 576, L95–L98.

    Article  ADS  Google Scholar 

  • Weidenschilling, S.J.: 1997, ‘The origin of comets in the solar nebula: a unified model’, Icarus 127, 290–306.

    Article  ADS  Google Scholar 

  • Wyckoff, S., Tegler, S.C., and Engel, L.: 1991, ‘Nitrogen abundance in comet Halley’, Astrophys. J. 367, 641–648.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Gautier, D., Hersant, F. (2005). Formation and Composition of Planetesimals. In: Encrenaz, T., Kallenbach, R., Owen, T.C., Sotin, C. (eds) The Outer Planets and their Moons. Space Sciences Series of ISSI, vol 19. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4038-5_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4038-5_3

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3362-9

  • Online ISBN: 978-1-4020-4038-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics