Skip to main content

Rho GTpases in Cell Motility and Tumorigenesis

  • Chapter
  • 717 Accesses

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 8))

Abstract

Rho proteins are small regulatory molecules that belong to the Ras superfamily of proteins. They act as molecular switches, shuffling between an active, GTP-bound state, and an inactive, GDP-bound state. Upon activation, they interact with a multitude of downstream effectors. In this way Rho proteins regulate a broad range of cellular processes, including cell motility, cell growth, apoptosis, and gene transcription. Therefore, it is not surprising that Rho proteins are also involved in different aspects of tumorigenesis. In particular, as key regulators of cell motility, Rho GTPases are implicated in invasion and metastasis of a tumor. In this review we will focus on the involvement of Rho proteins in cell migration and the different steps of tumorigenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schultz J, Milpetz F, Bork P, Ponting CP. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 1998, 95:5857–5864.

    PubMed  CAS  Google Scholar 

  2. Hart MJ, Eva A, Evans T, Aaronson SA, Cerione RA. Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl oncogene product. Nature 1991, 354:311–314.

    PubMed  CAS  Google Scholar 

  3. Kjoller L, Hall A. Signaling to Rho GTPases. Exp. Cell Res. 1999, 253: 166–179.

    PubMed  CAS  Google Scholar 

  4. Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 2002, 16: 1587–1609.

    PubMed  CAS  Google Scholar 

  5. Mertens AE, Roovers RC, Collard JG. Regulation of Tiam1-Rac signalling. FEBS Lett. 2003, 546: 11–16.

    PubMed  CAS  Google Scholar 

  6. Moon SY, Zheng Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 2003, 13: 13–22.

    PubMed  CAS  Google Scholar 

  7. Michaelson D, Silletti J, Murphy G, D’Eustachio P, Rush M, Philips MR. Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J. Cell Biol. 2001, 152: 111–126.

    PubMed  CAS  Google Scholar 

  8. Hoffman GR, Nassar N, Cerione RA. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 2000, 100: 345–356.

    PubMed  CAS  Google Scholar 

  9. Olofsson B. Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal. 1999, 11: 545–554.

    PubMed  CAS  Google Scholar 

  10. Seabra MC. Membrane association and targeting of prenylated Ras-like GTPases. Cell Signal. 1998, 10: 167–172.

    PubMed  CAS  Google Scholar 

  11. Self AJ, Hall A. Measurement of intrinsic nucleotide exchange and GTP hydrolysis rates. Methods Enzymol. 1995, 256: 67–76.

    PubMed  CAS  Google Scholar 

  12. Feig LA. Tools of the trade: use of dominant-inhibitory mutants of Ras-family GTPases. Nat. Cell Biol. 1999, 1: E25–E27.

    PubMed  CAS  Google Scholar 

  13. Burridge K, Wennerberg K. Rho and Rac take center stage. Cell 2004, 116: 167–179.

    PubMed  CAS  Google Scholar 

  14. Barbieri JT, Riese MJ, Aktories K. Bacterial toxins that modify the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 2002, 18: 315–344.

    PubMed  CAS  Google Scholar 

  15. Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell 1996, 84: 359–369.

    PubMed  CAS  Google Scholar 

  16. Itoh RE, Kurokawa K, Ohba Y, Yoshizaki H, Mochizuki N, Matsuda M. Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol. Cell Biol. 2002, 22: 6582–6591.

    PubMed  CAS  Google Scholar 

  17. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002, 420: 629–635.

    PubMed  CAS  Google Scholar 

  18. Srinivasan S, Wang F, Glavas S, Ott A, Hofmann F, Aktories K, Kalman D, Bourne HR. Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J. Cell Biol. 2003, 160: 375–385.

    PubMed  CAS  Google Scholar 

  19. Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat. Cell Biol. 2003, 5: 599–609.

    PubMed  CAS  Google Scholar 

  20. Kim SK. Cell polarity: new PARtners for Cdc42 and Rac. Nat. Cell Biol. 2000, 2: E143–E145.

    PubMed  CAS  Google Scholar 

  21. Etienne-Manneville S, Hall A. Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr. Opin. Cell Biol. 2003, 15: 67–72.

    PubMed  CAS  Google Scholar 

  22. Allen WE, Zicha D, Ridley AJ, Jones GE. A role for Cdc42 in macrophage chemotaxis. J. Cell Biol. 1998, 141: 1147–1157.

    PubMed  CAS  Google Scholar 

  23. Nobes CD, Hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol. 1999, 144: 1235–1244.

    PubMed  CAS  Google Scholar 

  24. Daub H, Gevaert K, Vandekerckhove J, Sobel A, Hall A. Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J. Biol. Chem. 2001, 276: 1677–1680.

    PubMed  CAS  Google Scholar 

  25. Waterman-Storer CM, Worthylake RA, Liu BP, Burridge K, Salmon ED. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nat. Cell Biol. 1999, 1: 45–50.

    PubMed  CAS  Google Scholar 

  26. Liu BP, Chrzanowska-Wodnicka M, Burridge K. Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein Rho. Cell Adhes. Commun. 1998, 5: 249–255.

    PubMed  CAS  Google Scholar 

  27. Ishizaki T, Morishima Y, Okamoto M, Furuyashiki T, Kato T, Narumiya S. Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nat. Cell Biol. 2001, 3: 8–14.

    PubMed  CAS  Google Scholar 

  28. Glaven JA, Whitehead I, Bagrodia S, Kay R, Cerione RA. The Dbl-related protein, Lfc, localizes to microtubules and mediates the activation of Rac signaling pathways in cells. J. Biol. Chem. 1999, 274: 2279–2285.

    PubMed  CAS  Google Scholar 

  29. van Horck FP, Ahmadian MR, Haeusler LC, Moolenaar WH, Kranenburg O. Characterization of p190RhoGEF, a RhoA-specific guanine nucleotide exchange factor that interacts with microtubules. J. Biol. Chem. 2001, 276: 4948–4956.

    PubMed  Google Scholar 

  30. Pollard TD, Blanchoin L, Mullins RD. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 2000, 29:545–576.

    PubMed  CAS  Google Scholar 

  31. Welch MD, Mullins RD. Cellular control of actin nucleation. Annu. Rev. Cell Dev. Biol. 2002, 18: 247–288.

    PubMed  CAS  Google Scholar 

  32. Knight B, Laukaitis C, Akhtar N, Hotchin NA, Edlund M, Horwitz AR. Visualizing muscle cell migration in situ. Curr. Biol. 2000, 10: 576–585.

    PubMed  CAS  Google Scholar 

  33. Kraynov VS, Chamberlain C, Bokoch GM, Schwartz MA, Slabaugh S, Hahn KM. Localized Rac activation dynamics visualized in living cells. Science 2000, 290: 333–337.

    PubMed  CAS  Google Scholar 

  34. Sander EE, van Delft S, ten Klooster JP, Reid T, Van der Kammen RA, Michiels F, Collard JG. Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J. Cell Biol. 1998, 143: 1385–1398.

    PubMed  CAS  Google Scholar 

  35. Rickert P, Weiner OD, Wang F, Bourne HR, Servant G. Leukocytes navigate by compass: roles of PI3Kgamma and its lipid products. Trends Cell Biol. 2000, 10: 466–473.

    PubMed  CAS  Google Scholar 

  36. Royal I, Lamarche-Vane N, Lamorte L, Kaibuchi K, Park M. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol. Biol. Cell 2000, 11: 1709–1725.

    PubMed  CAS  Google Scholar 

  37. Meili R, Ellsworth C, Lee S, Reddy TB, Ma H, Firtel RA. Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J. 1999, 18: 2092–2105.

    PubMed  CAS  Google Scholar 

  38. Haugh JM, Codazzi F, Teruel M, Meyer T. Spatial sensing in fibroblasts mediated by 3′ phosphoinositides. J. Cell Biol. 2000, 151: 1269–1280.

    PubMed  CAS  Google Scholar 

  39. Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 2000, 287:1037–1040.

    PubMed  CAS  Google Scholar 

  40. Das B, Shu X, Day GJ, Han J, Krishna UM, Falck JR, Broek D. Control of intramolecular interactions between the pleckstrin homology and Dbl homology domains of Vav and Sos1 regulates Rac binding. J. Biol. Chem. 2000, 275: 15074–15081.

    PubMed  CAS  Google Scholar 

  41. Fleming IN, Gray A, Downes CP. Regulation of the Rac1-specific exchange factor Tiam1 involves both phosphoinositide 3-kinase-dependent and-independent components. Biochem J. 2000, 351: 173–182.

    PubMed  CAS  Google Scholar 

  42. Sells MA, Knaus UG, Bagrodia S, Ambrose DM, Bokoch GM, Chernoff J. Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr. Biol. 1997, 7: 202–210.

    PubMed  CAS  Google Scholar 

  43. Manser E, Huang HY, Loo TH, Chen XQ, Dong JM, Leung T, Lim L. Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol. Cell Biol. 1997, 17: 1129–1143.

    PubMed  CAS  Google Scholar 

  44. Edwards DC, Sanders LC, Bokoch GM, Gill GN. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat. Cell Biol. 1999, 1: 253–259.

    PubMed  CAS  Google Scholar 

  45. Stanyon CA, Bernard O. LIM-kinase1. Int. J. Biochem. Cell Biol. 1999, 31: 389–394.

    PubMed  CAS  Google Scholar 

  46. Mermall V, Post PL, Mooseker MS. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 1998, 279: 527–533.

    PubMed  CAS  Google Scholar 

  47. van Leeuwen FN, van Delft S, Kain HE, Van der Kammen RA, Collard JG. Rac regulates phosphorylation of the myosin-II heavy chain, actinomyosin disassembly and cell spreading. Nat. Cell Biol. 1999, 1: 242–248.

    PubMed  Google Scholar 

  48. Sander EE, ten Klooster JP, van Delft S, Van der Kammen RA, Collard JG. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol. 1999, 147: 1009–1022.

    PubMed  CAS  Google Scholar 

  49. Daniels RH, Bokoch GM. p21-activated protein kinase: a crucial component of morphological signaling? Trends Biochem. Sci. 1999, 24: 350–355.

    PubMed  CAS  Google Scholar 

  50. Kiosses WB, Daniels RH, Otey C, Bokoch GM, Schwartz MA. A role for p21-activated kinase in endothelial cell migration. J. Cell Biol. 1999, 147: 831–844.

    PubMed  CAS  Google Scholar 

  51. Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 1995, 81: 53–62.

    PubMed  CAS  Google Scholar 

  52. Allen WE, Jones GE, Pollard JW, Ridley AJ. Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages. J. Cell Sci. 1997, 110 (Pt 6): 707–720.

    PubMed  CAS  Google Scholar 

  53. Rottner K, Hall A, Small JV. Interplay between Rac and Rho in the control of substrate contact dynamics. Curr. Biol. 1999, 9: 640–648.

    PubMed  CAS  Google Scholar 

  54. Chrzanowska-Wodnicka M, Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 1996, 133: 1403–1415.

    PubMed  CAS  Google Scholar 

  55. Adams JC, Schwartz MA. Stimulation of fascin spikes by thrombospondin-1 is mediated by the GTPases Rac and Cdc42. J. Cell Biol, 2000, 150: 807–822.

    PubMed  CAS  Google Scholar 

  56. Ridley A. Rho GTPases. Integrating integrin signaling. J. Cell Biol. 2000, 150: F107–F109.

    PubMed  CAS  Google Scholar 

  57. Wenk MB, Midwood KS, Schwarzbauer JE. Tenascin-C suppresses Rho activation. J. Cell Biol. 2000, 150: 913–920.

    PubMed  CAS  Google Scholar 

  58. Schwartz MA, Shattil SJ. Signaling networks linking integrins and rho family GTPases. Trends Biochem. Sci. 2000, 25: 388–391.

    PubMed  CAS  Google Scholar 

  59. Cox EA, Sastry SK, Huttenlocher A. Integrin-mediated adhesion regulates cell polarity and membrane protrusion through the Rho family of GTPases. Mol. Biol. Cell 2001, 12: 265–277.

    PubMed  CAS  Google Scholar 

  60. Zhao JH, Guan JL. Role of focal adhesion kinase in signaling by the extracellular matrix. Prog. Mol. Subcell Biol. 2000, 25: 37–55.

    PubMed  CAS  Google Scholar 

  61. Mitchison TJ, Cramer LP. Actin-based cell motility and cell locomotion. Cell 1996, 84:371–379.

    PubMed  CAS  Google Scholar 

  62. Kaibuchi K. Regulation of cytoskeleton and cell adhesion by Rho targets. Prog. Mol. Subcell Biol. 1999, 22: 23–38.

    PubMed  CAS  Google Scholar 

  63. Amano M, Fukata Y, Kaibuchi K. Regulation and functions of Rho-associated kinase. Exp. Cell Res. 2000, 261: 44–51.

    PubMed  CAS  Google Scholar 

  64. Hansen SH, Zegers MM, Woodrow M, Rodriguez-Viciana P, Chardin P, Mostov KE, McMahon M. Induced expression of Rnd3 is associated with transformation of polarized epithelial cells by the Raf-MEK-extracellular signal-regulated kinase pathway. Mol. Cell Biol. 2000, 20: 9364–9375.

    PubMed  CAS  Google Scholar 

  65. Totsukawa G, Yamakita Y, Yamashiro S, Hartshorne DJ, Sasaki Y, Matsumura F. Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J. Cell Biol. 2000, 150: 797–806.

    PubMed  CAS  Google Scholar 

  66. Adams CL, Nelson WJ. Cytomechanics of cadherin-mediated cell-cell adhesion. Curr. Opin. Cell Biol. 1998, 10: 572–577.

    PubMed  CAS  Google Scholar 

  67. Gumbiner BM. Regulation of cadherin adhesive activity. J. Cell Biol. 2000, 148: 399–404.

    PubMed  CAS  Google Scholar 

  68. Takeda H, Shimoyama Y, Nagafuchi A, Hirohashi S. E-cadherin functions as a cisdimer at the cell-cell adhesive interface in vivo. Nat. Struct. Biol. 1999, 6: 310–312.

    PubMed  CAS  Google Scholar 

  69. Tsukita S, Tsukita S, Nagafuchi A, Yonemura S. Molecular linkage between cadherins and actin filaments in cell-cell adherens junctions. Curr. Opin. Cell Biol. 1992, 4: 834–839.

    PubMed  CAS  Google Scholar 

  70. Kemler R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet. 1993, 9: 317–321.

    PubMed  CAS  Google Scholar 

  71. Behrens J, Mareel MM, Van Roy FM, Birchmeier W. Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cellcell adhesion. J. Cell Biol. 1989, 108: 2435–2447.

    PubMed  CAS  Google Scholar 

  72. Vleminckx K, Vakaet L, Jr., Mareel M, Fiers W, van Roy F. Genetic manipulation of Ecadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 1991, 66: 107–119.

    PubMed  CAS  Google Scholar 

  73. Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 2002, 34: 255–268.

    PubMed  CAS  Google Scholar 

  74. Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat. Rev. Cancer 2004, 4: 118–132.

    PubMed  CAS  Google Scholar 

  75. Beavon IR. The E-cadherin-catenin complex in tumour metastasis: structure, function and regulation. Eur. J. Cancer 2000, 36: 1607–1620.

    PubMed  CAS  Google Scholar 

  76. Mareel M, Leroy A. Clinical, cellular, and molecular aspects of cancer invasion. Physiol. Rev. 2003, 83: 337–376.

    PubMed  CAS  Google Scholar 

  77. Fukata M, Kaibuchi K. Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nat. Rev. Mol. Cell Biol. 2001, 2: 887–897.

    PubMed  CAS  Google Scholar 

  78. Lozano E, Betson M, Braga VM. Tumor progression: Small GTPases and loss of cellcell adhesion. Bioessays 2003, 25: 452–463.

    PubMed  CAS  Google Scholar 

  79. van Aelst L, Symons M. Role of Rho family GTPases in epithelial morphogenesis. Genes Dev. 2002, 16: 1032–1054.

    PubMed  Google Scholar 

  80. Kuroda S, Fukata M, Fujii K, Nakamura T, Izawa I, Kaibuchi K. Regulation of cell-cell adhesion of MDCK cells by Cdc42 and Rac1 small GTPases. Biochem. Biophys. Res. Commun. 1997, 240: 430–435.

    PubMed  CAS  Google Scholar 

  81. Takaishi K, Sasaki T, Kotani H, Nishioka H, Takai Y. Regulation of cell-cell adhesion by rac and rho small G proteins in MDCK cells. J. Cell Biol. 1997, 139: 1047–1059.

    PubMed  CAS  Google Scholar 

  82. Braga VM, Machesky LM, Hall A, Hotchin NA. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J. Cell Biol. 1997, 137: 1421–1431.

    PubMed  CAS  Google Scholar 

  83. Akhtar N, Hudson KR, Hotchin NA. Co-localization of Rac1 and E-cadherin in human epidermal keratinocytes. Cell Adhes. Commun. 2000, 7: 465–476.

    PubMed  CAS  Google Scholar 

  84. Akhtar N, Hotchin NA. RAC1 regulates adherens junctions through endocytosis of E-cadherin. Mol. Biol. Cell 2001, 12: 847–862.

    PubMed  CAS  Google Scholar 

  85. Braga VM, Del Maschio A, Machesky L, Dejana E. Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context. Mol. Biol. Cell 1999, 10: 9–22.

    PubMed  CAS  Google Scholar 

  86. Braga VM, Betson M, Li X, Lamarche-Vane N. Activation of the small GTPase Rac is sufficient to disrupt cadherin-dependent cell-cell adhesion in normal human keratinocytes. Mol. Biol. Cell 2000, 11: 3703–3721.

    PubMed  CAS  Google Scholar 

  87. Hordijk PL, ten Klooster JP, Van der Kammen RA, Michiels F, Oomen LC, Collard JG. Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science 1997, 278:1464–1466.

    PubMed  CAS  Google Scholar 

  88. Malliri A, van Es S, Huveneers S, Collard JG. The Rac exchange factor Tiam1 is required for the establishment and maintenance of cadherin-based adhesions. J. Biol. Chem. 2004, 279: 30092–30098.

    PubMed  CAS  Google Scholar 

  89. Zondag GC, Evers EE, ten Klooster JP, Janssen L, van Der K, Collard JG. Oncogenic Ras Downregulates Rac Activity, which Leads to Increased Rho Activity and Epithelial-Mesenchymal Transition. J. Cell Biol. 2000, 149: 775–782.

    PubMed  CAS  Google Scholar 

  90. Zhong C, Kinch MS, Burridge K. Rho-stimulated contractility contributes to the fibroblastic phenotype of Ras-transformed epithelial cells. Mol. Biol. Cell 1997, 8:2329–2344.

    PubMed  CAS  Google Scholar 

  91. Sahai E, Olson MF, Marshall CJ. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J. 2001, 20: 755–766.

    PubMed  CAS  Google Scholar 

  92. Takaishi K, Sasaki T, Kato M, Yamochi W, Kuroda S, Nakamura T, Takeichi M, Takai Y. Involvement of Rho p21 small GTP-binding protein and its regulator in the HGF-induced cell motility. Oncogene, 1994, 9: 273–279.

    PubMed  CAS  Google Scholar 

  93. Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, Moses HL. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol. Biol. Cell, 2001, 12:27–36.

    PubMed  CAS  Google Scholar 

  94. Fukata M, Kuroda S, Nakagawa M, Kawajiri A, Itoh N, Shoji I, Matsuura Y, Yonehara S, Fujisawa H, Kikuchi A, Kaibuchi K. Cdc42 and Rac1 regulate the interaction of IQGAP1 with beta-catenin. J. Biol. Chem. 1999, 274: 26044–26050.

    PubMed  CAS  Google Scholar 

  95. Kuroda S, Fukata M, Nakagawa M, Kaibuchi K. Cdc42, Rac1, and their effector IQGAP1 as molecular switches for cadherin-mediated cell-cell adhesion. Biochem. Biophys. Res. Commun. 1999, 262: 1–6.

    PubMed  CAS  Google Scholar 

  96. Noritake J, Fukata M, Sato K, Nakagawa M, Watanabe T, Izumi N, Wang S, Fukata Y, Kaibuchi K. Positive role of IQGAP1, an effector of Rac1, in actin-meshwork formation at sites of cell-cell contact. Mol. Biol. Cell 2004, 15: 1065–1076.

    PubMed  CAS  Google Scholar 

  97. Noren NK, Niessen CM, Gumbiner BM, Burridge K. Cadherin engagement regulates Rho family GTPases. J. Biol. Chem. 2001, 276: 33305–33308.

    PubMed  CAS  Google Scholar 

  98. Nakagawa M, Fukata M, Yamaga M, Itoh N, Kaibuchi K. Recruitment and activation of Rac1 by the formation of E-cadherin-mediated cell-cell adhesion sites. J. Cell Sci. 2001, 114: 1829–1838.

    PubMed  CAS  Google Scholar 

  99. Kovacs EM, Goodwin M, Ali RG, Paterson AD, Yap AS. Cadherin-directed actin assembly: E-cadherin physically associates with the Arp2/3 complex to direct actin assembly in nascent adhesive contacts. Curr. Biol. 2002, 12: 379–382.

    PubMed  CAS  Google Scholar 

  100. Kovacs EM, Ali RG, McCormack AJ, Yap AS. E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J. Biol. Chem. 2002, 277: 6708–6718.

    PubMed  CAS  Google Scholar 

  101. Charrasse S, Meriane M, Comunale F, Blangy A, Gauthier-Rouviere C. N-cadherin-dependent cell-cell contact regulates Rho GTPases and beta-catenin localization in mouse C2C12 myoblasts. J. Cell Biol. 2002, 158: 953–965.

    PubMed  CAS  Google Scholar 

  102. Pece S, Chiariello M, Murga C, Gutkind JS. Activation of the protein kinase Akt/PKB by the formation of E-cadherin-mediated cell-cell junctions. Evidence for the association of phosphatidylinositol 3-kinase with the E-cadherin adhesion complex. J. Biol. Chem. 1999, 274: 19347–19351.

    PubMed  CAS  Google Scholar 

  103. Woodfield RJ, Hodgkin MN, Akhtar N, Morse MA, Fuller KJ, Saqib K, Thompson NT, Wakelam MJ. The p85 subunit of phosphoinositide 3-kinase is associated with betacatenin in the cadherin-based adhesion complex. Biochem. J. 2001, 360: 335–344.

    PubMed  CAS  Google Scholar 

  104. Anastasiadis PZ, Moon SY, Thoreson MA, Mariner DJ, Crawford HC, Zheng Y, Reynolds AB. Inhibition of RhoA by p120 catenin. Nat. Cell Biol. 2000, 2: 637–644.

    PubMed  CAS  Google Scholar 

  105. Noren NK, Liu BP, Burridge K, Kreft B. p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J. Cell Biol. 2000, 150: 567–580.

    PubMed  CAS  Google Scholar 

  106. Grosheva I, Shtutman M, Elbaum M, Bershadsky AD. p120 catenin affects cell motility via modulation of activity of Rho-family GTPases: a link between cell-cell contact formation and regulation of cell locomotion. J. Cell Sci. 2001, 114: 695–707.

    PubMed  CAS  Google Scholar 

  107. Goodwin M, Kovacs EM, Thoreson MA, Reynolds AB, Yap AS. Minimal mutation of the cytoplasmic tail inhibits the ability of E-cadherin to activate Rac but not phosphatidylinositol 3-kinase: direct evidence of a role for cadherin-activated Rac signaling in adhesion and contact formation. J. Biol. Chem. 2003, 278: 20533–20539.

    PubMed  CAS  Google Scholar 

  108. Shibata T, Kokubu A, Sekine S, Kanai Y, Hirohashi S. Cytoplasmic p120ctn regulates the invasive phenotypes of E-cadherin-deficient breast cancer. Am. J. Pathol. 2004, 164: 2269–2278.

    PubMed  CAS  Google Scholar 

  109. Gavard J, Lambert M, Grosheva I, Marthiens V, Irinopoulou T, Riou JF, Bershadsky A, Mege RM. Lamellipodium extension and cadherin adhesion: two cell responses to cadherin activation relying on distinct signalling pathways. J. Cell Sci. 2004, 117: 257–270.

    PubMed  CAS  Google Scholar 

  110. Johnson E, Theisen CS, Johnson KR, Wheelock MJ. R-cadherin Influences Cell Motility via Rho Family GTPases. J. Biol. Chem. 2004, 279: 31041–31049.

    PubMed  CAS  Google Scholar 

  111. Martin TA, Jiang WG. Tight junctions and their role in cancer metastasis. Histol Histopathol. 2001, 16: 1183–1195.

    PubMed  CAS  Google Scholar 

  112. Mullin JM. Epithelial barriers, compartmentation, and cancer. Sci. STKE. 2004; 2004: e2.

    Google Scholar 

  113. Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am. J. Physiol. Cell Physiol. 2004, 286: C1213–C1228.

    PubMed  CAS  Google Scholar 

  114. Jou TS, Schneeberger EE, Nelson WJ. Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J. Cell Biol. 1998, 142: 101–115.

    PubMed  CAS  Google Scholar 

  115. Bruewer M, Hopkins AM, Hobert ME, Nusrat A, Madara JL. RhoA, Rac1, and Cdc42 exert distinct effects on epithelial barrier via selective structural and biochemical modulation of junctional proteins and F-actin. Am. J. Physiol. Cell Physiol. 2004, 287:C327–C335.

    PubMed  CAS  Google Scholar 

  116. Braga VM. Cell-cell adhesion and signalling. Curr. Opin. Cell Biol. 2002, 14: 546–556.

    PubMed  CAS  Google Scholar 

  117. Matter K, Balda MS. Signalling to and from tight junctions. Nat. Rev. Mol. Cell Biol. 2003, 4: 225–236.

    PubMed  CAS  Google Scholar 

  118. Benais-Pont G, Punn A, Flores-Maldonado C, Eckert J, Raposo G, Fleming TP, Cereijido M, Balda MS, Matter K. Identification of a tight junction-associated guanine nucleotide exchange factor that activates Rho and regulates paracellular permeability. J. Cell Biol. 2003, 160: 729–740.

    PubMed  CAS  Google Scholar 

  119. Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat. Cell Biol. 2000, 2: 540–547.

    PubMed  CAS  Google Scholar 

  120. Joberty G, Petersen C, Gao L, Macara IG. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat. Cell Biol. 2000, 2: 531–539.

    PubMed  CAS  Google Scholar 

  121. Suzuki A, Ishiyama C, Hashiba K, Shimizu M, Ebnet K, Ohno S. aPKC kinase activity is required for the asymmetric differentiation of the premature junctional complex during epithelial cell polarization. J. Cell Sci. 2002, 115: 3565–3573.

    PubMed  CAS  Google Scholar 

  122. Suzuki A, Yamanaka T, Hirose T, Manabe N, Mizuno K, Shimizu M, Akimoto K, Izumi Y, Ohnishi T, Ohno S. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J. Cell Biol. 2001, 152: 1183–1196.

    PubMed  CAS  Google Scholar 

  123. Fukuhara A, Shimizu K, Kawakatsu T, Fukuhara T, Takai Y. Involvement of nectinactivated Cdc42 small G protein in organization of adherens and tight junctions in Madin-Darby canine kidney cells. J. Biol. Chem. 2003, 278: 51885–51893.

    PubMed  CAS  Google Scholar 

  124. Whitehead IP, Campbell S, Rossman KL, Der CJ. Dbl family proteins. Biochim. Biophys. Acta. 1997, 1332: F1–23.

    PubMed  CAS  Google Scholar 

  125. Stam JC, Collard JG. The DH protein family, exchange factors for Rho-like GTPases. Prog. Mol. Subcell. Biol. 1999, 22: 51–83.

    PubMed  CAS  Google Scholar 

  126. Perona R, Esteve P, Jimenez B, Ballestero RP, Cajal SR. Tumorigenic Activity of rho Genes from Aplysia-Californica. Oncogene 1993, 8: 1285–1292.

    PubMed  CAS  Google Scholar 

  127. van Leeuwen FN, Van der Kammen RA, Habets GG, Collard JG. Oncogenic activity of Tiam1 and Rac1 in NIH3T3 cells. Oncogene 1995, 11: 2215–2221.

    PubMed  Google Scholar 

  128. Khosravi-Far R, Solski PA, Clark GJ, Kinch MS, Der CJ. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell Biol. 1995, 15: 6443–6453.

    PubMed  CAS  Google Scholar 

  129. Murphy GA, Solski PA, Jillian SA, Perez de la Ossa P, D’Eustachio P, Der CJ, Rush MG. Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth. Oncogene 1999, 18: 3831–3845.

    PubMed  CAS  Google Scholar 

  130. Qiu RG, Chen J, Kirn D, McCormick F, Symons M. An essential role for Rac in Ras transformation. Nature 1995, 374: 457–459.

    PubMed  CAS  Google Scholar 

  131. Qiu RG, Abo A, McCormick F, Symons M. Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation. Mol. Cell Biol. 1997, 17: 3449–3458.

    PubMed  CAS  Google Scholar 

  132. Roux P, Gauthier-Rouviere C, Doucet-Brutin S, Fort P. The small GTPases Cdc42Hs, Rac1 and RhoG delineate Raf-independent pathways that cooperate to transform NIH3T3 cells. Curr. Biol. 1997, 7: 629–637.

    PubMed  CAS  Google Scholar 

  133. Khosravi-Far R, Solski PA, Clark GJ, Kinch MS, Der CJ. Activation of rac and Rho, and mitogen activated protein kinases, are required for Ras transformation. Mol. Cellular Biol. 1995, 15: 6443–6453.

    CAS  Google Scholar 

  134. Fritz G, Just I, Kaina B. Rho GTPases are over-expressed in human tumors. Int. J. Cancer 1999, 81: 682–687.

    PubMed  CAS  Google Scholar 

  135. Pan Y, Bi F, Liu N, Xue Y, Yao X, Zheng Y, Fan D. Expression of seven main Rho family members in gastric carcinoma. Biochem. Biophys. Res. Commun. 2004, 315:686–691.

    PubMed  CAS  Google Scholar 

  136. Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H, Harbeck N, Schmitt M, Lengyel E. Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 2000.Jun.15.;19.(26.):3013.–20. 2000; 19: 3013–3020.

    PubMed  Google Scholar 

  137. Jordan P, Brazao R, Boavida MG, Gespach C, Chastre E. Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene 1999, 18: 6835–6839.

    PubMed  CAS  Google Scholar 

  138. Abraham MT, Kuriakose MA, Sacks PG, Yee H, Chiriboga L, Bearer EL, Delacure MD. Motility-related proteins as markers for head and neck squamous cell cancer. Laryngoscope 2001, 111: 1285–1289.

    PubMed  CAS  Google Scholar 

  139. Mira JP, Benard V, Groffen J, Sanders LC, Knaus UG. Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc. Natl. Acad. Sci. USA 2000, 97: 185–189.

    PubMed  CAS  Google Scholar 

  140. Kamai T, Arai K, Tsujii T, Honda M, Yoshida K. Overexpression of RhoA mRNA is associated with advanced stage in testicular germ cell tumour. BJU Int. 2001, 87: 227–231.

    PubMed  CAS  Google Scholar 

  141. van Golen KL, Bao LW, Pan Q, Miller FR, Wu ZF, Merajver SD. Mitogen activated protein kinase pathway is involved in RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast cancer. Clin. Exp. Metastasis 2002, 19: 301–311.

    PubMed  Google Scholar 

  142. van Golen KL, Wu ZF, Qiao XT, Bao LW, Merajver SD. RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res. 2000, 60: 5832–5838.

    PubMed  Google Scholar 

  143. Suwa H, Ohshio G, Imamura T, Watanabe G, Arii S, Imamura M, Narumiya S, Hiai H, Fukumoto M. Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. Br. J. Cancer 1998, 77: 147–152.

    PubMed  CAS  Google Scholar 

  144. Shikada Y, Yoshino I, Okamoto T, Fukuyama S, Kameyama T, Maehara Y. Higher expression of RhoC is related to invasiveness in non-small cell lung carcinoma. Clin. Cancer Res. 2003, 9: 5282–5286.

    PubMed  CAS  Google Scholar 

  145. Horiuchi A, Imai T, Wang C, Ohira S, Feng Y, Nikaido T, Konishi I. Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. Lab. Invest. 2003, 83: 861–870.

    PubMed  CAS  Google Scholar 

  146. Kondo T, Sentani K, Oue N, Yoshida K, Nakayama H, Yasui W. Expression of RHOC is associated with metastasis of gastric carcinomas. Pathobiology 2004, 71: 19–25.

    PubMed  Google Scholar 

  147. Wang W, Yang LY, Yang ZL, Huang GW, Lu WQ. Expression and significance of RhoC gene in hepatocellular carcinoma. World J. Gastroenterol 2003, 9: 1950–1953.

    PubMed  CAS  Google Scholar 

  148. Preudhomme C, Roumier C, Hildebrand MP, Dallery-Prudhomme E, Lantoine D, Lai JL, Daudignon A, Adenis C, Bauters F, Fenaux P, Kerckaert JP, Galiegue-Zouitina S. Nonrandom 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin’s lymphoma and multiple myeloma. Oncogene 2000, 19:2023–2032.

    PubMed  CAS  Google Scholar 

  149. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Kuppers R, Dalla-Favera R. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 2001, 412: 341–346.

    PubMed  CAS  Google Scholar 

  150. Engers R, Zwaka TP, Gohr L, Weber A, Gerharz CD, Gabbert HE. Tiam1 mutations in human renal-cell carcinomas. Int. J. Cancer 2000, 88: 369–376.

    PubMed  CAS  Google Scholar 

  151. Engers R, Springer E, Michiels F, Collard JG, Gabbert HE. Rac Affects Invasion of Human Renal Cell Carcinomas by Up-regulating Tissue Inhibitor of Metalloproteinases (TIMP)-1 and TIMP-2 Expression. J. Biol. Chem. 2001, 276: 41889–41897.

    PubMed  CAS  Google Scholar 

  152. Kourlas PJ, Strout MP, Becknell B, Veronese ML, Croce CM, Theil KS, Krahe R, Ruutu T, Knuutila S, Bloomfield CD, Caligiuri MA. Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with MLL in acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 2000, 97: 2145–2150.

    PubMed  CAS  Google Scholar 

  153. Lin R, Bagrodia S, Cerione R, Manor D. Novel Cdc42Hs mutant induces cellular transformation. Curr. Biol. 1997, 7: 794–797.

    PubMed  CAS  Google Scholar 

  154. Gampel A, Parker PJ, Mellor H. Regulation of epidermal growth factor receptor traffic by the small GTPase rhoB. Curr. Biol. 1999, 9: 955–958.

    PubMed  CAS  Google Scholar 

  155. Vignal E, De Toledo M, Comunale F, Landopoulou A, Gauthier-Rouviere C, Blangy A, Fort P. Characterization of TCL, a new GTPase of the Rho family related to TC10 and Cdc42. J. Biol. Chem. 2000, 17,275: 36457–64.

    Google Scholar 

  156. Evan G, Littlewood T. A matter of life and cell death. Science 1998, 281: 1317–1322.

    PubMed  CAS  Google Scholar 

  157. Green DR, Evan GI. A matter of life and death. Cancer Cell 2002, 1: 19–30.

    PubMed  CAS  Google Scholar 

  158. Coleman ML, Olson MF. Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death. Differ. 2002, 9: 493–504.

    PubMed  CAS  Google Scholar 

  159. Coniglio SJ, Jou TS, Symons M. Rac1 protects epithelial cells against anoikis. J. Biol. Chem. 2001, 276: 28113–28120.

    PubMed  CAS  Google Scholar 

  160. Joneson T, Bar-Sagi D. Suppression of Ras-induced apoptosis by the Rac GTPase. Mol. Cell Biol. 1999, 19: 5892–5901.

    PubMed  CAS  Google Scholar 

  161. Pervaiz S, Cao J, Chao OS, Chin YY, Clement MV. Activation of the RacGTPase inhibits apoptosis in human tumor cells. Oncogene 2001, 20: 6263–6268.

    PubMed  CAS  Google Scholar 

  162. Yang FC, Kapur R, King AJ, Tao W, Kim C, Borneo J, Breese R, Marshall M, Dinauer MC, Williams DA. Rac2 stimulates Akt activation affecting BAD/Bcl-XL expression while mediating survival and actin function in primary mast cells. Immunity 2000, 12:557–568.

    PubMed  CAS  Google Scholar 

  163. Costello PS, Cleverley SC, Galandrini R, Henning SW, Cantrell DA. The GTPase rho controls a p53-dependent survival checkpoint during thymopoiesis. J. Exp. Med. 2000, 192: 77–85.

    PubMed  CAS  Google Scholar 

  164. Liu AX, Rane N, Liu JP, Prendergast GC. RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. Mol. Cell Biol. 2001, 21: 6906–6912.

    PubMed  CAS  Google Scholar 

  165. Prendergast GC. Actin’ up: RhoB in cancer and apoptosis. Nat. Rev. Cancer 2001, 1:162–168.

    PubMed  CAS  Google Scholar 

  166. Subauste MC, Von Herrath M, Benard V, Chamberlain CE, Chuang TH, Chu K, Bokoch GM, Hahn KM. Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas. J. Biol. Chem. 2000, 275: 9725–9733.

    PubMed  CAS  Google Scholar 

  167. Brenner B, Koppenhoefer U, Weinstock C, Linderkamp O, Lang F, Gulbins E. Fas-or ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153. J. Biol. Chem. 1997, 272: 22173–22181.

    PubMed  CAS  Google Scholar 

  168. Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K, Tsukita S, Tsukita S. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol. 1998, 140: 647–657.

    PubMed  CAS  Google Scholar 

  169. Shaw RJ, Paez JG, Curto M, Yaktine A, Pruitt WM, Saotome I, O’Bryan JP, Gupta V, Ratner N, Der CJ, Jacks T, McClatchey AI. The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev. Cell 2001, 1: 63–72.

    PubMed  CAS  Google Scholar 

  170. Xiao GH, Beeser A, Chernoff J, Testa JR. p21-activated kinase links Rac/Cdc42 signaling to merlin. J. Biol. Chem. 2002, 277: 883–886.

    PubMed  CAS  Google Scholar 

  171. Akisawa N, Nishimori I, Iwamura T, Onishi S, Hollingsworth MA. High levels of ezrin expressed by human pancreatic adenocarcinoma cell lines with high metastatic potential. Biochem. Biophys. Res. Commun. 1999, 258: 395–400.

    PubMed  CAS  Google Scholar 

  172. Clarke G, Ryan E, O’Keane JC, Crowe J, Mathuna PM. Mortality association of enhanced CD44v6 expression is not mediated through occult lymphatic spread in stage II colorectal cancer. J. Gastroenterol Hepatol. 2000, 15: 1028–1031.

    PubMed  CAS  Google Scholar 

  173. Harada N, Mizoi T, Kinouchi M, Hoshi K, Ishii S, Shiiba K, Sasaki I, Matsuno S. Introduction of antisense CD44S CDNA down-regulates expression of overall CD44 isoforms and inhibits tumor growth and metastasis in highly metastatic colon carcinoma cells. Int. J. Cancer 2001, 91: 67–75.

    PubMed  CAS  Google Scholar 

  174. Khanna C, Khan J, Nguyen P, Prehn J, Caylor J, Yeung C, Trepel J, Meltzer P, Helman L. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res. 2001, 61: 3750–3759.

    PubMed  CAS  Google Scholar 

  175. McClatchey AI, Saotome I, Mercer K, Crowley D, Gusella JF, Bronson RT, Jacks T. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes. Dev. 1998, 12: 1121–1133.

    PubMed  CAS  Google Scholar 

  176. Kheradmand F, Werner E, Tremble P, Symons M, Werb Z. Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science 1998, 280:898–902.

    PubMed  CAS  Google Scholar 

  177. Matsumoto Y, Tanaka K, Harimaya K, Nakatani F, Matsuda S, Iwamoto Y. Small GTP-binding protein, Rho, both increased and decreased cellular motility, activation of matrix metalloproteinase 2 and invasion of human osteosarcoma cells. Jpn. J. Cancer Res. 2001, 92: 429–438.

    PubMed  CAS  Google Scholar 

  178. Zhuge Y, Xu J. Rac1 mediates type I collagen-dependent MMP-2 activation. role in cell invasion across collagen barrier. J. Biol. Chem. 2001, 276: 16248–16256.

    PubMed  CAS  Google Scholar 

  179. Adamson P, Etienne S, Couraud PO, Calder V, Greenwood J. Lymphocyte migration through brain endothelial cell monolayers involves signaling through endothelial ICAM-1 via a rho-dependent pathway. J. Immunol. 1999, 162: 2964–2973.

    PubMed  CAS  Google Scholar 

  180. Worthylake RA, Lemoine S, Watson JM, Burridge K. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol. 2001, 154: 147–160.

    PubMed  CAS  Google Scholar 

  181. Clark EA, Golub TR, Lander ES, Hynes RO. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 2000, 406: 532–535.

    PubMed  CAS  Google Scholar 

  182. Soede RD, Zeelenberg IS, Wijnands YM, Kamp M, Roos E. Stromal cell-derived factor-1-induced LFA-1 activation during in vivo migration of T cell hybridoma cells requires Gq/11, RhoA, and myosin, as well as Gi and Cdc42. J. Immunol. 2001, 166:4293–4301.

    PubMed  CAS  Google Scholar 

  183. Malliri A, Van der Kammen RA, Clark K, Van Der Valk M, Michiels F, Collard JG. Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature 2002, 417: 867–871.

    PubMed  CAS  Google Scholar 

  184. Cleverley SC, Costello PS, Henning SW, Cantrell DA. Loss of Rho function in the thymus is accompanied by the development of thymic lymphoma. Oncogene 2000, 19:13–20.

    PubMed  CAS  Google Scholar 

  185. Habets GG, Scholtes EH, Zuydgeest D, Van der Kammen RA, Stam JC, Berns A, Collard JG. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 1994, 77: 537–549.

    PubMed  CAS  Google Scholar 

  186. Jonkers J, Korswagen HC, Acton D, Breuer M, Berns A. Activation of a novel protooncogene, Frat1, contributes to progression of mouse T-cell lymphomas. EMBO J. 1997, 16: 441–450.

    PubMed  CAS  Google Scholar 

  187. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol. 1998, 14: 59–88.

    PubMed  CAS  Google Scholar 

  188. Miller JR, Rowning BA, Larabell CA, Yang-Snyder JA, Bates RL, Moon RT. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J. Cell Biol. 1999, 146:427–437.

    PubMed  CAS  Google Scholar 

  189. van Noort M, Clevers H. TCF transcription factors, mediators of Wnt-signaling in development and cancer. Dev. Biol. 2002, 244: 1–8.

    PubMed  Google Scholar 

  190. Habas R, Dawid IB, He X. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev. 2003, 17: 295–309.

    PubMed  CAS  Google Scholar 

  191. Habas R, Kato Y, He X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 2001, 107:843–854.

    PubMed  CAS  Google Scholar 

  192. Fanto M, Weber U, Strutt DI, Mlodzik M. Nuclear signaling by Rac and Rho GTPases is required in the establishment of epithelial planar polarity in the Drosophila eye. Curr. Biol. 2000, 10: 979–988.

    PubMed  CAS  Google Scholar 

  193. Fanto M, McNeill H. Planar polarity from flies to vertebrates. J. Cell Sci. 2004, 117:527–533.

    PubMed  CAS  Google Scholar 

  194. Tao W, Pennica D, Xu L, Kalejta RF, Levine AJ. Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev. 2001, 15: 1796–1807.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Hajdo-Milašinović, A., Mertens, A.E., Hamelers, I.H.L., Collard, J.G. (2006). Rho GTpases in Cell Motility and Tumorigenesis. In: Wells, A. (eds) Cell Motility in Cancer Invasion and Metastasis. Cancer Metastasis - Biology and Treatment, vol 8. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4009-1_9

Download citation

Publish with us

Policies and ethics