Skip to main content

Lattice Boltzmann Method for Calculating Fluid Flow and Dispersion in Porous and Fractured Media

  • Chapter
Gas Transport in Porous Media

Part of the book series: Theory and Applications of Transport in Porous Media ((TATP,volume 20))

  • 3212 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Artoli, A.M., Hoekstra, A.G. and Sloot, P.M.A. (2002) 3D pulsatile flow with the lattice Boltzmann BGK method, Internat J. Modern Phys. C 13(8), 1119–34.

    Article  Google Scholar 

  • Chen, S.J., Martínez, D. and Mei, R. (1996) On boundary conditions in lattice Boltzmann methods, Phys. Fluids 8, 2527–2535.

    Article  MATH  MathSciNet  Google Scholar 

  • Cornubert, R., d’Humières, D. and Levermore, D. (1991) A Knudsen layer theory for lattice gases, Physica D 47, 241–259.

    Article  MATH  MathSciNet  Google Scholar 

  • Cosgrove, J.A., Buick, J.M., Tonge, S.J., Munro, C.G., Greated, C.E. and Campbell, D.M. (2003) Application of the lattice Boltzmann method to transition in oscillatory channel flow, J. Phys. A: Math. Gen. 36, 2609–2620.

    Article  MATH  MathSciNet  Google Scholar 

  • Detwiler, R.L., Rajaram, H. and Glass, R.J. (2000) Solute transport in variable-aperture fractures: An investigation of the relative importance of Taylor dispersion and macrodispersion, Water Resources Res. 36, 1611–1625.

    Article  Google Scholar 

  • Eidsath, A., Carbonell, R.G., Whitaker, S. and Herrmann, L.R. (1983) Dispersion in Pulsed Systems – III Comparison between Theory and Experiments for Packed Beds, Chem. Engng. Sci. 38, 1803–1816.

    Article  Google Scholar 

  • Flekkøy, E.G., Oxaal, U., Feder, T. and Jøssang, T (1995) Hydrodynamic dispersion at stagnation points: simulations and experiments, Phys. Rev. E 52, 4952–4962.

    Article  Google Scholar 

  • Gunn, D.J. and Pryce, C. (1969) Dispersion in Packed Beds, Trans. Inst. Chem. Engrs. 47, T341-T350.

    Google Scholar 

  • Koch, D.L., Cox, R.G., Brenner, H. and Brady, J.F. (1989) The effect of order on dispersion in porous media, J. Fluid Mech. 200, 173–188.

    Article  MATH  MathSciNet  Google Scholar 

  • Lambossy, P (1952) Oscillations forcées d’un liquide incompressible et visqueaux dans un tube rigide et horizontal. Calcul de la force frottement, Helv. Phys. Acta XXV, 371–386.

    MathSciNet  Google Scholar 

  • Lin, C.L. and Miller, J.D. (2004) Pore structure analysis of particle beds for fluid transport simulation during filtration, Inter. J. Mineral Process 73(2–4), 281–294.

    Article  Google Scholar 

  • Martys, N. and Chen, H. (1996) Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method, Phys. Rev. E 53, 743–750.

    Article  Google Scholar 

  • Neeper, D.H. (2001) A model of oscillatory transport in granular soils, with application to barometric pumping and earth tides, J. Contam. Hydrology 48, 237–252.

    Article  Google Scholar 

  • Nilson, R.H., Peterson, E.W., Lie, K.H., Burkhard, N.R. and Hearst, J.R. (1991) Atmospheric pumping: a mechanism causing vertical transport of contaminated gases through fractured permeable media, J. Geophys. Res. 96(B13), 21933–21948.

    Google Scholar 

  • Noble, D.R. (1996) Lattice Boltzmann Study of the Interstitial Hydrodynamics and Dispersion in Steady Inertial Flows in Large Randomly Packed Beds. Ph.D. thesis, University of Illinois Urbana-Champaign.

    Google Scholar 

  • Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G. and Joseph, D. (2003) The lattice Boltzmann equation method: theoretical interpretation, numerics and implications, International Journal of Multiphase Flow 29, 117–169. (CFL, methods for dissociating grids and getting CFL < 1).

    Article  Google Scholar 

  • Pan, C., Hilpert, M. and Miller, C.T. (2004) Lattice-Boltzmann simulation of two-phase flow in porous media, Water Resources Res. 40(1), W01501 14pp.

    Article  Google Scholar 

  • Qian, Y.H., d’Humières, D. and Lallemand, P. (1992) Lattice BGK models for Navier-Stokes equation, Europhys. Lett. 7(6 BIS), 479–184.

    Google Scholar 

  • Reynolds, A.M., Reavell, S.V. and Harral, B.B. (2000) Flow and dispersion through a close-packed fixed bed of spheres, Phys. Rev. E 62(3), 3632–3639.

    Article  Google Scholar 

  • Rothman, D.H. and Zaleski, S. (1997) Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics. Cambridge University Press, Cambridge, 297p.

    Google Scholar 

  • Sterling, J.D. and Chen, S.Y. (1996) Stability analysis of Lattice Boltzmann methods, J. Computat. Phys. 165(1), 288–306.

    Google Scholar 

  • Stockman, H.W. (1997) A lattice-gas study of retardation and dispersion in fractures: Assessment of errors from desorption kinetics and buoyancy, Water Resources Res. 33(8), 1823–1832.

    Article  Google Scholar 

  • Stockman, H.W., Li, C. and Wilson, J.L. (1997) A lattice-gas and lattice Boltzmann study of mixing at continuous fracture junctions: importance of boundary conditions, Geophys. Res. Lett. 24(12), 1515–1518.

    Article  Google Scholar 

  • Stockman, H.W., Glass, R.J., Cooper, C. and Rajaram, H. (1998) Accuracy and computational efficiency in 3D dispersion via lattice-Boltzmann: models for dispersion in rough fractures and double-diffusive fingering, International Journal of Modern Physics C 9(8), 1545–1557.

    Article  Google Scholar 

  • Stockman, H.W. (1999) A 3D Lattice Boltzmann Code for Modeling Flow and Multi-Component Dispersion. SAND 99–0162, Sandia National Laboratories, Albuquerque, NM. 165 pp.

    Google Scholar 

  • Sukop, M.C. and Or, D. (2004) Lattice Boltzmann method for modeling liquid-vapor interface configurations in porous media, Water Resources Res. 40(1), W01509 11pp.

    Article  Google Scholar 

  • Wolf-Gladrow, D. (1994) A lattice Boltzmann equation for diffusion, J. Stat. Phys. 79, 1023–1032.

    Article  Google Scholar 

  • Zhang, X., Bengough, A.G. and Deeks, L.K. (2002) A novel three-dimensional lattice Boltzmann model for solute transport in variably saturated porous media, Water Resources Res. 38(9), 6–1 to 6–10.

    MATH  Google Scholar 

  • Zick, A.A. and Homsy, G.M. (1982) Stokes Flow through Periodic Arrays of Spheres, J. Fluid Mech. 115, 13–26.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Stockman, H.W. (2006). Lattice Boltzmann Method for Calculating Fluid Flow and Dispersion in Porous and Fractured Media. In: Ho, C.K., Webb, S.W. (eds) Gas Transport in Porous Media. Theory and Applications of Transport in Porous Media, vol 20. Springer, Dordrecht . https://doi.org/10.1007/1-4020-3962-X_13

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3962-X_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3961-4

  • Online ISBN: 978-1-4020-3962-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics