Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 125))

Abstract

The mechanosensory mechanisms in bone include (i) the cell system that is stimulated by external mechanical loading applied to the bone; (ii) the system that transduces that mechanical loading to a communicable signal; and (iii) the systems that transmit that signal to the effector cells for the maintenance of bone homeostasis and for strain adaptation of the bone structure. The effector cells are the osteoblasts and the osteoclasts. These systems and the mechanisms that they employ have not yet been unambiguously identified. A summary is presented of the current theoretical and experimental evidence suggesting that osteocytes are the principal mechanosensory cells of bone, that they are activated by the effects of fluid flowing through the osteocyte canaliculi, and that the electrically coupled three-dimensional network of osteocytes and lining cells is a communications system for the control of bone homeostasis and structural strain adaptation. A bone poroelastic (BP) model is employed to model the fluid flow behavior caused by the mechanical loading of bone. The similarities of the mechanotransduction system in bone with the mechanotransduction system used by the cells of the hearing system will be described. Both cell systems sense mechanical vibrations in a fluid domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarden, E. M., Burger, E. H., and Nijweide, P. J. (1994) Function of osteocytes in bone. Journal of Cell Biochemistry 55, 287–299

    Google Scholar 

  2. Aarden, E.M. (1996) The third cell-a study of the role of the osteocyte in bone. Thesis, Leiden

    Google Scholar 

  3. Aarden, E.M., Wassenaar, A.M., Alblas, M.J. and Nijweide, P.J. (1996) Immunocytochemical demonstration of extracellular matrix proteins in isolated osteocytes. Histochemical Cell Biology 106 495–501

    Google Scholar 

  4. Almekinders, L.C., Banes, A.J. and Ballenger, C.A. (1993) Effects of repetitive motion on human fibroblasts. Medical Science of Sports Exercise 25 603–607

    Google Scholar 

  5. Atkinson, P.J. and Hallsworth, A.S. (1983) The changing structure of aging human mandibular bone. Gerodontology 2 57–66

    Google Scholar 

  6. Ayasaka, N., Kondo, T., Goto, T., et al. (1992) Differences in the transport systems between cementocytes and osteocytes in rats using microperoxidase as a tracer. Archives of Oral Biology 37 363–368

    Article  Google Scholar 

  7. Beardslee, M.A., Laing, J.G., Beyer, E.C. et al. (1998) Rapid turnover of connexin 43 in the adult rat heart. Circulation Research 83 629–635

    Google Scholar 

  8. Bennett, M.V.L., Goodenough, D.A. (1978) Gap junctions. Electronic coupling and intercellular communication. Neuroscience Research Progress Bulletin 16 373–485

    Google Scholar 

  9. Bhalla, U.S. and Iyengar, R. (1999) Emergent properties of networks of biological signaling pathways. Science 283 381–383

    Google Scholar 

  10. Bingmann, D., Tetsch, D. and Fritsch, J. (1988a) Membraneigenschaften von zellen aus knochenexplantaten. Zeitschrift Zahnartzl Implantologie IV 277–281

    Google Scholar 

  11. Bingmann, D., Tetsch, D. and Fritsch, J. (1988b) Membrane properties of bone cells derived from calvaria of newborn rats (tissue culture). Pfluger’s Architecture S412 R14–15

    Google Scholar 

  12. Bretscher, A. and Weber, K. (1980) Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures. Journal of Cell Biology 86 335–340

    Article  Google Scholar 

  13. Brighton, C.T., Okerehe, E., Pollack, S., et al. (1992) In vitro bone-cell response to a capacitively coupled electrical field. Role of field strength, pulse pattern and duty cycle. Clinical Orthopedics and Related Research 285 255–262

    Google Scholar 

  14. Brown, T.D., Pedersen, D.R., Gray, M.L., et al. (1990) Toward an identification of mechanical parameters initiating periosteal remodeling: a combined experimental and analytic approach. Journal of Biomechanics 23 893–905

    Article  Google Scholar 

  15. Brown, T.D., Bottlang, M., Pederson, D.R. et al. (1998) Loading paradigms-intentional and unintentional-for cell culture mechanostimulus. American Journal of Medical Science 316 162–168

    Google Scholar 

  16. Buckwalter, J.A. and Rosenberg, L.C. (1982) Electron microscopic studies of cartilage proteoglycans. Direct evidence for the variable length of the chondroitin sulfate-rich region of proteoglycan subunit core protein. Journal of Biological Chemistry 257(16) 9830–9839

    Google Scholar 

  17. Burger, E.H. and Veldhuijzen, J.P. (1993) Influence of mechanical factors on bone formation, resorption, and growth in vitro. Bone, Editor B. L. Hall 7 37–56. CRC Press, Boca Raton, Florida

    Google Scholar 

  18. Burger, E.H., Klein Nulend, J. and Cowin, S.C. (1998) Mechanotransduction in bone. Advances in Organ Biology, Editor M. Zaidi 5a 107–118. JAI Press Inc, London

    Google Scholar 

  19. Cammarota, Jr., J.P. and Onaral, B. (1998) State transitions in physiologic systems: A complexity model for loss of consciousness. IEEE Transactions on Biomedical Engineering 45 1017–23

    Article  Google Scholar 

  20. Carter, D.R. and Hayes, W.C. (1976) Bone compressive strength: the influence of density and strain rate. Science 194 174–1175

    Google Scholar 

  21. Carvalho, R.S., Scott, J.E., Suga, D.M., et al. (1994) Stimulation of signal; transduction pathways in osteoblasts by mechanical strain potentiated by parathyroid hormone. Journal of Bone and Mineral Research 9 999–1011

    Google Scholar 

  22. Carvalho, R.S., Schaffer, J.L. and Gerstenfeld, L.C. (1998) Osteoblasts induce osteopontin expression in response to attachment on fibronectin: demonstration of a common role for integrin receptors in the signal transduction processes of cell attachment and mechanical stimulation. Journal of Cellular Biochemistry 70 376–390

    Article  Google Scholar 

  23. Chailley, B. Nicolas, G. and Laine, M. C. (1989) Organization of actin microfilaments in the apical border of oviduct ciliated cells. Biology of the Cell 67 81–90

    Google Scholar 

  24. Chesnoy-Marchais, D. and Fritsch, J. (1988) Voltage-gated sodium and calcium currents in rat osteoblasts. Journal of Physiology 398 291–311

    Google Scholar 

  25. Civitelli, R. (1995) Cell-cell communication in bone Calcified Tissue International 56(Suppl. 1) S29–S31

    Google Scholar 

  26. Clark, E.A. and Brugge, J. S. (1995) Integrins and signal transduction pathways: the road taken. Science 268 233–239

    Google Scholar 

  27. Cooper, R.R., Milgram, J.W., Robinson, R.A. and Maryland, B. (1966) Morphology of the osteon. Journal of Bone and Joint Surgery 48-A(7) 1239–1271

    Google Scholar 

  28. Cowan, D.B., Lye, S.J. and Langille, B. L. (1998) Regulation of vascular connexin 43 gene expression by mechanical loads. Circulation Research 82 786–93

    Google Scholar 

  29. Cowin, S.C. and Hegedus, D.M. (1976) Bone remodeling I: a theory of adaptive elasticity. Journal of Elasticity 6 313–325

    MathSciNet  Google Scholar 

  30. Cowin, S.C., Moss-Salentijn, L. and Moss, M. L. (1991) Candidates for the mechanosensory system in bone. Journal of Biomechanical Engineering 113 191–197

    Google Scholar 

  31. Cowin, S.C., Weinbaum, S. and Zeng, Yu (1995) A case for bone canaliculi as the anatomical site of strain generated potentials. Journal of Biomechanics 28 1281–1296

    Google Scholar 

  32. Cowin, S.C. (1998) On mechanosensation in bone under microgravity. Bone 22 119S–125S

    Article  Google Scholar 

  33. Cowin, S.C. and Weinbaum, S. (1998) Strain amplification in the bone mechanosensory system. American Journal of Medical Science 316 184–188

    Google Scholar 

  34. Cowin, S.C. (1999) Bone poroelasticity. Journal of Biomechanics 32 218–238

    Article  Google Scholar 

  35. Cowin, S.C. and Moss, M. L. (2000) Mechanosensory mechanisms in bone. Textbook of Tissue Engineering, 2nd edition, Editors: R. Lanza, R. Langer, and W. Chick 723–738, Academic Press, San Diego, California

    Google Scholar 

  36. Cui, C., Smith, D.O. and Adler, J. (1995) Characterization of mechanosensitive channels in Eschericia coli cytoplasmic cell membrane by whole-cell patch clamp recording. Journal of Membrane Biology 144 31–42

    Google Scholar 

  37. Culshaw, P. (1996) Smart Structures and Materials Boston, Artech House

    Google Scholar 

  38. Curtis, T.A., Ashrafi, S.H. and Weber, D. F. (1985) Canalicular communication in the cortices of human long bones. Anatomical Record 212 336–344

    Article  Google Scholar 

  39. Davidson, R.M., Tatakis, D.W. and Auerbach, A.L. (1990) Multiple forms of mechanosensitive ion channels in osteoblast-like cells. European Journal of Physiology 416 646–51

    Google Scholar 

  40. Dayhoff, J. (1990) Neural Network Architecture van Nostrand Reinhold, New York

    Google Scholar 

  41. Dayhoff, J.E., Hameroff, S.R., Lahoz-Beltra, R., et al. (1992) Intracellular mechanisms in neuronal learning: adaptive models. International Jointt Conference on Neural Networks I73–I78

    Google Scholar 

  42. De Mello, W.C. (1987) The ways cells communicate. Cell-to-cell Communication 1–20, Plenum Press, New York

    Google Scholar 

  43. Denning, P.J. (1990) Neural networks. American Scientist 80 426–429

    Google Scholar 

  44. Dillaman, R.M. (1984) Movement of ferritin in the 2 day-old chick femur. Anatomical Record 209 445–453

    Article  Google Scholar 

  45. Dolce, C., Kinniburgh, A.J. and Dziak, R. (1996) Immediate early-gene induction in rat osteoblastic cells after mechanical deformation. Archives of Oral Biology 41 1101–1108

    Article  Google Scholar 

  46. Doty, S.B. (1981) Morphological evidence of gap junctions between bone cells. Calcified Tissue International 33 509–512

    Google Scholar 

  47. Doty, S.B. (1989) Cell-to-cell communication in bone tissue. The Biological Mechanism of Tooth Eruption and Root Resorption. Editor, Z. Davidovitch 61–69. EBSCO Media, Birmingham, Alabama

    Google Scholar 

  48. Duncan, R. and Misler, S. (1989) Voltage-activated and stretch activated Ba2+ conducting channels in an osteoblast-like cell line (URM 106). Federation of European Biochemical Societies 251 17–21

    Google Scholar 

  49. Duncan, R.L. and Turner, C. H. (1995) Mechanotransduction and the functional response of bone to mechanical strain. CalcifiedTissue International 57 344–358

    Google Scholar 

  50. Edin, B.B. and Trulsson, M.(1992) Neural network analysis of the information content in population responses from human periodontal receptors. Science of Neural Networks SPIE 1710 257–266

    Google Scholar 

  51. Ferrier, J., Crygorczyk, C., Grygorczyk, R., et al. (1991) Ba2-induced action potentials in osteoblastic cells. Journal of Membrane Biology 123 255–259

    Google Scholar 

  52. Forgacs, G. (1995) Biological specificity and measurable physical properties of cell surface receptors and their possible role in signal transduction through the cytoskeleton. Biochemical Cell Biology 73 317–326

    Google Scholar 

  53. Fraser, D.J. and Macdonald, A.G. (1994) Crab hydrostatic pressure sensors. Nature 371 383–384

    Article  Google Scholar 

  54. French, A.S. (1992) Mechanotransduction. Annual Review of Physiology 54 135–152

    Article  Google Scholar 

  55. Fritton, S.P., McLeod, K.J. and Rubin, C.T. (2000) Quantifying the strain history of bone: spatial uniformity and self-similarity of low magnitude strains. Journal of Biomechanic 33 317–325

    Google Scholar 

  56. Fritzke, B. (1994) Growing cell structures-a self-organizing network for unsupervised and supervised learning. Neural Networks 7 1441–1460

    Article  Google Scholar 

  57. Frost, H.M. (1964) The Laws of Bone Structure Charles C. Thomas, Springfield, IL

    Google Scholar 

  58. Frost, H.M. (1969) Tetracycline based histological analysis of bone remodeling. Calcified Tissue Research 3 211–237

    Article  Google Scholar 

  59. (1991). Volume Transmission in the Brain. Editors J. Fuxe and L.F. Agnati Raven Press, New York

    Google Scholar 

  60. Fyhrie, D.P.and Carter, D. R. (1986) A unifying principle relating stress to trabecular bone morphology. Journal of Orthopedic Research 4 304–317

    Google Scholar 

  61. Ghazi, A., Berrier, C., et.al. (1998) Mechanosensitive ion channels and their mode of activation. Biochimie 80 357–62

    Google Scholar 

  62. Gilbertson, T.A. (1998) Peripheral mechanisms of taste. The Scientific Basis of Eating. Editor R.W.A. Linden 9 1–28. Karger, Basel

    Google Scholar 

  63. Glenney,Jr., J.R., Kaulfus, P. Matsudaira, P. and Weber, K. (1981) F-actin binding and bundling properties of fimbrin, a major cytoskeletal protein of microvillus core filaments. Journal of Biological Chemistry 256 9283–9288

    Google Scholar 

  64. Gohel, A.R., Hand, A.R. and Gronowicz, G. A. (1995) Immunogold localization of beta 1-integrin in bone: effect of glucocorticoids and insulin-like growth factor I on integrins and osteocyte formation. Journal of Histochemistry and Cytochemistry 43 1085–96

    Google Scholar 

  65. Goldsmith, P. (1994) Plant stems: A possible model system for the transduction of mechanical information in bone modeling. Bone 15 249–250

    Article  Google Scholar 

  66. Goldstein, S.A., Matthews, L.S., Kuhn, J.L., et al.(1991) Trabecular bone remodeling: an experimental model. Journal of Biomechanics 24(Suppl. 1) 135–150

    Google Scholar 

  67. Gourdie, R. and Green, C. (1993) The incidence and size of gap junctions between bone cells in rat calvarial. Anatomical Embryology 187 343–352

    Google Scholar 

  68. Green, P. B. (1994) Connecting gene and hormone action to form, pattern and organogenesis: biophysical transductions. Journal of Experimental Botany 45(Special Issue) 1775–1788

    Google Scholar 

  69. Green, S. S. and Triffit, T. (1997) The animal brain as a quantal computer. Journal of Theoretical Biology 184 385–403

    Article  Google Scholar 

  70. Gross, T.S., Edwards, J.L., et.al. (1997) Strain gradients correlate with sites of periosteal bone formation. Journal of Bone and Mineral Research 12 982–8

    Google Scholar 

  71. Grossberg, S. (1988) Neural Networks and Artificial Intelligence MIT Press, Cambridge, MA

    Google Scholar 

  72. Guggino, S.E., LaJeunesse, D., Wagner, J.A., et al. (1989) Bone remodeling signaled by a dihydropyridine-and phenylalkylamine-sensitive calcium channel. Proceedings of the National Academy of Science 8 2957–2960

    Google Scholar 

  73. Hackney, C.M. and Furness, D.N. (1995) Mechanotransduction in vertebrate hair cells: structure and function of the stereociliary bundle. American Journal of Physiology 268 (Cell Physiol.37) C1–C13

    Google Scholar 

  74. Hamill, O.P. and McBride, Jr., D.W.(1995) Mechanoreceptive membrane channels. American Scientist 83 30–37

    Google Scholar 

  75. Hamill, O.P. and McBride,Jr., D.W. (1996) The pharmacology of mechanogated membrane ion channels. Pharmacological Reviews 48 231–248

    Google Scholar 

  76. Harrigan, T.P. and Hamilton, J.J. (1993) Bone strain sensation via transmembrane potential changes in surface osteoblasts: loading rate and microstructural implications. Journal of Biomechanics 26 183–200

    Google Scholar 

  77. Harter, L.V., Hruska, K.A. and Duncan, R.L. (1995) Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation. Endocrinology 136 528–535

    Article  Google Scholar 

  78. Haskin, C. and Cameron, I. (1993) Physiological levels of hydrostatic pressure alter morphology and organization of cytoskeletal and adhesion proteins in MG-63 osteosarcoma cells. Biochemical Cell Biology 71 27–35

    Google Scholar 

  79. Hecker, M., Mülsch, A., Bassenge, E., and Busse, R. (1993) Vasoconstriction and increased flow: two principal mechanisms of shear stress-dependent endothelial autocoid release. American Journal of Physiology 265 (Heart Cir. Physiol. 34) H828–H833

    Google Scholar 

  80. Hert, J., Liskova, M. and Landgrot, B. (1969) Influence of the long-term continuous bending on the bone. An experimental study on the tibia of the rabbit. Folia Morphologia 17 389–399

    Google Scholar 

  81. Hert, J., Liskova, M. and Landa, J. (1971) Reaction of bone to mechanical stimuli. Part I. Continuous and intermittent loading of tibia in rabbit. Folia Morphologia 19 290–300

    Google Scholar 

  82. Hert, J., Pribylova, E. and Liskova, M. (1972) Reaction of bone to mechanical stimuli. Part 3. Microstructure of compact bone of rabbit tibia after intermittent loading. Acta anatomica 82 218–230

    Google Scholar 

  83. Heylighen. F. (1997) Publications on complex, evolving systems: A citation based survey. Complexity 2 31–36

    Article  MathSciNet  Google Scholar 

  84. Hinton, G.E. and Anderson, J.A. (1989) Parallel Models of Associative Memory Lawrence Erlbaum Assoc Publ, Hillsdale, N.J.

    Google Scholar 

  85. Hughes, D.E., Salter, D.M., Dedhar, S., et al. (1993) Integrin expression in human bone. Journal of Bone and Mineral Research 8 527–533

    Google Scholar 

  86. Huiskes, R., Weinans, H.J., Grootenboer, H.J., et al. (1987) Adaptive bone remodeling theory applied to prosthetic-design analysis. Journal of Biomechanics 20 1135–1150

    Google Scholar 

  87. Hung, C.T., Pollack, S.R., Reilly, T.M., and Brighton, C.T. (1995) Real-time calcium response of cultured bone cells to fluid flow. Clinical Orthopedics and Related Research 313 256–269

    Google Scholar 

  88. Ingber, D.E. (1998) Cellular basis of mechanotransduction. Biology Bulletin 194 323–327

    Google Scholar 

  89. Jacobs, R., Ed. (1998) Osseoperception Catholic University, Leuven

    Google Scholar 

  90. Jan, L.Y. and Jan, Y.N. (1992) Tracing the roots of ion channels. Cell 69 715–718

    Article  Google Scholar 

  91. Janmey, P.A. (1998) The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiological Review 78 763–774

    Google Scholar 

  92. Jaworski, Z.F.G., Liskova Kiar, M. and Uhthoff, H.K. (1980) Effect of long term immobilization on the pattern of bone loss in older dogs. Journal of Bone and Joint Surgery 62B 104–110

    Google Scholar 

  93. Jeansonne, B.G., Feagin, F.F., et al. (1979) Cell-to-cell communication of osteoblasts. Journal of Dental Research 58 1415–1423

    Google Scholar 

  94. Johnson, M.W., Chakkalakal, D.A., Harper, R.A., et al.(1982) Fluid flow in bone. Journal of Biomechanics 11 881–885

    Google Scholar 

  95. Jones, D.B. and Bingmann, D. (1991) How do osteoblasts respond to mechanical stimulation? Cells and Materials 1 329–340

    Google Scholar 

  96. Jones, S.J., Gray, C., Sakamaki, H., et al.(1993) The incidence and size of gap junctions between bone cells in rat calvaria. Anatomical Embryology 187 343–352

    Google Scholar 

  97. Junge, D. (1998) Oral Sensorimotor Function Medico Dental Media, International, Inc., Pacific, MO

    Google Scholar 

  98. Kam, E. and Hodgins, M. B. (1992) Communication compartments in hair follicles and their implication in differentiative control. Development 114 389–393

    Google Scholar 

  99. Kamiya, A., Bukhari, R., and Togawa, T. (1984) Adaptive regulation of wall shear stress optimizing vascular tree function. Bulletin of Mathematical Biology 46 127–137

    Article  Google Scholar 

  100. Kashimori, Y., Funakubo, H. and Kambara, T. (1998) Effect of syncytium structure of receptor systems on stochastic resonance by chaotic potential fluctuation. Biophysical Journal 75 1700–1711

    Google Scholar 

  101. Kernan, M., Cowan, D., Zuker, C. (1994) Genetic dissection of mechanoreception-defective mutations. Drosophila Neuron 12 1195–1206

    Google Scholar 

  102. Keynes, R.D. (1994) The kinetics of voltage-gated ion channels. Quarterly Review of Biophysics 27 339–434

    Google Scholar 

  103. King, G.J. and Holtrop, M.E. (1975) Actin-like filaments in bone cells of cultured mouse calvaria as demonstrated by binding to heavy meromyosin. Journal of Cell Biology 66 445–451

    Article  Google Scholar 

  104. Klein-Nulend, J., Van der Plas, A., Semeins, C.M., Ajubi, N.E., Frangos, J.A., Nijweide, P.J., and Burger, E.H. (1995a) Sensitivity of osteocytes to biomechanical stress in vitro. FASEB Journal 9 441–445

    Google Scholar 

  105. Klein-Nulend, J., Semeins, C.M., Ajubi, N.E., Nijweide, P.J., and Burger, E.H. (1995b) Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts — correlation with prostaglandin upregulation. Biochemican and Biophysics Research Communication 217 640–648

    Google Scholar 

  106. Kodoma, R. and Eguchi, G.(1994) The loss of gap junctional cell-to-cell communication is coupled with dedifferentiation of retinal pigmented epithelial cells in the course of transdifferentiation into the lens. International Journal of Developmental Biology 38 357–364

    Google Scholar 

  107. Krstic, R.V (1978) Die Gewebe des Menschen und der Saugetiere Springer Verlag, Berlin

    Google Scholar 

  108. Kufahl, R.H. and Saha, S. (1990) A theoretical model for stress-generated fluid flow in the canaliculi-lacunae network in bone tissue. Journal of Biomechanics 23 171–180

    Article  Google Scholar 

  109. Kupfermann, I. (1992) Neural networks: they do not have to be complex to be complex. Behavioral Brain Science 15 767–768

    Google Scholar 

  110. Lanyon, L.E., Goodship, A.E., Pye, C.J., MacFie, J.H. (1982) Mechanically adaptive bone remodeling. Journal of Biomechanics 15 147–154

    Article  Google Scholar 

  111. Lanyon, L.E. (1984) Functional strain as a determinant for bone remodeling. Calcified Tissue International 36 S56–S61

    Google Scholar 

  112. Lanyon, L.E. (1993) Osteocytes, strain detection, bone modeling and remodeling. Calcified Tissue International 53(Suppl 1) S102–S106

    Google Scholar 

  113. Lecanda, F., Towler, D.A., et.al.(1998) Gap junctional communication modulates gene expression in osteoblastic cells. Molecular Biology of the Cell 9 2249–58

    Google Scholar 

  114. Lee, D.H., Frean, S.P., Lees, P. et al. (1998) Dynamic mechanical compression influences nitric oxide by articular chrondrocytes. Biochemical and. Biophysics Research Communication 251 580–585

    Google Scholar 

  115. Machwate, M., Jullienne, A., Moukhtar, M., et al. (1995) Temporal variation of c-fos protot-ocogene expression during osteoblasts differentiation and osteogenesis in developing rat bone. Journal of Cell Biochemistry 57 62–70

    Google Scholar 

  116. Marotti, G., Ferretti, M., Muglia, M. A., et al. (1992) A quantitative evaluation of osteoblast-osteocyte relationships on growing endosteal surface of rabbit tibiae. Bone 13 363–368

    Article  Google Scholar 

  117. Marotti. G. (1996) The structure of bone tissues and the cellular control of their deposition. Italian Journal of Anatomical Embryology 101 25–7

    Google Scholar 

  118. Martin, R.B. and Burr, D.B. (1982) A hypothetical mechanism for the stimulation of osteonal remodeling by fatigue damage. Journal of Biomechanics 15 137–139

    Google Scholar 

  119. Martin, T.J. and Ng, K.W. (1994) Mechanisms by which cells of the osteoblastic lineage control osteoclast formation and activity. Journal of Cellular Biochemistry 56 357–366

    Article  Google Scholar 

  120. Martino, R.L., Johnson, C.A., Suh, E.B., et al.(1994) Parallel computing in biomedical research. Science 265 902–907

    Google Scholar 

  121. Massass, R., Bingmann, D., Korenstein, R., et al. (1990) Membrane potential of rat calvaria bone cells: dependence on temperature. Journal of Cell Physiology 144 1–11

    Google Scholar 

  122. McClelland, J.L. and Rumelhart, D.E. (1987) Parallel Distributed Processing. Psychological and Biological Models. Vol. 2 M.I.T. Press, Cambridge, MA

    Google Scholar 

  123. McLeod, K.J. and Rubin, C.T. (1992) The effect of low-frequency electrical fields on osteogenesis. Journal of Bone and Joint Surgery 74A 920–929

    Google Scholar 

  124. McLeod, K.J., Donahue, H.J., et al. (1993) Electric fields modulate bone cell function in a density-dependent manner. Journal of Bone and Mineral Research 8 977–984

    Google Scholar 

  125. McLeod, K.J., Rubin, C.T., et.al.(1998) Skeletal cell stresses and bone adaptation. American Journal of Medical Science 316 176–183

    Google Scholar 

  126. McMahon, T.A. (1984) Muscles, Reflexes, and Locomotion Princeton University Press, Princeton, New Jersey

    Google Scholar 

  127. Meazzini, M.C., Toma, C.D., et.al. (1998) Osteoblast cytoskeletal modulation in response to mechanical strain in vitro. Journal of Bone and Joint Surgery 16 170–180

    Google Scholar 

  128. Mi. L.Y., Basu, M., Fritton, S.P., Cowin, S.C. (2004a) Analysis of avian bone response to mechanical loading: Part One: Distribution of bone fluid shear stress induced by bending and axial loading, in preparation.

    Google Scholar 

  129. Mi. L.Y., Basu, M., Fritton, S.P., Cowin, S.C. (2004b) Analysis of avian bone response to mechanical loading: Part Two:, in preparation.

    Google Scholar 

  130. Minkoff, R., Rundus, V.R., Parker, S.B., et al. (1994) Gap junction proteins exhibit early and specific expression during intramembranous bone formation in the developing chick mandible. Anatomical Embryology 190 231–241

    Google Scholar 

  131. Minkoff, R., Bales, E.S., et.al. (1999) Antisense oligonucleotide blockade of connexin expression during embryonic bone formation: Evidence of functional compensation within a multigene family. Developmental Genetics 24 43–56

    Article  Google Scholar 

  132. Montgomery, R.J., Sutker, B.D., et al. (1988) Interstitial fluid flow in cortical bone. Microvascular Research 23 188–200

    Google Scholar 

  133. Moreno, A.P., Rook, M.B., et al. (1994) Gap junction channels: distinct voltage-sensitive and-insensitive conductance states. Biophysics Journal 67 113–119

    Google Scholar 

  134. Morris, C.E. (1990) Mechanosensitive ion channels. Journal of Membrane Biology 113 93–107

    Google Scholar 

  135. Moss, M.L., Young, R. (1960) A functional approach to craniology. American Journal of Physical Anthropology 18 81–92

    Google Scholar 

  136. Moss, M.L. (1962) The Functional Matrix. Vistas in Orthodontics. Editors B. Kraus and R. Reidel 85–98, Lea and Febiger, Phila

    Google Scholar 

  137. Moss, M.L. (1968) The primacy of functional matrices in orofacial growth. Transactions of the British Society for the Study of Orthodontal Dental Practice 19 65–73

    Google Scholar 

  138. Moss, M.L. (1969) A theoretical analysis of the functional matrix. Acta Biotheoretica 18 195–202

    Google Scholar 

  139. Moss, M.L. (1978) The Muscle-bone Interface: An Analysis of a Morphological Boundary Center for Human Growth and Development, Ann Arbor, Michigan

    Google Scholar 

  140. Moss, M.L. (1991a) Bone as a connected cellular network: modeling and testing. Topics in Biomedical Engineering. Editor G. Ross 117–119. Pergamon Press, New York

    Google Scholar 

  141. Moss, M.L (1991b) Alternate mechanisms of bone remodeling: their representation in a connected cellular network model. Annals of Biomedical Engineering 19 636

    Google Scholar 

  142. Moss, M.L. (1997a) The functional matrix hypothesis revisited. l.The role of mechanotransduction. American Journal of Orthodontal and Dentofacial Orthopedics 112 8–11

    Google Scholar 

  143. Moss, M.L. (1997b) The functional matrix hypothesis revisited. 2. The role of an osseous connected cellular network. American Journal of Orthodontal and Dentofacial Orthopedics 112 221–6

    Google Scholar 

  144. Moss, M.L. (1997c) The functional matrix hypothesis revisited. 3. The genomic thesis. American Journal of Orthodontal and Dentofacial Orthopedics 112 338–42

    Google Scholar 

  145. Moss, M.L. (1997d) The functional matrix hypothesis revisited. 4. The epigenetic antithesis and the resolving synthesis. American Journal of Orthodontal and Dentofacial Orthopedics 112 410–7

    Google Scholar 

  146. Moss, M.L. and Salentijn, L. (1969a) The primary role of the functional matrices in facial growth. American Journal of Orthodontics 55 566–577

    Article  Google Scholar 

  147. Moss, M.L., Salentijn, L. (1969b) The capsular matrix. American Journal of Orthodontics 56 474–490

    Article  Google Scholar 

  148. Moss-Salentijn, L. (1992) The Human Tactile System. em Advanced Tactile Sensing for Robotics. Editor H.R. Nicholls Chapter4 World Scientific Publishing, Singapore

    Google Scholar 

  149. Nakamura, H. (1995) Localization of CD44, the hyaluronate receptor, on the plasma membrane of osteocytes and osteoclasts in rat tibiae. Cell Tissue Research 280 225–233

    Google Scholar 

  150. Nowak, R. (1992) Cells that fire together, wire together. Journal of NIH Research 4 60–64

    Google Scholar 

  151. O’Connor, J.A., Lanyon, L.E. and MacFie, H. (1982) The influuence of strain rate on adaptive bone remodeling. Journal of Biomechanics 15 767–781

    Google Scholar 

  152. Olsson, S. and Hanson, B.S. (1995) Action potential-like activity found in fungal mycelia is sensitive to stimulation. Naturwissch. 82 30–31

    Google Scholar 

  153. Otter, M.W., Palmieri, V.R., Wu, D.D., et al. (1992) A comparative analysis of streaming potentials In Vivo and In Vitro. Journal of Orthopaedic Research 10 710–719

    Article  Google Scholar 

  154. Otter, M.W., McLeod, K.J., Rubin, C.T. (1998) Effects of electromagnetic fields in experimental fracture repair. Clinical Orthopedic Related Research 355S S90–S104

    Google Scholar 

  155. Owan, M. and Triffitt, J.T. (1976) Extravascular albumin in bone tissue. Journal of Physiology 257 293–307

    Google Scholar 

  156. Owan, I., Burr, D.B., et.al. (1997) Mechanotransduction in bone:osteoblasts are more responsive to fluid forces than mechanical strain. American Physiological Society 273 C810–15

    Google Scholar 

  157. Parfitt, A.M. (1994) Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. Journal of Cell Biochemistry 55 273–286

    Google Scholar 

  158. Petrov, A.G. and Usherwood, P.N. (1994) Mechanosensitivity of cell membranes. Ion channels, lipid matrix and cytoskeleton. European Biophysics 23 1–19

    Google Scholar 

  159. Piekarski, K. and Munro, M. (1977) Transport mechanism operating between blood supply and osteocytes in long bones. Nature 269(5623) 80–82

    Article  Google Scholar 

  160. Pitsillides, A.A., Rawlinson, S.C.F., et.al. (1995) Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling? FASEB Journal 9 1614–22

    Google Scholar 

  161. Pollack, S.R., Petrov, N., et al. (1984) An anatomical model for streaming potentials in osteons. Journal of Biomechanics 17 627–636

    Article  Google Scholar 

  162. Ravelsloot, J.H., van Houten, R.J., Ypey, D.L., et al. (1991) High-conductance anion channels in embryonic chick osteogenic cells. Journal of Bone and Mineral Research 6 355–363

    Google Scholar 

  163. Reich, K.M., Gay, C.V., Frangos, J.A. (1990) Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. Journal of Cellular Physiology 143, 100–104

    Article  Google Scholar 

  164. Richardson, A. and Parsons, J.T. (1995) Signal transduction through integrins: A central role for focal adhesion. Bioessays 17 229–236

    Article  Google Scholar 

  165. Rodan, G. (1992) Introduction to bone biology. Bone 13 S3–S6

    Google Scholar 

  166. Rodrequez, A.A., Agre, J.C., et al.(1993) Acoustic myography compared to electromyography during isometric fatigue and recovery. Muscle and Nerve 16 188–192

    Google Scholar 

  167. Rubin, C.T. and Lanyon, L.E. (1984) Regulation of bone formation by applied dynamic loads. Journal of Bone and Joint Surgery 66A 397–415

    Google Scholar 

  168. Rubin, C. T. and Lanyon, L.E. (1987) Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive bone remodeling. Journal of Orthopedic Research 5 300–310

    Google Scholar 

  169. Rubin, C.T., Donahue, H.J., et al. (1993) Optimization of electric field parameters for the control of bone remodeling: exploitation of an indigenous mechanism for the prevention of osteopenia. Journal of Bone and Mineral Research 8(Suppl.2) S573–S581

    Google Scholar 

  170. Rubinacci, A., Villa, I., et al. (1998) Osteocyte-bone lining cell system at the origin of steady ionic current in damaged amphibian bone. Calcified Tissue International 63 331–339

    Article  Google Scholar 

  171. Sachs, F. (1986) Biophysics of mechanoreception. Membrane Biochemistry 6 173–195

    MathSciNet  Google Scholar 

  172. Sachs, F. (1988) Mechanical transduction in biological systems. CRC Review of Biomedical Engineering 16 141–169

    Google Scholar 

  173. Sackin, H. (1995) Mechanosensitive channels. Annual Review of Physiology 57 333–353

    Google Scholar 

  174. Sauren, Y.M.H.F., Mieremet, R.H.P., Groot, C.G. and Scherft, J.P. (1992) An electron microscopic study on the presence of proteoglycans on the mineralized matrix of rat and human compact lamellar bone. The Anatomical Record 232 36–44

    Article  Google Scholar 

  175. Sadoshima, J., Takahashi, T., et al. (1992) Roles of mechano-sensitive ion channels, cytoskeleton and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proceedings of the National Academy of Science 89 9905–9909

    Google Scholar 

  176. Salter, D.M., Robb, J.E. and Wright, M.O. (1997) Electrophysiological responses of human bone cells to mechanical stimulation: evidence for specific integrin function in mechanotransduction. Journal of Bone and Mineral Research 12 1133–1141

    Google Scholar 

  177. Salzstein, R.A., Pollack, S.R., et al. (1987) Electromechanical potentials in cortical bone-I. A continuum approach. Journal of Biomechanics 20 261–270

    Google Scholar 

  178. Salzstein, R.A. and Pollack, S.R. (1987) Electromechanical potentials in cortical bone-II. Experimental analysis. Journal of Biomechanics 20 271–280

    Google Scholar 

  179. Saski, N. and Odajima, S. (1996) Elongation mechanism of collagen fibrils and forcestrain relations of tendon at each level of structural hierarchy. Journal of Biomechanics 29 1131–1136

    Google Scholar 

  180. Scott, G.C. and Korostoff, E. (1990) Oscillatory and step response electromechanical phenomena in human and bovine bone. Journal of Biomechanics 23 127–143

    Article  Google Scholar 

  181. Schaul, N. (1998) The fundamental neural mechanisms of electroencephalography. Electroencephalography and clinical neurophysiology 106 101–107

    Article  Google Scholar 

  182. Schirrmacher, K., Schmitz, I., et al. (1992) Characterization of gap junctions between osteoblast-like cells in culture. Calcified Tissue International 51 285–290

    Article  Google Scholar 

  183. Schirrmacher, K., Brummer, F., et al. (1993) Dye and electric coupling between osteoblasts-like cells in culture. Calcified Tissue International 53 53–60

    Article  Google Scholar 

  184. Shafik, A. (1998) Electro-oophorogram: a preliminary study of the electrical activity of the ovary. Gyneol Obstet Invest 46 105–110

    Google Scholar 

  185. Shapiro, F., Cahill, C., et al.(1995) Transmission electron microscopic demonstration of vimentin in rat osteoblast and osteocytic cell bodies and processes using the immunoglod technique. Anatomical Record 241 39–48

    Article  Google Scholar 

  186. Shyy, J.Y. and Chien, S. (1997) Role of integrins in cellular responses to mechanical stress and adhesion. Current Opinion in Cell Biology 9 707–713

    Article  Google Scholar 

  187. Spray, D.C. (1994) Physiological and pharmacological regulation of gap junction channels. Molecular Mechanisms of Epithelial Cell Junctions: From Development to Disease. Editor S. Chi 195–215. RG Landes, Austin

    Google Scholar 

  188. Spray, D.C. (1998) Gap junction proteins; where do they live and how do they die? Circulation Research 83 679–681

    Google Scholar 

  189. Tanaka-Kamioka, K. Kamioka, H. Ris, H. and Lim, S.S. (1998) Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections. Journal of Bone and Mineral Research 13(10) 1555–1568

    Google Scholar 

  190. Tanaka, T. and Sakano, A. (1985) Differences in permeability of microperoxidase and horseradish peroxidase into alveolar bone of developing rats. Journal of Dental Research 64 870–876

    Google Scholar 

  191. Uhthoff, H.K. and Jaworski, Z.F.G. (1978) Bone loss in response to long term immobilization. Journal of Bone and Joint Surgery 60B 420–429

    Google Scholar 

  192. Uitto, V.J. (1991) Extracellular matrix molecules and their receptors: an overview with special emphasis on periodontal tissues. Crit Review of Oral Biological Medicine 2 323–354

    Google Scholar 

  193. Wang, L., Fritton, S.P., et al. (1999) Fluid pressure relaxation depends upon osteonal microstructure: modeling of an oscillatory bending experiment. Journal of Biomechanics 32 663–672

    Google Scholar 

  194. Wang, N., Butler, J.P., Ingber, D.E. (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260 1124–1127

    Google Scholar 

  195. Wang, Z.L. and Kang, Z.C. (1998) Functional and Smart Materials Plenum Press, New York

    Google Scholar 

  196. Wasserman, P.D. (1989) Neural Computation. Theory and Practice van Nostrand Reinhold, New York

    Google Scholar 

  197. Watanabe, H., Miake, K., Sasaki, J. (1993) Immunohistochemical study of the cytoskeleton of osteoblasts in the rat calvaria. Acta anatomica 147 14–23

    Google Scholar 

  198. Weinbaum, S., Cowin, S.C., Zeng, Y. (1991) A model for the fluid shear stress excitation of membrane ion channels in osteocytic processes due to bone strain. Advances in Bioengineering. Editor R. Vanderby, Jr. 317–320. American Society of Mechanical Engineers, New York

    Google Scholar 

  199. Weinbaum, S., Cowin, S.C., Zeng, Y. (1994) Excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. Journal of Biomechanics 27 339–360

    Article  Google Scholar 

  200. Weinger, J.M. and Holtrop, M.E. (1974) An Ultrastructural study of bone cells: the occurrence of microtubules, microfilaments and tight junctions. Calcified Tissue Research 14 15–29

    Article  Google Scholar 

  201. Wildron, D.C., Thain, J.F., et al. (1992) Electrical signaling and systematic proteinase inhibitor induction in the wounded plant. Nature 360 62–65

    Google Scholar 

  202. Williams, J.L., Iannotti, J.P., Ham, A., Bleuit, J., and Chen, J.H. (1994) Effects of fluid shear stress on bone cells. Biorheology 31 163–170

    Google Scholar 

  203. Wilson, D.A., Sullivan, R.M. (1998) Peripheral mechanisms.of smell The Scientific Basis of Eating. Editor R.W.A. Linden 9 29–39. Karger, Basel

    Google Scholar 

  204. Wolff, J. (1870) Uber der innere Architektur der Knochen und ihre Bedeutung fur die Frage vom Knochenwachstum. em Arch. path. Anat. Physio. Med., Virchovs Arch 50 389–453

    Google Scholar 

  205. Wolff, J. (1892) em Das Gesetz der Transformation der Knochen Hirschwald, Berlin

    Google Scholar 

  206. Wolff, J. (1986) The Law of Bone Remodelling Springer, Berlin

    Google Scholar 

  207. Wriggers, W., Milligan, R.A., Schulter, K. et al. (1998) Self-organized neural networks bridge the biomolecular gap. Journal of Molecular Biology 284 1247–54

    Article  Google Scholar 

  208. Yanagishita, M. (1993) Function of proteoglycans in the extracellular matrix. em Acta Path Jap 4 283–293

    Google Scholar 

  209. You, L., Cowin, S.C., Schaffler, M. and Weinbaum, S. (2001) A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. em Journal of Biomechanics 34 1375–1386

    Google Scholar 

  210. You, L., Weinbaum, S., Cowin, S.C., and Schaffler, M.B. (2004) Ultrastructure of the osteocyte process. Anal. Rec. in preparation

    Google Scholar 

  211. Zeng, Y., Cowin, S.C., Weinbaum, S. (1994) A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon. Annals of Biomedical Engineering 22 280–292

    Google Scholar 

  212. Zhang, D., Cowin, S.C., and Weinbaum, S. (1997) Electrical signal transmission and gap junction regulation in bone cell network: a cable model for an osteon. Annals of Biomedical Engineering 25 357–374

    Google Scholar 

  213. Zhang, D., Cowin, S.C., and Weinbaum, S. (1998a) Electrical signal transmission in a bone cell network: The influence of a discrete gap junction. Annals of Biomedical Engineering. 26 644–659

    Google Scholar 

  214. Zhang, D., Weinbaum, S and Cowin, S.C. (1998b) On the Calculation of Bone Pore Water Pressure due to Mechanical Loading. International Journal of Solids and Structures 35 4981–4997

    Google Scholar 

  215. Zhang, D., Weinbaum, S and Cowin, S.C. (1998c) Estimates of the peak pressures in the bone pore water. em Journal of Biomechanical Engineering 120 697–703

    Google Scholar 

  216. Zorntzer, S.F., Davis, J., Lau, C. (1990) em An Introduction to Neural and Electronic Networks Academic Press, San Diego

    Google Scholar 

  217. Zuker, C.S., Ranganathan, R. (1999) The path to specificity. Science 283 650–651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Cowin, S.C. (2005). Bones Have Ears:. In: Gladwell, G.M.L., Huyghe, J., Raats, P.A., Cowin, S.C. (eds) IUTAM Symposium on Physicochemical and Electromechanical Interactions in Porous Media. Solid Mechanics and Its Applications, vol 125. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3865-8_1

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3865-8_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3864-8

  • Online ISBN: 978-1-4020-3865-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics