Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 9)


Particulate Organic Carbon Colored Dissolve Organic Matter Ocean Color Band Ratio Accessory Pigment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

14. References

  1. Ackleson, S.G., and V. Klemas. 1986. Two-flow simulation of the natural light field within a canopy of submerged aquatic vegetation. Applied Optics, 25:1129-1136.CrossRefGoogle Scholar
  2. Aiken, J., G.F. Moore, C.C. Trees, S.B. Hooker, and D.K. Clark. 1995. The SeaWiFS CZCS-Type Pigment Algorithm. SeaWiFS Technical Report Series , NASA Technical Memorandum 104566, Vol. 29. Goddard Space Flight Center, Greenbelt, Maryland.Google Scholar
  3. Albert, A., and C.D. Mobley. 2003. An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters. Ocean Optics Express, 11: 2873-2890.CrossRefGoogle Scholar
  4. Alberts, J.J., and Z. Filip. 1994. Humic substances in rivers and estuaries of Georgia, USA. Trends in Chemical Geology, 1:143-162.Google Scholar
  5. Alberts, J.J., and C. Griffin. 1996. Formation of particulate organic carbon (POC) from dissolved organic carbon (DOC) in salt marsh estuaries of the southeastern United States. Archives fur Hydrobiologie Special Issues, Advances in Limnology, 47:401-409.Google Scholar
  6. Alberts, J.J., M. Takacs, and J.F. Schalles. 2004. Ultraviolet-visible and fluorescence spectral evidence of natural organic matter (NOM) changes along an estuarine salinity gradient. Estuaries, 27:297-311.CrossRefGoogle Scholar
  7. American Public Health Association. 1998. Standard Methods for the Examination of Water and Wastewater (20th edition). Section 1200 - Chlorophyll. American Public Health Association.Google Scholar
  8. Andre, J.-M. 1992. Ocean color remote-sensing and the subsurface vertical structure of phytoplankton pigments. Deep Sea Research, 39:763-779.CrossRefGoogle Scholar
  9. Annenberg, P. 2000. Analysis of CASI data - a case study from the Archipelago of Stockholm, Sweden. Proceedings of the Sixth International Conference on Remote Sensing for Marine and Coastal Environments. University of Michigan Press., 2:149-156.Google Scholar
  10. Antoine, D., J.-M. Andre, and A. Morel. 1996. Oceanic primary production 2. Estimation of global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochemical Cycles, 10:57-69.CrossRefGoogle Scholar
  11. Babin, M., A. Morel, and B. Gentili. 1996. Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence. International Journal of Remote Sensing, 17:2417-2448.CrossRefGoogle Scholar
  12. Barnard, A.H., W.S. Pegau, and J.R.V. Zaneveld. 1998. Global relationships of the inherent optic properties of the oceans. Journal of Geophysical Research, 103:24,955-24,968.Google Scholar
  13. Bidigare, R.R., M.E. Ondrusek, J.H. Morrow, and D.A. Kiefer. 1990. In vivo absorption properties of algal pigments. SPIE Ocean Optics X: 1302:290-302.Google Scholar
  14. Blondeau-Patissier, D., G.H. Tilstone, V. Martinez-Vicente, and G.F. Moore. 2004. Comparison of bio-physical marine products from SeaWiFS, MODIS, and a bio-optical model with in situ measurements from Northern European waters. Journal of Optics A: Pure and Applied Optics, 6:875-889.CrossRefGoogle Scholar
  15. Boss, E., and J.R.V. Zaneveld. 2003. The effect of bottom substrate on inherent optical properties: Evidence of biogeochemical processes. Limnology and Oceanography, 48:346-354.Google Scholar
  16. Bowers, D.G., D. Evans, D.N. Thomas, K. Ellis, and P.J. le B.Williams 2004. Interpreting the colour of an estuary. Estuarine, Coastal, and Shelf Science, 59:13-20.CrossRefGoogle Scholar
  17. Brando, V.E., and A.G. Dekker. 2003. Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Transactions on Geosciences and Remote Sensing, 41:1378-1387.CrossRefGoogle Scholar
  18. Bricaud, A., A. Morel, and L. Prieur. 1981. Absorption by dissolved organic matter in the sea (yellow substances) in the UV and visible domains. Limnology and Oceanography, 26:43-53.CrossRefGoogle Scholar
  19. Brown, C.W., and J.A. Yoder. 1994. Coccolithophorid blooms in the global ocean. Journal of Geophysical Research, 99:7467-7482.CrossRefGoogle Scholar
  20. Bukata, R.P., J.H. Jerome, K.Y. Kondatyev, and D.V. Pozdnyakov. 1995. Optical Properties and Remote Sensing of Inland and Coastal Waters. CRC Press, Boca Raton, 362 pp.Google Scholar
  21. Butler, W.L. 1966. Spectral characteristics of chlorophyll in green plants. In: (L.P. Vernon and G.R. Seely, editors) The Chlorophylls. Academic Press, pp. 343-380.Google Scholar
  22. Carder, K.L., and R.G. Steward. 1985. A remote-sensing reflectance model of a red-tide dinoflagellate off west Florida. Limnology and Oceanography, 30:286-298.Google Scholar
  23. Carder, K.L., R.G. Steward, G.R. Harvey, and P.B. Ortner. 1989. Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll. Limnology and Oceanography, 34:68-81.CrossRefGoogle Scholar
  24. Carder, K.L., F.R. Chen, Z.P. Lee, S.K. Hawes, and D. Kamykowski. 1999. Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures. Journal of Geophysical Research, 104:5403-5421.CrossRefGoogle Scholar
  25. Carlough, L.A. 1994. Origins, structure, and trophic significance of amorphous seston in a blackwater river. Freshwater Biology, 31:227-237.CrossRefGoogle Scholar
  26. Casazza, G, C. Silvestri, and E. Spada. 2003. Classification of coastal waters according to the new Italian water legislation and comparison to the European Water Directive. Journal of Coastal Classification, 9:65-72.CrossRefGoogle Scholar
  27. Cole, B.E., and J.E. Cloern. 1987. An empirical model for estimating phytoplankton productivity in estuaries. Marine Ecology Progress Series, 36:299-305.CrossRefGoogle Scholar
  28. Cracknell, A.P., S.K. Newcombe, A.F. Black, and N.E. Kirbu. 2001. The ABDMAP (Algal Bloom Detection, Monitoring and Prediction) Concerted Action. International Journal of Remote Sensing, 22:205-247.CrossRefGoogle Scholar
  29. Cunningham, A., P. Wood, and K. Jones. 2001. Reflectance properties of hydrographically and optically stratified fjords (Scottish sea lochs) during the Spring diatom bloom. International Journal of Remote Sensing, 22:2885-2897.CrossRefGoogle Scholar
  30. Curran, P.J., and E.M.M. Novo. 1988. The relationship between suspended sediment concentration and remotely sensed spectral radiance: A review. Journal of Coastal Research, 4:351-368.Google Scholar
  31. D’Sa, E.J., and R.L. Miller. 2003. Bio-optical properties in waters influenced by the Mississippi River during low flow conditions. Remote Sensing of the Environment, 84:538-549.CrossRefGoogle Scholar
  32. Dall’ Olmo, G., A.A. Gitelson, and D.C. Rundquist. 2003. Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters. Geophysical Research Letters, 30:1938-1941.CrossRefGoogle Scholar
  33. Dekker, A.G. Detection of the Optical Water Quality Parameters for Eutrophic Waters by High Resolution Remote Sensing. 1993. Ph.D. Thesis. Free University, Amsterdam, The Netherlands, 212 pp.Google Scholar
  34. Dekker, A.G., Z. Zamurovic-Nenad, H.J. Hoogenboom, and S.W.M. Peters. 1996. Remote sensing, ecological water quality modeling, and in situ measurements: a case study in shallow lakes. Hydrological Sciences, 41:531-547.CrossRefGoogle Scholar
  35. Dekker, A.G., H.J. Hoogenboom, L.M. Goddijn, and T.J.M. Malthus. 1997. The relation between inherent optical properties and reflectance spectra in turbid inland waters. Remote Sensing Reviews, 15:59-74Google Scholar
  36. Doerffer, R. 1993. Estimation of primary production by observation of solar-stimulated fluorescence. ICES Marine Science Symposium, 197:104-113.Google Scholar
  37. Doerffer, R., and J. Fischer. 1994. Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods. Journal of Geophysical Research, 99:7457-7466.CrossRefGoogle Scholar
  38. Evans, R.H., and H.R. Gordon. 1994.Coastal zone color scanner “system calibration”: a retrospective examination. Journal of Geophysical Research, 99:7293-7307.CrossRefGoogle Scholar
  39. Falkowski, P.G., and J.A. Raven. 1997. Aquatic Photosynthesis. Blackwell Science, 375 pp.Google Scholar
  40. Gallegos, C.L., D.L. Correll, and J.W. Pierce. 1990. Modeling spectral diffuse attenuation, absorpion, and scattering coefficients in a turbid estuary. Limnology and Oceanography, 35:1486-1502.CrossRefGoogle Scholar
  41. Gallegos, C.L., and T.E. Jordan. 2002. Impact of the spring 2000 phytoplankton bloom in Chesapeake Bay on optical properties and light penetration in the Rhode River, Maryland. Estuaries, 25:508-518.CrossRefGoogle Scholar
  42. Gitelson, A. 1992. The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. International Journal of Remote Sensing, 13:3367-3373.CrossRefGoogle Scholar
  43. Gitelson, A.A., J.F. Schalles, D.C. Rundquist, F.R. Schiebe, and Y.Z. Yacobi. 1999. Comparative reflectance properties of algal cultures with manipulated densities. Journal of Applied Phycology, 11:345-354.CrossRefGoogle Scholar
  44. Gitelson, A.A. Y.Z. Yacobi, J.F. Schalles, D.C. Rundquist, L. Han, R. Stark, and D. Etzion. 2000. Remote estimation of phytoplankton density in productive waters. Limnology and Lake Management - Archives fur Hydrobiolia, Special Issues, Advances in Limnology, 55:121-136.Google Scholar
  45. Gons, H.J. 1999. Optical teledetection of chlorophyll a in turbid inland waters. Environmental Science and Technology, 33:1127-1132.CrossRefGoogle Scholar
  46. Gons, H.J., M. Rijkeboer, and K.G. Ruddick. 2002. A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters. Journal of Plankton Research, 24:947-951.CrossRefGoogle Scholar
  47. Gordon, H.R. 1997. Atmospheric correction of ocean color imagery in the Earth Observing System era. Journal of Geophyical Research, 102:17,081-17,106.Google Scholar
  48. Gordon, H.R., and A.Y. Morel. 1983. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery. A Review. Springer-Verlag, New York. 114 pp.Google Scholar
  49. Gower, J.F.R, and G.A. Borstad. 1990. Mapping of phytoplankton by solar-stimulated fluorescence using an imaging spectrometer. International Journal of Remote Sensing, 11:313-320.CrossRefGoogle Scholar
  50. Gower, J.F.R., R. Doerffer, and G.A. Borstad. 1999. Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS. International Journal of Remote Sensing, 20:1771-1786.CrossRefGoogle Scholar
  51. Hladik, C.M. 2004. Close range, hyperspectral remote sensing of Southeastern estuaries and an evaluation of phytoplankton chlorophyll a predictive algorithms. M.S. Thesis, Creighton University, Omaha, Nebraska, USA.126 pp.Google Scholar
  52. Han, L., and D.C. Rundquist. 1994. The response of both surface reflectance and underwater light field to various levels of suspended sediments: Preliminary results. Photogrammetric Engineering and Remote Sensing, 60:1463-1471.Google Scholar
  53. International Ocean-Color Coordinating Group. (S. Sathyendranath, Ed.) 2000. Remote Sensing of Ocean Color in Coastal, and Other Optically Complex, Waters. IOCCG Report Number 3, 140 pp.Google Scholar
  54. Jahnke, R.A. 1996. The global ocean flux of particulate organic carbon: areal distribution and magnitude. Global Biogeochemical Cycles, 10:71-88.CrossRefGoogle Scholar
  55. Jassby, A.D., B.E. Cole, and J.E. Cloern. 1997. The design of sampling transects for characterizing water quality in estuaries. Estuarine, Coastal and Shelf Science, 45:285-302.CrossRefGoogle Scholar
  56. Jerlov, N.G. 1976. Marine Optics, 2nd edition. Elsevier Scientific Publishing Company.Google Scholar
  57. Jordan, T.E., D.L. Cornell, J. Miklas, and D.E. Weller. 1991. Long-term trends in estuarine nutrients and chlorophyll, and short-term effects of variation in watershed discharge. Marine Ecology Progress Series, 75:121-132.CrossRefGoogle Scholar
  58. Jumars, P.A. 1993. Concepts in Biological Oceanography. Oxford University Press.Google Scholar
  59. Kahru, M., and B.G. Mitchell. 1998. Spectral reflectance and absorption of a massive red tide off southern California. Journal of Geophysical Research, 103:21,601-21,609.Google Scholar
  60. Kallio, K., S. Koponen, and J. Pulliainen. 2003. Feasibility of airborne imaging spectrometry for lake monitoring - a case study of spatial chlorophyll a distribution in two meso-eutrophic lakes. International Journal of Remote Sensing, 24:3771-3790.CrossRefGoogle Scholar
  61. Kirk, J.T.O. 1994. Light and Photosynthesis in Aquatic Ecosystems. 2nd Edition. Cambridge University Press.Google Scholar
  62. Kitchen, J.C., and J.R.V. Zaneveld. 1992. A three-layered sphere model of the optical properties of phytoplankton. Limnology and Oceanography, 37:1680-1690.CrossRefGoogle Scholar
  63. Klemas, V., and D.F. Polis. 1977. Remote sensing of estuarine fronts and their effects on pollutants. Photogrammetric Engineering and Remote Sensing, 43:599-612.Google Scholar
  64. Krijgsman, J. 1994. Optical remote sensing of water quality parameters - Interpretation of reflectance spectra. Ph.D. Thesis. Delft University of Technology, Delft University Press.Google Scholar
  65. Lahet, F., S. Ouillon, and P. Forget. 2001. Colour classification of coastal waters of the Ebro river plume from spectral reflectances. International Journal of Remote Sensing, 22:1639-1664.CrossRefGoogle Scholar
  66. Lee, Z., K.L. Carder, C.D. Mobley, R.G. Steward, and J.S. Patch. 1998. Hyperspectral remote sensing for shallow waters. 1. A semianlaytical model. Applied Optics, 37:6329-6338.CrossRefGoogle Scholar
  67. Lee, Z., K.L. Carder, C.D. Mobley, R.G. Steward, and J.S. Patch. 1999. Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization. Applied Optics, 38:3831-3843.CrossRefGoogle Scholar
  68. Lefevre, N., A.H. Taylor, F.J. Gilbert, and R.J. Geider. 2003. Modeling carbon to nitrogen and carbon to chlorophyll a ratios in the ocean at low latitudes: Evaluation of the role of physiological plasticity. Limnology and Oceanography, 48:1796-1807.CrossRefGoogle Scholar
  69. Limón, J.G., O.T. Lind, D.S. Vodopich, R. Doyle, and B.G. Trotter. 1989. Long- and short-term variation in the physical and chemical limnology of a large, shallow, turbid tropical lake (Lake Chapala, Mexico). Archives fur Hydrobiologie, Supplement 83 (Monographische Beiträge), 57-81.Google Scholar
  70. Lind, O.T., and L.O. Dávalos. 1990. Clay, dissolved organic matter, and bacterial interactions in two reservoirs. Archives fur Hydrobiologie, Ergebn. Limnologie, 34:119-125.Google Scholar
  71. Lind, O.T., R. Doyle, D.S. Vodopich, B.G. Trotter, J. Gualberto Limón, and L. Dávalos-Lind. 1992. Clay turbidity: regulation of phytoplankton in a large, nutrient-rich lake. Limnology and Oceanography, 37:549-565.CrossRefGoogle Scholar
  72. Maritorena, S., A. Morel, and B. Gentili. 1994. Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo. Limnology and Oceanography, 39:1689-1703.CrossRefGoogle Scholar
  73. Mittenzwey, K.-H., S. Ullrich, A.A. Gitelson, and K.Y. Kondratiev. 1992. Determination of chlorophyll a of inland waters on the basis of spectral reflectance. Limnology and Oceanography, 37:147-149.CrossRefGoogle Scholar
  74. Mobley, C.D. 1994. Light and Water: Radiative Transfer in Natural Waters. Academic Press. Morel, A. 1974. Optical properties of pure water and sea water. In: (N. Jerlov and E. Steemann Nielsen, editors) Optical Aspects of Oceanography. Academic Press, p. 1-24.Google Scholar
  75. Morel, A., and L. Prieur. 1977. Analysis of variations in ocean color. Limnology and Oceanography, 22: 709-722.CrossRefGoogle Scholar
  76. Morrow, J.H., B.N. White, M. Chimiente, and S. Hubler. 2000. A bio-optical approach to reservoir monitoring in Los Angeles. Limnology and Lake Management - Archives fur Hydrobiolia Special Issues, Advances in Limnology, 55:171-191.Google Scholar
  77. Muller-Karger, F.E., C.R. McClain, T.R. Fisher, W.E. Esaias, and R. Varela. 1989. Pigment distribution in the Caribbean Sea: observations from space. Progress in Oceanography, 23:23-64.CrossRefGoogle Scholar
  78. Munday, J.C., and P.L. Zubkoff. 1981. Remote sensing of blooms in a turbid estuary. Photogrammetric Engineering and Remote Sensing, 47:523-531.Google Scholar
  79. Myers, MR, J.T. Hardy, C.H. Mazel, and P. Dustan. 1999. Optical spectra and pigmentation of Caribbean reef corals and macroalgae. Coral Reefs, 18:179-186CrossRefGoogle Scholar
  80. Odhe, T., and H. Siegel. 2001. Correction of bottom influence in ocean colour satellite images of shallow water areas of the Baltic Sea. International Journal of Remote Sensing, 22:297-313.CrossRefGoogle Scholar
  81. O'Reilly, J.E., S. Maritorena, B.G. Mitchell, D.A. Siegel, K.L. Carder, S.A. Garver, M. Kahru, and C. McClain. 1998. Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research, 103:24,937-24,953.Google Scholar
  82. Paerl, H.W. 1988. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnology and Oceanography, 33:823-847.CrossRefGoogle Scholar
  83. Pettersson, L.H., D. Durand, O.M. Johannessen, E. Svendsen, and H. Soiland. 2000. Satellite observations and model predictions of toxic algae blooms in coastal waters. Proceedings of the Sixth International Conference on Remote Sensing for Marine and Coastal Environments, 1:48-55.Google Scholar
  84. Pozdnyakov, D., A. Lyaskovsky, H. Grassl, and L. Pettersson. 2002. Numerical modeling of transpectral processes in natural waters: implications for remote sensing. International Journal of Remote Sensing, 23:1581-1607.CrossRefGoogle Scholar
  85. Quinby-Hunt, M.S., A.J. Hunt, K. Lofftus, and D. Shapiro. 1989. Polarized-light scattering studies of marine Chlorella. Limnology and Oceanography, 34:1587-1600.CrossRefGoogle Scholar
  86. Richardson, L.L. 1996. Remote sensing of algal bloom dynamics. Bioscience, 46:492-501.CrossRefGoogle Scholar
  87. Rijkeboer, M., A.G. Dekker, and H. J. Gons. 1998. Subsurface irradiance reflectance spectra of inland waters differing in morphometry and hydrology. Aquatic Ecology, 31:313-323.CrossRefGoogle Scholar
  88. Ritchie, J.C., F.R. Schiebe, C.M. Cooper, and J.A. HarringtonJr, . 1994. Chlorophyll measurements in the presence of suspended sediment using broad band spectral sensors aboard satellites. Journal of Freshwater Ecology, 9:197-206.Google Scholar
  89. Rowan, K.S. 1989. Photosynthetic Pigments of Algae. Cambridge University Press.Google Scholar
  90. Ruddick, K., Y. Park, and B. Nechad. 2003. MERIS imagery of Belgian coastal waters: mapping of suspended particulate matter and chlorophyll-a. Proceedings of MERIS user workshop, Frascati, Italy, ESA SP-249.Google Scholar
  91. Rundquist, D.C., J.F. Schalles, and J.S. Peake. 1995. The response of volume reflectance to manipulated algal concentrations above bright and dark bottoms at various depths in an experimental pool. Geocarto International, 10:5-14.CrossRefGoogle Scholar
  92. Sathyendranath, S., L. Lazzara, and L. Prieur. 1987. Variations in the spectral values of specific absorption of phytoplankton. Limnology and Oceanography, 32:403-415.CrossRefGoogle Scholar
  93. Sathyendranath, S., G. Cota, V. Stuart, H. Maass, and T. Platt. 2001. Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches. International Journal of Remote Sensing, 22:249-273.CrossRefGoogle Scholar
  94. Schalles, J.F., F.R. Schiebe, P.J. Starks, and W.W. Troeger. 1997. Estimation of algal and suspended sediment loads (singly and combined) using hyperspectral sensors and experiments. Proceedings of the Fourth International Conf. on Remote Sensing of Marine and Coastal Environments, 1:247-258.Google Scholar
  95. Schalles. J.F., A.T. Sheil., J.F. Tycast., J.J. Alberts., and Y.Z. Yacobi. 1998a. Detection of chlorophyll, seston, and dissolved organic matter in the estuarine mixing zone of Georgia coastal plain rivers. Proceedings of the Fifth International Conference on Remote Sensing for Marine and Coastal Environments, 2:315-324.Google Scholar
  96. Schalles, J.F., A.A. Gitelson, Y.Z. Yacobi, and A.E. Kroenke. 1998b. Estimation of chlorophyll a from time series measurements of high spectral resolution reflectance in an eutrophic lake. Journal of Phycology, 34:383-390b.Google Scholar
  97. Schalles, J.F. and Y.Z. Yacobi. 2000. Remote detection and seasonal patterns of phycocyanin, carotenoid, and chlorophyll pigments in eutrophic waters. Limnology and Lake Management - Archives fur Hydrobiolia Special Issues, Advances in Limnology, 55:153-168.Google Scholar
  98. Schalles, J.F., D.C. Rundquist, and F.R. Schiebe. 2001. The influence of suspended clays on phytoplankton reflectance signatures and the remote estimation of chlorophyll. Vehr. Intern. Verein. Limnol. 27: 3619-3625.Google Scholar
  99. Schalles, J.F., F.R. Schiebe, C.M. Hladik, F.R. Schiebe, J.F. DeNoyelles, and D.R. Rundquist. An analysis of the red/NIR fluorescence and reflectance peak (690-720 nm) of phytoplankton blooms. (in prep.)Google Scholar
  100. Schiebe, F.R., J.A. Harrington Jr., and J.C. Ritchie. 1992. Remote sensing of suspended sediments: the Lake Chicot, Arkansas project. International Journal of Remote Sensing, 13:1487-1509.CrossRefGoogle Scholar
  101. Schwarz, J.N., P. Kowalczuk, S. Kaczmarek, G.F. Cota, B.G. Mitchell, M. Kahru, F.P. Chavez, A. Cunningham, D. McKee, P. Gege, M. Kishino, D.A. Phinney, and R. Raine. 2002. Two models for absorption by coloured dissolved organic matter (CDOM). Oceaonologia, 44:209-241.Google Scholar
  102. Siegel, D.A., M. Wang, S. Maritorena, and W. Robinson. 2000. Atmospheric correction of satellite ocean color imagery: the black pixel assumption. Applied Optics, 39:3582-3591.CrossRefGoogle Scholar
  103. Smith, R.C., and K. Baker. 1981. Optical properties of the clearest natural waters. Applied Optics, 20: 177-184.CrossRefGoogle Scholar
  104. Starks, P.J., F.R. Schiebe, and J.F. Schalles. 1995. Characterization of the accuracy and precision of spectral measurements by a portable, silicon diode array spectrometer. Photogrammetry and Remote Sensing, 61:1239-1246.Google Scholar
  105. Stumpf, R.P, R.A. Arnone, R.W. Gould, P. Martinolich, V. Ransibrahmanakul, P.A. Tester, R.G. Steward, A. Subramaniam, M. Culver, and J.R. Pennock. 2000. SeaWiFS ocean color data for U.S. Southeast coastal waters. Proceedings of the Sixth International Conference on Remote Sensing for Marine and Coastal Environments, 1:25-27.Google Scholar
  106. Talling, J.F. 1993. Comparative seasonal changes, and inter-annual variability and stability, in a 26-year record of total phytoplankton biomass in four English Lake District basins. Hydrobiologia, 268:65-98.CrossRefGoogle Scholar
  107. Thiemann, S., and H. Kaufmann. 2000. Lake water quality monitoring using hyperspectral airborne data - a multitemporal approach. Proceedings of the Sixth International Conference on Remote Sensing for Marine and Coastal Environments, 2:157-164.Google Scholar
  108. Walsh, J.J. 1991. Importance of the continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 350:53-55.CrossRefGoogle Scholar
  109. Wang, M., D.R. Lyzenga, and V.V. Klemas. 1996. Measurement of the optical properties in the Delaware Estuary. Journal of Coastal Research, 12:211-228.Google Scholar
  110. Wernard, M.R., S.J. Shimwell, S. Boxall, and H.M. van Aken. 1998. Evaluation of specific semi-empirical coastal colour algorithms using historic data sets. Aquatic Ecology, 32:73-91.CrossRefGoogle Scholar
  111. Vertucci, F.A., and G.E. Likens. 1989. Spectral reflectance and water quality of Adirondack mountain region lakes. Limnology and Oceanography, 34:1656-1672.CrossRefGoogle Scholar
  112. Vos, W.L., M. Donze, and H. Buiteveld. 1986. On the reflectance spectrum of algae in water: the nature of the peak and 700 nm and its shift with varying concentration. Communications on Sanitary Engineering and Water Management, Number 7, TU Delft, The Netherlands, 29 pp.Google Scholar
  113. Yoder, J.A., J. Aiken, R.N. Swift, F.E. Hoge, and P.M. Stegmann. 1992. Spatial variability in near-surface chlorophyll a fluorescence measured by the Airborne Oceanographic LIDAR (AOL). Deep Sea Research II, 40:37-53.Google Scholar
  114. Yoo, S.-J., H.-C. Kim, J.-a. Lee, and M.-O. Park. 2002. Validation of chlorophyll algorithm in Ulleung Basin, East/Japan Sea. Korean Journal of Remote Sensing, 18:35-42.Google Scholar
  115. Zaneveld, J.R.V., D.M. Roach, and H. Pak. 1974. The determination of the refractive distribution of oceanic particulates. Journal of Geophysical Research, 79:4091-4095.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

    • 1
  1. 1.Biology DepartmentCreighton UniversityOmahaUSA

Personalised recommendations