Skip to main content

Solar System Magnetospheres

  • Chapter
The Outer Planets and their Moons

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 19))

  • 781 Accesses

Abstract

This article proposes a short review of our present knowledge of solar system magnetospheres, with the purpose of placing the study of Saturn’s magnetosphere in the context of a comparative approach. We describe the diversity of solar system magnetospheres and the underlying causes of this diversity: nature and magnetization state of the planetary obstacle, presence or not of a dense atmosphere, rotation state of the planet, existence of a system of satellites, rings and neutral gas populations in orbit around the planet. We follow the “russian doll” hierarchy of solar system magnetospheres to briefly describe the different objects of this family: the heliosphere, which is the Sun’s magnetosphere; the “elementary” magnetospheres of the inner planets, Earth and Mercury; the “complex” magnetospheres of the giant planets, dominated by planetary rotation and the presence of interacting objects within their magnetospheric cavities, some of which, like Ganymede, Io or Titan, produce small intrinsic or induced magnetospheres inside the large one. We finally describe the main original features of Saturn’s magnetosphere as we see them after the Voyager fly-bys and before the arrival of Cassini at Saturn, and list some of the key questions which Cassini will have to address during its four-year orbital tour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acuña, M.H., Neubauer, F.M., and Ness, N.F.: 1981, ‘Standing Alfvén wave current system at Io: Voyager 1 observations’, J. Geophys. Res. 86, 8513–8521.

    Article  ADS  Google Scholar 

  • Altobelli, N., Kempf, S., Landgraf, M., Srama, R., Dikarev, V., Krüger, H., Moraga-Klostermeyer, G., and Grün, E.: 2004, ‘Cassini between Venus and Earth: Detection of interstellar dust’, J. Geophys. Res. 108, LIS 7-1, CiteID 8032.

    Google Scholar 

  • Atreya, S., and Wong, A.-S.: 2005, ‘Coupled clouds and chemistry of the giant planets — a case for multiprobes’, this volume.

    Google Scholar 

  • Axford, W.I., and Hines,: 1960

    Google Scholar 

  • Bagenal, F.: 1992, ‘Giant planet magnetospheres’, Annu. Rev. Earth Planet. Sci. 20, 289–320.

    Article  ADS  Google Scholar 

  • Bagenal, F., and Y. Leblanc: 1988, ‘Io’s Alfvén wave pattern and the Jovian decametric arcs’, Astron. Astrophys. 197, pp. 311–319.

    ADS  Google Scholar 

  • Bagenal, F., Dowling, T.E., and McKinnon, W.B. (eds.): 2004, Jupiter. The planet, satellites and magnetosphere, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Baranov, V.B., Krasnobaev, K.V., and Kulikovksy, A.G.: 1971, ‘A model of the interaction of the solar wind with the interstellar medium’, Sov. Phys. Dokl. 15, 791–793.

    ADS  Google Scholar 

  • Bhardwaj, A. and Gladstone, G.R.: 2000, ‘Auroral emissions of the giant planets’, Rev. Geophys. 38, 295.

    Article  ADS  Google Scholar 

  • Bar-Nun, A.G., Herman, G., Rappaport, M.L., and Mekler, Y.: 1982, ‘Sputtering of water ice at 30–40 K by 0.5–6.0 keV H+ and Ne+ ions’, Surface Sci. 150, 193–201.

    Google Scholar 

  • Beebe, R.: 2005, ‘Comparative study of the dynamics of the outer planets’, this volume.

    Google Scholar 

  • Belcher, J.W.: 1983, ‘The low-energy plasma in the Jovian magnetosphere’, in A.J. Dessler (ed.), Physics of the Jovian magnetosphere, Cambridge Univ. Press, New York, pp. 68–106.

    Chapter  Google Scholar 

  • Belcher, J.W., McNutt, R.L., Jr., Richardson, J.D., Selesnick, R.S., Sittler, E.C., and Bagenal, F.: 1991, ‘The plasma environment of Uranus’, in J.T. Bergstralh, E.D. Miner, and M.S. Matthews (eds.), Univ. of Arizona Press, Tucson, pp. 780–830.

    Google Scholar 

  • Ben-Jaffel, L., Leers, V., and Sandel, B.: 1995, ‘Dark auroral oval on Saturn discovered in Hubble Space Telescope ultraviolet images’, Science 269, 951–953.

    Article  ADS  Google Scholar 

  • Bennett, J.O.: 2004, The Cosmic Perspective: The Solar System, Addison Wesley.

    Google Scholar 

  • Bergstrahl, J.T., Miner, E.D., and M.S. Matthews (eds.): 1991, Uranus, Univ. Arizona Press, Tucson.

    Google Scholar 

  • Bhardwaj, A. and Gladstone, G.R.: 2000, ‘Auroras on Saturn, Uranus, and Neptune’, Adv. Space Res. 26, 1551–1558.

    Article  ADS  Google Scholar 

  • Bida, T.A., Killen, R.M., and Morgan, T.H.: 2000, ‘Discovery of calcium in Mercury’s atmosphere’, Nature 404, 159–161.

    Article  ADS  Google Scholar 

  • Bigg, E.K.: 1964, ‘Influence of the satellite Io on Jupiter’s decametric emission’, Nature 203, 1008.

    Article  ADS  Google Scholar 

  • Bird, M.K., Dutta-Roy, R., Asmar, S.W., and Rebold, T.A.: 1997, ‘Possible detection of Titan’s ionosphere from Voyager 1 radio occultation observations’, Icarus 130, 426–436.

    Article  ADS  Google Scholar 

  • Birmingham, T.J., Northrop, T., and Fälthammar, C.-G.: 1967, ‘Charged particle diffusion by violation of the third adiabatic invariant’, Phys. Fluids 10, 2389–2398.

    Article  ADS  Google Scholar 

  • Blanc, M., et al.: 2002, ‘Magnetospheres and plasma science with Cassini-Huygens’, Space Sci. Rev. 104, 253–346.

    Article  ADS  Google Scholar 

  • Bolton, S.J., Thorne, R.M., Gurnett, D.A., Kurth, W.S., and Williams, D.J.: 1997, ‘Enhanced whistler-mode emissions: Signatures of interchange motion in the Io torus’, Geophys. Res. Lett. 24, 2123.

    Article  ADS  Google Scholar 

  • Bolton, S.J., Thorne, R.M., Bourdarie, S., Depater, I., and Mauk, B.: 2004, ‘Jupiter’s inner radiation belts’, in F. Bagenal, T.E. Dowling, and W.B. McKinnon (eds.), Jupiter. The planet, satellites and magnetosphere, Cambridge University Press, Cambridge, UK, pp. 671–688.

    Google Scholar 

  • Brackmann, R.T., and Fite, W.L.: 1961, J. Chem. Phys. 34, 1572.

    Article  ADS  Google Scholar 

  • Brice, N.M., and McDonough, T.R.: 1973, ‘Jupiter’s radiation belts’, Icarus 18, 206–219.

    Article  ADS  Google Scholar 

  • Bridge, H.S., et al.: 1981, ‘Plasma observations near Saturn — initial results from Voyager 1’, Science 212, 217–224.

    Article  ADS  Google Scholar 

  • Bridge, H.S., et al.: 1982, ‘Plasma observations near Saturn — initial results from Voyager 2’, Science 215, 563–570.

    Article  ADS  Google Scholar 

  • Broadfoot, A.L., Kumar, S., Belton, M.J.S., and McElroy, M.B.: 1974, ‘Mercury’s atmosphere from Mariner 10: Preliminary results’, Science 185, 166–169.

    Article  ADS  Google Scholar 

  • Budzien, S.A., Festou, M.C., and Feldman, P.D.: 1994, ‘Solar flux variability and the lifetimes of cometary H2O and OH’, Icarus 107, 164–188.

    Article  ADS  Google Scholar 

  • Burke, B.F. and Franklin, K.L.: 1955, ‘Observations of a variable radio source associated with the planet Jupiter’, J. Geophys. Res. 60, 213.

    Article  ADS  Google Scholar 

  • Cabane, M., and Chassefière, E.: 1995, ‘Laboratory simulations of Titan’s atmosphere: organic gases and aerosols’, Planet. Space Sci. 43, 47–65.

    Article  ADS  Google Scholar 

  • Cahill, L.J. and Amazeen, P.G.: 1963, ‘The boundary of the geomagnetic field’, J. Geophys. Res. 68, 1835–1843.

    Article  ADS  Google Scholar 

  • Carlson, R.W.: 1980, ‘Photo-sputtering of ice and hydrogen around Saturn’s rings’, Nature 283, 461.

    Article  ADS  Google Scholar 

  • Chassefière, E., and Cabane, M.: 1995, ‘Two formation regions for Titan’s hazes: indirect clues and possible synthesis mechanisms’, Planet. Space Sci. 43, 91–103.

    Article  ADS  Google Scholar 

  • Cheng, A.F., Johnson, R.E., Krimigis, S.M., and Lanzerotti, L.J.: 1987, ‘Magnetosphere, exosphere and surface of Mercury’, Icarus 71, 430–440.

    Article  ADS  Google Scholar 

  • Cheng, A.F., Krimigis, S.M., and Lanzerotti, L.J.: 1991, ‘Energetic particles at Uranus’, in J.T. Bergstralh, E.D. Miner, and M.S. Matthews (eds.), Univ. Arizona Press, Tucson, pp. 831–893.

    Google Scholar 

  • Chiu, Y.T. and Schulz, M.: 1978, ‘Self-consistent particle and parallel electrostatic field distributions in the magnetospheric-ionospheric auroral region’, J. Geophys. Res. 83, 629–642.

    Article  ADS  Google Scholar 

  • Christon, S.P.: 1989, ‘Plasma and energetic electron flux variations in the Mercury 1 C event — evidence for a magnetospheric boundary layer’, J. Geophys. Res. 94, 6481–6505.

    Article  ADS  Google Scholar 

  • Clarke, J.T., Moos, H.W., Atreya, S.K., and Lane, A.L.: 1981, ‘IUE detection of bursts of H Ly-alpha emission from Saturn’, Nature 290, 226–227.

    Article  ADS  Google Scholar 

  • Clarke, J.T., Ajello, J., Ballester, G., Ben-Jaffel, L., Connerney, J., Gérard, J.-C., Gladstone, G.R., Pryor, W., Trauger, J., and Waite, J.H., Jr.: 2002, ‘Ultraviolet emissions from the magnetic footprints of Io, Ganymede, and Europa on Jupiter’, Nature 415, 997–1000.

    Article  ADS  Google Scholar 

  • Clarke, J.T., Grodent, D., Cowley, S.W.H., Bunce, E.J., Zarka, P., Connerney, J.E.P., and Satoh, T.: 2004, ‘Jupiter’s aurora’, in F. Bagenal, T.E. Dowling, and W.B. McKinnon (eds.), Jupiter. The planet, satellites and magnetosphere, Cambridge University Press, Cambridge, UK, pp. 639–670.

    Google Scholar 

  • Connerney, J.E.P., and Ness, N.F.: 1988, ‘Mercury’s magnetic field and interior’, in F. Vilas, C.R. Chapman, and M.S. Matthews (eds.), Mercury, Univ. Arizona Press, Tucson, pp. 494–513.

    Google Scholar 

  • Connerney, J.E.P., Davis, L., Jr., and Chenette, D.L.: 1984, ‘Magnetic field models’, in T. Gehrels and M.S. Matthews (eds.), Saturn, Univ. of Arizona Press, Tucson, pp. 354–377.

    Google Scholar 

  • Coroniti, F.V.: 1974, ‘Energetic electrons in Jupiter’s magnetospherers, Astrophys. J. Suppl. Ser. 27, 261–281.

    Article  ADS  Google Scholar 

  • Coustenis, A.: 2005, ‘Formation and evolution of Titan’s atmosphere’, this volume.

    Google Scholar 

  • Cowley, S.W.H., Bunce, E.J., and Prangé, R.: 2004, ‘Saturn’s polar ionospheric flows and their relation to the main auroral oval’, Ann. Geophysicae 22, 1379.

    Article  ADS  Google Scholar 

  • Crary, F.J. and Bagenal, F.: 1997, ‘Coupling the plasma interaction at Io to Jupiter’, Geophys. Res. Lett. 24, 2135–2138.

    Article  ADS  Google Scholar 

  • Cravens, T.E., Keller, C.N., and Gan, L.: 1992, ‘The ionosphere of Titan and its interaction with Saturnian magnetospheric electrons’, ESA SP-338, pp. 273–278.

    Google Scholar 

  • Decker, R.B. and Cheng, A.F.: 1994, ‘A model of Triton’s role in Neptune’s magnetosphere’, J. Geophys. Res. 99, 19027–19045.

    Article  ADS  Google Scholar 

  • Delamere, P.A., Bagenal, F., Ergun, R., and Su, Y.-J.: 2003, ‘Momentum transfer between the Io plasma wake and Jupiter’s ionosphere’, J. Geophys. Res. 108, SMP 11-1, CiteID 1241.

    Google Scholar 

  • Desch, M.D., and Kaiser, M.L.: 1981, ‘Saturn’s kilometric radiation — satellite modulation’, Nature 292, 739–741.

    Article  ADS  Google Scholar 

  • Dungey,: 1961, ‘Interplanetary magnetic field and auroral zones’, Phys. Rev. Lett. 6, 47.

    Article  ADS  Google Scholar 

  • Encrenaz, T.: 2005, ‘Neutral atmospheres of the giant planets: an overview of composition measurements’, this volume.

    Google Scholar 

  • Encrenaz, T., Bibring, J.-P., Blanc, M., Barucci, M.-A., Roques, F., and Zarka, P.: 2004, The Solar System, Springer.

    Google Scholar 

  • Erkaev, N.V., Shaidurov, V.A., Semenov, V.S., and Biernat, H.K.: 2002, ‘Effects of MHD slow shocks propagating along magnetic flux tubes in a dipole magnetic field’, Nonlinear Processes in Geophysics 9, 163.

    Article  ADS  Google Scholar 

  • Erkaev, N.V., Shaidurov, V.A., Semenov, V.S., Langmayr, D., Biernat, H.K.: 2004, ‘Peculiarities of Alfvén wave propagation along a nonuniform magnetic flux tube’, Phys. Plasmas, in press.

    Google Scholar 

  • Espinosa, S.A., and Dougherty, M.K.: 2000, ‘Periodic perturbations in Saturn’s magnetic field’, Geophys. Res. Lett. 27, 2785–2788.

    Article  ADS  Google Scholar 

  • Eviatar, A., Siscoe, G.L., Scudder, J.D., Sittler, E.C., Jr., and Sullivan, J.D.: 1982, ‘The plumes of Titan’, J. Geophys. Res. 87, 8091–8103.

    Article  ADS  Google Scholar 

  • Eviatar, A., Strobel, D.F., Wolven, B.C., Feldman, P.D., McGrath, M.A., and Williams, D.J.: 2001, ‘Excitation of the Ganymede ultraviolet aurora’, Astrophys. J. 555, 1013–1019.

    Article  ADS  Google Scholar 

  • Fälthammar, C.-G.: 1968, ‘Radial diffusion by violation of the third adiabatic invariant’, in B.M. McCormac (ed.), Earth’s Particles and Fields, Reinhold, New York, pp. 157–169.

    Google Scholar 

  • Feldman, P.D., McGrath, M.A., Strobel, D.F., Moos, H.W., Retherford, K.D., and Wolven, B.C.: 2000, ‘HST/STIS UV imaging of polar aurora on Ganymede’, Astrophys. J. 535, 1085–1090.

    Article  ADS  Google Scholar 

  • Ferrière, K.M. and André, N.: 2002, ‘A mixed magnetohydrodynamic-kinetic theory of low-frequency waves and instabilities in homogeneous, gyrotropic plasmas’, J. Geophys. Res. 107, SMP 7-1, CiteID 1349.

    Google Scholar 

  • Ferrière, K.M., Zimmer, C., and Blanc, M.: 1999, ‘Magnetohydrodynamic waves and gravitational/centrifugal instability in rotating systems’, J. Geophys. Res. 104, 17335–17356.

    Article  ADS  Google Scholar 

  • Ferrière, K.M., Zimmer, C., and Blanc, M.: 2001, ‘Quasi-interchange modes and interchange instability in rotating magnetospheres’, J. Geophys. Res. 106, 327–344.

    Article  ADS  Google Scholar 

  • Frank, L.A., Burek, B.G., and Ackerson, K.L.: 1980, ‘Plasmas in Saturn’s magnetosphere’, J. Geophys. Res. 85, 5695–5708.

    Article  ADS  Google Scholar 

  • Frank, L.A., Paterson, W.R., Ackerson, K.L., Vasyliunas, V.M., Coroniti, F.V., and Bolton, S.J.: 1996, ‘Plasma observations at Io with the Galileo spacecraft’, Science 274, 394–395.

    Article  ADS  Google Scholar 

  • Galand, M. and Chakrabarti, S.: 2002, ‘Auroral processes in the solar system’, in Atmospheres in the Solar System: comparative aeronomy, Geophys. Monograph 130, AGU.

    Google Scholar 

  • Galand, M., Lilensten, J., Toublanc, D., and Maurice, S.: 1999, ‘The ionosphere of Titan: Ideal diurnal and nocturnal cases’, Icarus 140, 92–105.

    Article  ADS  Google Scholar 

  • Gan, L., Keller, C. N. and Cravens, T.E.: 1992, ‘Electrons in the ionosphere of Titan’, J. Geophys. Res. 97, 12137–12151.

    Article  ADS  Google Scholar 

  • Geiss, J., et al.: 1992, ‘Plasma composition in Jupiter’s magnetosphere — initial results from the Solar Wind Ion Composition Spectrometer’, Science 257, 1535–1539.

    Article  ADS  Google Scholar 

  • Glassmeier, K.-H.: 1997, ‘The Hermean magnetosphere and its ionosphere-magnetosphere coupling’, Planet. Space Sci. 46, 119–125.

    Article  ADS  Google Scholar 

  • Gloeckler, G., Geiss, J., Balsiger, H., Fisk, L.A., Galvin, A.B., Ipavich, F.M., Ogilvie, K.W., von Steiger, R., and Wilken, B.: 1993, ‘Detection of interstellar pick-up hydrogen in the solar system’, Science 261, 70–73.

    Article  ADS  Google Scholar 

  • Gloeckler, G., et al.: 2004, ‘Observations of the helium focusing cone with pickup ions’, Astron. Astrophys. 426 845–854.

    Article  ADS  Google Scholar 

  • Gold, T.: 1959, ‘Plasma and magnetic fields in the solar system’, J. Geophys. Res. 64, 1665.

    Article  ADS  Google Scholar 

  • Gurnett, D.A. and Goertz, C.K.: 1981, ‘Multiple Alfvén wave reflections excited by Io: Origin of the Jovian decametric arcs’, J. Geophys. Res. 86, 717–722.

    Article  ADS  Google Scholar 

  • Gurnett, D.A., Kurth, W.S., and Scarf, F.L.: 1981, ‘Plasma waves near Saturn — Initial results from Voyager 1’, Science 212, 235–239.

    Article  ADS  Google Scholar 

  • Gurnett, D.A., Kurth, W.S., Roux, A., Bolton, S.J., and Kennel, C.F.: 1996, ‘Galileo plasma wave observations in the Io plasma torus and near Io’, Science 274, 391–392.

    Article  ADS  Google Scholar 

  • Gurnett, D.A., et al.: 2002, ‘Control of Jupiter’s radio emission and aurorae by the solar wind’, Nature 415, 985–987.

    Article  ADS  Google Scholar 

  • Hall, D.T., Feldman, P.D., Holberg, J.B., and McGrath, M.A.: 1996, ‘Fluorescent hydroxyl emissions from Saturn’s ring atmosphere’, Science 272, 516–518.

    Article  ADS  Google Scholar 

  • Harb, T., Kedzierski, W., and McConkey, J.W.: 2001, ‘Production of ground state OH following electron impact on H2O’, J. Chem. Phys. 115, 5507–5512.

    Article  ADS  Google Scholar 

  • Harrison, H., and Schoen, R.I.: 1967, ‘Evaporation of ice in space: Saturn’s rings’, Science 157, 1157–1176.

    Article  Google Scholar 

  • Hartle, R.E., Sittler, E.C., Jr., Ogilvie, K.W., Scudder, J.D., Lazarus, A.J., and Atreya, S.K.: 1982, ‘Titan’s ion exosphere observed from Voyager 1’, J. Geophys. Res. 87, 1383–1394.

    Article  ADS  Google Scholar 

  • Haynes, P.L., Balogh, A., Dougherty, M.K., Southwood, D.J., and Fazakerley, A.: 1994, ‘Null fields in the outer Jovian magnetosphere: Ulysses observations’, Geophys. Res. Lett. 21, 405–408.

    Article  ADS  Google Scholar 

  • Hess, W.N.: 1968, The Radiation Belt and Magnetosphere, Blaisdell Publishing Company.

    Google Scholar 

  • Hill, T.W.: 1979, ‘Inertial limit on co-rotation’, J. Geophys. Res. 84, 6554–6558.

    Article  ADS  Google Scholar 

  • Hill, T.W. and Vasyliunas, V.M.: 2002, ‘Jovian auroral signature of Io’s corotational wake’, J. Geophys. Res. 107, SMP 27-1.

    Google Scholar 

  • Hill, T.W., Dessler, A.J., and Goertz, C.K.: 1983, ‘Magnetospheric models’, in A.J. Dessler (ed.), Physics of the Jovian magnetosphere, Cambridge Univ. Press, New York, pp. 353–394.

    Chapter  Google Scholar 

  • Hinson, D.P., Kliore, A.J., Flasar, F.M., Twicken, J.D., Schinder, P.J., and Herrera, R.G.: 1998, ‘Galileo radio occultation measurements of Io’s ionosphere and plasma wake’, J. Geophys. Res. 103, 29343–29358.

    Article  ADS  Google Scholar 

  • Hinteregger, H.E., Fukui, K., and Gilson, B.R.: 1981, ‘Observational, reference and model data on solar EUV, from measurements on AE-E’, Geophys. Res. Lett. 8, 1147–1150.

    Article  ADS  Google Scholar 

  • Hood, L.L.: 1983, ‘Radial diffusion in Saturn’s radiation belts — a modeling analysis assuming satellite and ring E’, J. Geophys. Res. 88, 808–818.

    Article  ADS  Google Scholar 

  • Hood, L.L.: 1985, ‘Radial diffusion of low-energy ions in Saturn’s radiation belts — a combined analysis of phase space density and satellite microsignature data’, J. Geophys. Res. 90, 6295–6303.

    Article  ADS  Google Scholar 

  • Hood, L.L.: 1989, ‘Radial diffusion and losses of energetic protons in the 5 to 12 R S region of Saturn’s magnetosphere’, J. Geophys. Res. 94, 8721–8730.

    Article  ADS  Google Scholar 

  • Huddleston, D.E., Strangeway, R.J., Blanco-Cano, X., Russell, C.T., Kivelson, M.G., and Khurana, K.K.: 1999, ‘Mirror-mode structures at the Galileo-Io flyby: Instability criterion and dispersion analysis’, J. Geophys. Res. 104, 17479–17490.

    Article  ADS  Google Scholar 

  • Hultqvist, B., Oieroset, M., Paschmann, G., and Treumann, R. (eds.): 1999, Magnetospheric Plasma Sources and Losses, Space Sci. Ser. ISSI 6, Springer, 496 pp; reprinted from Space Sci. Rev. 88.

    Google Scholar 

  • Hunten, D.M., Tomasko, M.G., Flasar, F.M., Samuelson, R.E., Strobel, D.F., and Stevenson, D.J.: 1984, ‘Titan’, in T. Gehrels and M.S. Matthews (eds.), Saturn, Univ. Arizona Press, Tucson, pp. 671–759.

    Google Scholar 

  • Ip, W.-H.: 1987, ‘Mercury’s magnetospheric irradiation effect on the surface’, Geophys. Res. Lett. 14, 1191–1194; ‘Dynamics of electrons and heavy ions in Mercury’s magnetosphere’, Icarus 71, 441–447.

    Article  ADS  Google Scholar 

  • Johnson, R.E., Pospieszalska, M.K., Sittler, E.C., Cheng, A.F., Lanzerotti, L.J., and Sieveka, E.M.: 1989, ‘The neutral cloud and heavy inner torus at Saturn’, Icarus 77, 311–329.

    Article  ADS  Google Scholar 

  • Judge, D.L., Wu, F.-M., and Carlson, R.W.: 1980, ‘Ultraviolet photometer observations of the Saturnian system’, Science 207, 431–434.

    Article  ADS  Google Scholar 

  • Jurac, S. and Richardson, J.D.: 2004, ‘A self-consistent model of plasma and neutrals at Saturn: Neutral cloud morphology’, J. Geophys. Res., in press.

    Google Scholar 

  • Jurac, S., Johnson, R.E., Richardson, J.D., and Paranicas, C.: 2001, ‘Satellite sputtering in Saturn’s magnetosphere’, Planet. Space Sci. 49, 319–326.

    Article  ADS  Google Scholar 

  • Jurac, S., McGrath, M.A., Johnson, R.E., Richardson, J.D., Vasyliunas, V.M., and Eviatar, A.: 2002, ‘Saturn: Search for a missing water source’, Geophys. Res. Lett. 29, 25-1, CiteID 2172.

    Google Scholar 

  • Kaiser, M.L., Desch, M.D., Kurth, W.S., Lecacheux, A., Genova, F., Pedersen, B.M., and Evans, D.R.: 1984, ‘Saturn as a radio source’, in T. Gehrels and M.S. Matthews (eds.), Saturn, Univ. Arizona Press, Tucson.

    Google Scholar 

  • Kallenbach, R., Geiss, J., Gloeckler, G., and von Steiger, R.: 2000, ‘Pick-up ion measurements in the heliosphere — a review’, Astrophys. Space Sci. 274, 97–114.

    Article  ADS  Google Scholar 

  • Kallenbach, R., Hilchenbach, M., Chalov, S.V., and Bamert, K.: 2004, ‘On the origin of energetic neutral atoms detected by the SOHO/CELIAS/HSTOF sensor’, in V. Florinsky, N.V. Pogorelov, and G.P. Zank (eds.), Physics of the Outer Heliosphere, AIP Conf. Proc. 719, pp. 229–236.

    Google Scholar 

  • Kaiser, M.L., Desch, M.D., Warwick, J.W., and Pearce, J.B.: 1980, ‘Voyager detection of nonthermal radio emission from Saturn’, Science 209, 1238–1240.

    Article  ADS  Google Scholar 

  • Khurana, K.K., Kivelson, M.G., and Russell, C.R.: 1997, ‘Interaction of Io with its torus: Does Io have an internal magnetic field?’ Geophys. Res. Lett. 24, 2391–2394.

    Article  ADS  Google Scholar 

  • Khurana, K.K., Kivelson, M.G., Vasyliunas, V., Krupp, N., Woch, J., Lagg, A., Mauk, B.H., and Kurth, W.S.: 2004, ‘The configuration of Jupiter’s magnetosphere’, in F. Bagenal, T.E. Dowling, and W.B. McKinnon (eds.), Jupiter. The planet, satellites and magnetosphere, Cambridge University Press, Cambridge, UK, pp. 593–616.

    Google Scholar 

  • Killen, R.M., Potter, A.E., Reiff, P., Sarantos, M., Jackson, B.V., Hick, P., and Giles, B.: 2001, ‘Evidence for space weather at Mercury’, J. Geophys. Res. 106, 20509–20526.

    Article  ADS  Google Scholar 

  • Kim, Y.-K., Hwang, W., Weinberger, N.M., Ali, M.A., and Rudd, M.E.: 1997, ‘Electron-impact ionization cross sections of atmospheric molecules’, J. Chem. Phys. 106, 1026–1033.

    Article  ADS  Google Scholar 

  • Kivelson, M.G.: 2005, ‘The current systems of the Jovian magnetosphere and ionosphere and predictions for Saturn’, this volume.

    Google Scholar 

  • Kivelson, M. and Bagenal, F.: 1999, ‘Planetary magnetospheres’, in Encyclopedia of the Solar System, Academic Press, p. 477.

    Google Scholar 

  • Kivelson, M.G., Coleman, P.J., Froidevaux, L., and Rosenberg, R.L.: 1978, ‘A time dependent model of the Jovian current sheet’, J. Geophys. Res. 83, 4823–4829.

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Khurana, K.K., Walker, R.J., Linker, J.A., Russell, C.R., Southwood, D.J., and Polanskey, C.: 1996, ‘A magnetic signature at Io: Initial report from the Galileo magnetometer’, Science 273, 337–340.

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Khurana, K.K., Russell, C.T., and Walker, R.J.: 1997a, ‘Intermittent short-duration magnetic field anomalies in the Io torus: Evidence for plasma interchange?’, Geophys. Res. Lett. 24, 2127.

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Khurana, K.K., Coroniti, F.V., Joy, S., Russell, C.T., Walker, R.J., Warnecke, J., Bennett, L., and Polanskey, C.: 1997b, ‘Magnetic field and magnetosphere of Ganymede’, Geophys. Res. Lett. 24, 2155–2158.

    Article  ADS  Google Scholar 

  • Kivelson, M.G.: 2004, ‘Moon-magnetosphere interactions: a tutorial’, Adv. Space Res. 33, 2061–2077.

    Article  ADS  Google Scholar 

  • Kopp, A.: 1996, ‘Modification of the electrodynamic interaction between Jupiter and Io due to mass loading effects’, J. Geophys. Res. 101, 24943–24954.

    Article  ADS  Google Scholar 

  • Krimigis, S.M., et al.: 1979, ‘Hot plasma environment at Jupiter-Voyager 2 results’, Science 206, 977–984.

    Article  ADS  Google Scholar 

  • Krimigis, S.M., Carbary, J.F., Keath, E.P., Bostrom, C.O., Axford, W.I., Gloeckler, G., Lanzerotti, L.J., and Armstrong, T.P.: 1981, ‘Characteristics of hot plasma in the Jovian magnetosphere — Results from the Voyager spacecraft’, J. Geophys. Res. 86, 8227–8257.

    Article  ADS  Google Scholar 

  • Krimigis, S.M., Decker, R.B., Hill, M.E., Armstrong, T.P., Gloeckler, G., Hamilton, D.C., Lanzerotti, L.J., and Roelof, E.C.: 2003, ‘Voyager 1 exited the solar wind at a distance of ∼85 AU from the Sun’, Nature 426, 45–48.

    Article  ADS  Google Scholar 

  • Krimigis, S.M., Decker, R.B., Roelof, E.C., and Hill, M.E.: 2004, ‘Energetic particle observations near the termination shock’, V. Florinski, N.V. Pogorelov, and G.P. Zank (eds.), Physics of the Outer Heliosphere, AIP Conf. Proc. 719, pp. 133–138.

    Google Scholar 

  • Krisko, P.H. and Hill, T.W.: 1991, ‘Two-dimensional model of a slow-mode expansion fan at Io’, Geophys. Res. Lett. 18, 1947–1950.

    Article  ADS  Google Scholar 

  • Krupp, N.: 2005, ‘Energetic particle populations in the magnetospheres of Jupiter and Saturn’, this volume.

    Google Scholar 

  • Krupp, N., Woch, J., Lagg, A., Wilken, B., Livi, S., and Williams, D.J.: 1998, ‘Energetic particle bursts in the predawn Jovian magnetotail’, Geophys. Res. Lett. 25, 1249–1253.

    Article  ADS  Google Scholar 

  • Krupp, N., Lagg, A., Livi, S., Wilken, B., Woch, J., Roelof, E.C., and Williams, D.J.: 2001, ‘Global flows of energetic ions in Jupiter’s equatorial plane: First-order approximation’, J. Geophys. Res. 106, 26017–26032.

    Article  ADS  Google Scholar 

  • Krupp, N., et al.: 2004, ‘Dynamics of the Jovian magnetosphere’, in F. Bagenal, T.E. Dowling, and W.B. McKinnon (eds.), Jupiter. The planet, satellites and magnetosphere, Cambridge University Press, Cambridge, UK, pp. 617–638.

    Google Scholar 

  • Labelle, J. and Treumann, R.: 2002, ‘Auroral radio emissions, 1. Hisses, roars, and bursts’, Space Sci. Rev. 101, 295–440.

    Article  ADS  Google Scholar 

  • Lammer, H., Wurz, P., Patel, M.R., Killen, R., Kolb, C., Massetti, S., Orsini, S., and Milillo, A.: 2003, ‘The variability of Mercury’s exosphere by particle and radiation induced surface release processes’, Icarus 166, 238–247.

    Article  ADS  Google Scholar 

  • Landgraf, M., Krüger, H., Altobelli, N., and Grün, E.: 2003, ‘Penetration of the heliosphere by the interstellar dust stream during solar maximum’, J. Geophys. Res. 108, LIS 5-1, CiteID 8030.

    Google Scholar 

  • Lellouch, E.: 2005, Io’s atmosphere and surface-atmosphere interactions’, this volume.

    Google Scholar 

  • Linker, J.A., Kivelson, M.G., and Walker, R.J.: 1991, ‘A three-dimensional MHD simulation of plasma flow past Io’, J. Geophys. Res. 96, 21037–21053.

    Article  ADS  Google Scholar 

  • Louarn, P., Roux, A., Perraut, S., Kurth, W.S., and Gurnett, D.: 1998, ‘A study of the large-scale dynamics of the jovian magnetosphere using the Galileo plasma wave experiment’, Geophys. Res. Lett. 25, 2905–2908.

    Article  ADS  Google Scholar 

  • Louarn, P., Roux, A., Perraut, S., Kurth, W.S., and Gurnett, D.: 2000, ‘A study of the Jovian “ energetic magnetospheric events” observed by Galileo: Role in the radial plasma transport’, J. Geophys. Res. 105, 13073–13088.

    Article  ADS  Google Scholar 

  • Louarn, P., Mauk, B.H., Kivelson, M.G., Kurth, W.S., Roux, A., Zimmer, C., Gurnett, D.A., and Williams, D.J.: 2001, ‘A multi-instrument study of a Jovian magnetospheric disturbance’, J. Geophys. Res. 106, 29883–29898.

    Article  ADS  Google Scholar 

  • Love, S., and Brownlee, D.E.: 1993, ‘A direct measurement of the terrestrial mass accretion rate of cosmic dust’, Science 262, 550–553.

    Article  ADS  Google Scholar 

  • Luhmann, J.G., Russell, C.T., and Tsyganenko, N.A.: 1998, ‘Disturbances in Mercury’s magnetosphere: Are the Mariner 10 “substorms” simply driven?’, J. Geophys. Res. 103, 9113–9120.

    Article  ADS  Google Scholar 

  • Mauk, B.H., Williams, D.J., McEntire, R.W., Khurana, K.K., and Roederer, J.G.: 1999, ‘Storm-like dynamics of Jupiter’s inner and middle magnetosphere’, J. Geophys. Res. 104, 22759–22778.

    Article  ADS  Google Scholar 

  • McComas, D.J., et al.: 2004, ‘The interstellar hydrogen shadow: Observations of interstellar pickup ions beyond Jupiter’, J. Geophys. Res. 109, CiteID A02104.

    Google Scholar 

  • McDonald, F.B., Stone, E.C., Cummings, A.C., Heikkila, B., Lal, N., and Webber, W.R.: 2003, ‘Enhancements of energetic particles near the heliospheric termination shock’, Nature 426, 48–51.

    Article  ADS  Google Scholar 

  • McGrath, M.A.: 2002, ‘Hubble Space Telescope observations of Europa and Ganymede’, AGU Fall Meeting 2002, abstract # P52C-05.

    Google Scholar 

  • McNutt, R.L., Belcher, J.W., and Bridge, H.S.: 1981, ‘Positive ion observations in the middle magnetosphere of Jupiter’, J. Geophys. Res. 86, 8319–8342.

    Article  ADS  Google Scholar 

  • Mei, Y., Thorne, R.M., and Bagenal, F.: 1995, ‘Analytic model for the density distribution in the Io plasma torus’, J. Geophys. Res. 100, 1823–1828.

    Article  ADS  Google Scholar 

  • Miller, S., Aylward, A., and Millward, G.: 2005, ‘Giant planet ionospheres and thermospheres: the importance of ion-neutral coupling’, this volume.

    Google Scholar 

  • Möbius, E., Hovestadt, D., Klecker, B., Scholer, M., and Gloeckler, G.: 1985, ‘Direct observation of He+ pick-up ions of interstellar origin in the solar wind’, Nature 318, 426–429.

    Article  ADS  Google Scholar 

  • Mordaunt, D.H., Lambert, I.R., Morley, G.P., Ashfold, M.N.R., Dixon, R.N., Western, C.M., Schnieder, L., and Welge, K.H.: 1993, ‘Primary product channels in the photodissociation of methane at 121.6 nm’, J. Chem. Phys. 98, 2′054-2′065.

    Google Scholar 

  • Morgan, T.H., and Killen, R.M.: 1997, ‘A non-stochiometric model of the composition of the atmospheres of Mercury and the Moon’, Planet. Space Sci. 45, 81–94.

    Article  ADS  Google Scholar 

  • Ness, N.F., Connerney, J.E.P., Lepping, R.P., Schulz, M., and Voigt, G.-H.: 1991, ‘The magnetic field and magnetospheric configuration of Uranus’, in J.T. Bergstralh, E.D. Miner, and M.S. Matthews (eds.), Univ. Arizona Press, Tucson, pp. 739–779.

    Google Scholar 

  • Neubauer, F.M.: 1980, ‘Nonlinear standing Alfvén wave current system at Io: Theory’, J. Geophys. Res. 85, 1171–1178.

    Article  ADS  Google Scholar 

  • Neubauer, F.M.: 1998, ‘The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere’, J. Geophys. Res. 103, 19843–19866.

    Article  ADS  Google Scholar 

  • Neubauer, F.M., Gurnett, D.A., Scudder, J.D., and Hartle, R.E.: 1984, ‘Titan’s magnetospheric interaction’, in T. Gehrels and M.S. Matthews (eds.), Saturn, Univ. Arizona Press, Tucson, pp. 760–787.

    Google Scholar 

  • Neubauer, F.M., et al.: 1986, ‘First results from the Giotto magnetometer experiment at comet Halley’, Nature 321, 352–355.

    Article  ADS  Google Scholar 

  • Ness, N.F., Behannon, K.W., Lepping, R.P., Whang, Y.C., and Schatten, K.H.: 1974, ‘Magnetic field observations near Mercury: preliminary results from Mariner 10’, Science 185, 153–162.

    Article  ADS  Google Scholar 

  • Northrop, T.G. and Connerney, J.E.P.: 1987, ‘A micrometeorite model and the age of Saturn’s rings’, Icarus 70, 124–137.

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., Scudder, J.D., Hartle, R.E., Siscoe, G.L., Bridge, H.S., Lazarus, A.J., Asbridge, J.R., Bame, S.J., and Yeates, C.M.: 1974, ‘Observations at Mercury encounter by the plasma science instrument on Mariner 10’, Science 185, 146–152.

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., Scudder, J.D., Vasyliunas, V.M., Hartle, R.E., and Siscoe, G.L.: 1977, ‘Observations of the planet Mercury by the plasma electron experiment: Mariner 10’, J. Geophys. Res. 82, 1807–1824.

    Article  ADS  Google Scholar 

  • Paonessa, M. and Cheng, A.F.: 1986, ‘Limits on ion radial diffusion coefficients in Saturn’s inner magnetosphere’, J. Geophys. Res. 91, 1391–1396.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1961, ‘The stellar-wind regions’, Astrophys. J. 134, 20–27.

    Article  ADS  Google Scholar 

  • Phan, T.D., et al.: 2000, ‘Extended magnetic reconnection at the Earth’s magnetopause from detection of bi-directional jets’, Nature 404, 848–850.

    Article  ADS  Google Scholar 

  • Pollack, J.B.: 1975, ‘The rings of Saturn’, Space Sci. Rev. 18, 3–93.

    Article  ADS  Google Scholar 

  • Potter, A. and Morgan, T.H.: 1985, ‘Discovery of sodium in the atmosphere of Mercury’, Science 229, 651–653.

    Article  ADS  Google Scholar 

  • Potter, A. and Morgan, T.H.: 1986, ‘Potassium in the atmosphere of Mercury’, Icarus 67, 336–340.

    Article  ADS  Google Scholar 

  • Poulet, F. and Cuzzi, J.N.: 2002, ‘The composition of Saturn’s rings’, Icarus 160, 350–358.

    Article  ADS  Google Scholar 

  • Pospieszalska, M.K. and Johnson, R.E.: 1991, ‘Micrometeorite erosion of the main rings as a source of plasma in the inner Saturnian plasma torus’, Icarus 93, 45–52.

    Article  ADS  Google Scholar 

  • Prangé, R., Pallier, L., Hansen, K.C., Howard, R.. Vourlidas, A., Courtin, R., and Parkinson, C.: 2004, ‘A CME-driven interplanetary shock traced from the Sun to Saturn by planetary auroral storms’, Nature, in press.

    Google Scholar 

  • Pryor, W.R. and Hord, C.W.: 1991, ‘A study of photopolarimeter system UV absorption data on Jupiter, Saturn, Uranus, and Neptune: implications for auroral haze formation’, Icarus 91, 161–172.

    Article  ADS  Google Scholar 

  • Rao, M.V.V.S., Iga, I., and Srivastava, S.K.: 1995, ‘Ionization cross-sections for the production of positive ions from H2O by electron impact’, J. Geophys. Res. 100, 26421–26425.

    Article  ADS  Google Scholar 

  • Raulin, A.: 2005, ‘Exo-astrobiological aspects of Europa and Titan: from observations to speculations’, this volume.

    Google Scholar 

  • Richardson, J.D.: 1986, ‘Thermal ions at Saturn: Plasma parameters and implications’, J. Geophys. Res. 91, 1381–1389.

    Article  ADS  Google Scholar 

  • Richardson, J.D.: 1998, ‘Thermal plasma and neutral gas in Saturn’s magnetosphere’, Rev. Geophys. 36, 501–524.

    Article  ADS  Google Scholar 

  • Richardson, J.D. and Eviatar, A.: 1988, ‘Observational and theoretical evidence for anisotropies in Saturn’s magnetosphere’, J. Geophys. Res. 93, 7297–7306.

    Article  ADS  Google Scholar 

  • Richardson, J.D. and Jurac, S.: 2004, ‘A self-consistent model of plasma and neutrals at Saturn: The ion tori’, J. Geophys. Res., in press.

    Google Scholar 

  • Richardson, J.D., Eviatar, A., Siscoe, G.L.: 1986, ‘Satellite tori at Saturn’, J. Geophys. Res. 91, 8749–8755.

    Article  ADS  Google Scholar 

  • Richardson, J.D., Belcher, J.W., McNutt, R.L., Jr., and Szabo, A.: 1995, ‘The plasma environment of Neptune’, in D.P. Cruikshank and M.S. Matthews (eds.), Neptune, Univ. Arizona Press, Tucson.

    Google Scholar 

  • Richardson, J.D., Eviatar, A., McGrath, M.A., Vasyliuñas, V.M.: 1998, ‘OH in Saturn’s magnetosphere: Observations and implications’, J. Geophys. Res. 103, 20245–20256.

    Article  ADS  Google Scholar 

  • Roos-Serote, M.: 2005, ‘The changing face of Titan’s haze: is it all dynamics?’, this volume.

    Google Scholar 

  • Russell, C.T.: 1989, ‘ULF waves in the Mercury magnetosphere’, Geophys. Res. Lett. 16, 1253–1256.

    Article  ADS  Google Scholar 

  • Russell, C.T.: 2001, ‘The dynamics of planetary magnetospheres’, Planet. Space Sci. 49, 1005–1030.

    Article  ADS  Google Scholar 

  • Russell, C.T., Baker, D.N., and Slavin, J.A.: 1988, ‘The magnetosphere of Mercury’, in F. Vilas, C.R. Chapman, and M.S. Matthews (eds.), Mercury, Univ. Arizona Press, Tucson, pp. 514–561.

    Google Scholar 

  • Russell, C.T., et al.: 1999, ‘Mirror mode structures at the Gallileo-Io flyby: Observations’, J. Geophys. Res. 104, 17471–17478.

    Article  ADS  Google Scholar 

  • Russell, C.T., Blanco-Cano, X., and Kivelson, M.G.: 2003, ‘Ion cyclotron waves in Io’s wake region’, Planet. Space Sci. 51, 233–238.

    Article  ADS  Google Scholar 

  • Sagan, C., and Thompson, W.R.: 1984, ‘Production and condensation of organic gases in the atmosphere of Titan’, Icarus 59, 133–161.

    Article  ADS  Google Scholar 

  • Sagan, C., Khare, B.N., and Lewis, J.S.: 1984, ‘Organic matter in the Saturn system’, in T. Gehrels and M.S. Matthews (eds.), Saturn, Univ. Arizona Press, pp. 788–807.

    Google Scholar 

  • Sandel, B.R. and Broadfoot, A.L.: 1981, ‘Morphology of Saturn’s aurora’, Nature 292, 679–682.

    Article  ADS  Google Scholar 

  • Santos-Costa, D. and Bourdarie, S.A.: 2001, ‘Modeling the inner Jovian electron radiation belt including non-equatorial particles’, Planet. Space Sci. 49, 303–312.

    Article  ADS  Google Scholar 

  • Santos-Costa, D., Sault, R., Bourdarie, S., Boscher, D., Bolton, S., Thorne, R., Leblanc, Y., Dulk, G., Levin, S., and Gulkis, S.: 2001, ‘Synchrotron emission images from three-dimensional modeling of the Jovian electron radiation belts’, Adv. Space Res. 28, 915–918.

    Article  ADS  Google Scholar 

  • Scarf, F.L., Frank, L.A., Gurnett, D.A., Lanzerotti, L.J., Lazarus, A., and Sittler, E.C., Jr.: 1984, ‘Measurements of plasma, plasma waves, and suprathermal charged particles in Saturn’s inner magnetosphere’, in T. Gehrels and M.S. Matthews (eds.), Saturn, Univ. Arizona Press, Tucson, pp. 318–353.

    Google Scholar 

  • Schardt, A.W., Behannon, K.W., Lepping, R.P., Carbary, J.F., Eviatar, A., and Siscoe, G.L.: 1984, ‘The outer magnetosphere’, in T. Gehrels and M.S. Matthews (eds.), Saturn, Univ. Arizona Press, Tucson, pp. 416–459.

    Google Scholar 

  • Selesnick, R.S.: 1988, ‘Magnetospheric convection in the non-dipolar magnetic field of Uranus’, J. Geophys. Res. 93, 9607.

    Article  ADS  Google Scholar 

  • Selesnick, R.S.: 1990, ‘Plasma convection in Neptune’s magnetosphere’, Geophys. Res. Lett. 17, 1681–1684.

    Article  ADS  Google Scholar 

  • Selesnick, R.S., and Richardson, J.D.: 1986, ‘Plasmasphere formation in arbitrarily oriented magnetospheres’, Geophys. Res. Lett. 13, 624–627.

    Article  ADS  Google Scholar 

  • Shemansky, D.E., and Hall, D.T.: 1992, ‘The Distribution of Atomic Hydrogen in the Magnetosphere of Saturn’, J. Geophys. Res. 97, 4143–4161.

    Article  ADS  Google Scholar 

  • Shemansky, D.E., Matheson, P., Hall, D.T., Hu, H.-Y., and Tripp, T.M.: 1993, ‘Detection of the hydroxyl radical in the Saturn magnetosphere’, Nature 363, 329–331.

    Article  ADS  Google Scholar 

  • Shi, M., Baragiola, R.A., Grosjean, D.E., Johnson, R.E., Jurac, S., and Schou, J.: 1995, ‘Sputtering of water ice surfaces and the production of extended neutral atmospheres’, J. Geophys. Res. 100, 26’387–26’396.

    Article  ADS  Google Scholar 

  • Simpson, J.A., Hamilton, D., Lentz, G., McKibben, R.B., Mogro-Campero, A., Perkins, M., Pyle, K.R., Tuzzolino, A.J., and O’Gallagher, J.J.: 1974, ‘Protons and electrons in Jupiter’s magnetic field: Results from the University of Chicago experiment on Pioneer 10’, Science 183, 306–309.

    Article  ADS  Google Scholar 

  • Siscoe, G.L.: 1978, ‘Jovian plasmaspheres’, J. Geophys. Res. 83, 2118–2126.

    Article  ADS  Google Scholar 

  • Siscoe, G.L., and Summers, D.: 1981, ‘Centrifugally driven diffusion of iogenic plasma’, J. Geophys. Res. 86, 8471–8479.

    Article  ADS  Google Scholar 

  • Slavin, J.A.: 2004, ‘Mercury’s magnetosphere’, Adv. Space Res. 33, 1859–1874.

    Article  ADS  Google Scholar 

  • Southwood, D.J. and Kivelson, M.G.: 1987, ‘Magnetospheric interchange instability’, J. Geophys. Res. 92, 109–116.

    Article  ADS  Google Scholar 

  • Strobel, D.F: 2005, ‘Photochemistry in outer solar system atmospheres’, this volume.

    Google Scholar 

  • Su, Y., Ergun, R., Bagenal, F., and Delamere, P.: 2003, ‘Io-related auroral arcs: Modelling parallel electric fields’, J. Geophys. Res. 108, 1094.

    Article  Google Scholar 

  • Summers, M.E. and Strobel, D.F.: 1989, ‘Triton’s atmosphere-A source of N and H for Neptune’s magnetosphere’, Geophys. Res. Lett. 18, 2309–2312.

    Article  ADS  Google Scholar 

  • Thomas, N., Bagenal, F., Hill, T.W., and Wilson, J.K.: 2004, ‘The Io neutral clouds and plasma torus’, in F. Bagenal, T.E. Dowling, and W.B. McKinnon (eds.), Jupiter. The planet, satellites and magnetosphere, Cambridge University Press, Cambridge, UK, pp. 561–591.

    Google Scholar 

  • Thorne, R.M., Armstrong, T.P., Stone, S., Williams, D.J., McEntire, R.W., Bolton, S.J., Gurnett, D.A., and Kivelson, M.G.: 1997, ‘Galileo evidence for rapid interchange transport in the Io torus’, Geophys. Res. Lett. 24, 2131.

    Article  ADS  Google Scholar 

  • Tyler, G.L., et al.: 1989, ‘Voyager radio science observations of Neptune and Triton’, Science 246, 1466–1473.

    Article  ADS  Google Scholar 

  • Van Allen, J.A.: 1984, ‘Energetic particles in the inner magnetosphere of Saturn’, in T. Gehrels and M.S. Matthews (eds.), Saturn, Univ. Arizona Press, Tucson, pp. 281–317.

    Google Scholar 

  • Vasyliunas, V.M.: 1975, ‘Modulation of Jovian interplanetary electrons and the longitude variation of decametric emissions’, Geophys. Res. Lett. 2, 87–88.

    Article  ADS  Google Scholar 

  • Vasyliunas, V.M.: 1983, ‘Plasma distribution and flow’, in A.J. Dessler (ed.), Physics of the Jovian magnetosphere, Cambridge Univ. Press, New York, pp. 395–453.

    Chapter  Google Scholar 

  • Vasyliunas, V.M.: 1986, ‘The convection-dominated magnetosphere of Uranus’, Geophys. Res. Lett. 13, 621–623.

    Article  ADS  Google Scholar 

  • Williams, D.J. and Thorne, R.M.: 2003, ‘Energetic particles over Io’s polar caps’, J. Geophys. Res. 108, SMP 7-1, CiteID 1397.

    Google Scholar 

  • Winterhalter, D., Acña, M., and Zakharov, A. (eds.): 2004, Mars’ Magnetism and its Interaction with the Solar Wind, Space Sci. Rev. 111, Kluwer Academic Publsihers, Dordrecht, NL.

    Google Scholar 

  • Wong, A.-S., Yung, Y.L., Friedson, A.J.: 2003, ‘Benzene and haze formation in the polar atmosphere of Jupiter’, Geophys. Res. Lett. 30, 30–1, CiteID 1447, DOI 10.1029/2002GL016661.

    Article  Google Scholar 

  • Wright, A.N. and Schwartz, S.J.: 1990, ‘The equilibrium of a conducting body embedded in a flowing plasma’, J. Geophys. Res. 95, 4027–4038.

    Article  ADS  Google Scholar 

  • Young, D.T., et al.: 2003, ‘Cassini Plasma Spectrometer Investigation’, Space Sci. Rev., in press.

    Google Scholar 

  • Zarka, P. and Kurth, W.S.: 2005, ‘Radio wave emission from the outer planets before Cassini’, this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Blanc, M., Kallenbach, R., Erkaev, N. (2005). Solar System Magnetospheres. In: Encrenaz, T., Kallenbach, R., Owen, T.C., Sotin, C. (eds) The Outer Planets and their Moons. Space Sciences Series of ISSI, vol 19. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4038-5_15

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4038-5_15

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3362-9

  • Online ISBN: 978-1-4020-4038-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics