Skip to main content

Modelling of Composite and Sandwich Plates by a Trigonometric Layerwise Theory and Multiquadrics

  • Conference paper
Sandwich Structures 7: Advancing with Sandwich Structures and Materials

Abstract

In this paper we use a trigonometric layerwise deformation theory for modelling symmetric composite plates. We use a meshless discretization method based on global multiquadric radial basis functions. The results obtained are compared with solutions derived from other models and numerical techniques. The results show that the use of trigonometric layerwise deformation theory discretized with multiquadrics provides very good solutions for composite plates and excellent solutions for sandwich plates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.M. Whitney and N.J. Pagano. Shear deformation in heterogeneous anisotropic plates. ASME J. of Appl. Mech., 37:1031–1036, 1970.

    MATH  Google Scholar 

  2. E. Reissner. A consistment treatment of transverse shear deformations in laminated anisotropic plates. AIAA J., 10(5):716–718, 1972.

    Article  Google Scholar 

  3. J.N. Reddy. Energy and Variational Methods in Applied Mechanics. John Wiley, New York, 1984.

    MATH  Google Scholar 

  4. C.T. Sun. Theory of laminated plates. J. of Applied Mechanics, 38:231–238, 1971.

    MATH  Google Scholar 

  5. J.M. Whitney and C.T. Sun. A higher order theory for extensional motion of laminated anisotropic shells and plates. J. of Sound and Vibration, 30:85–97, 1973.

    MATH  Google Scholar 

  6. J.N. Reddy. A simple higher-order theory for laminated composite plates. J. of Applied Mechanics, 51:745–752, 1984.

    MATH  Google Scholar 

  7. M. Di Sciuva. An improved shear-deformation theory for moderately thick multilayered shells and plates. J. of Applied Mechanics, 54:589–597, 1987.

    MATH  Google Scholar 

  8. H. Murakami. Laminated composite plate theory with improved in-plane responses. Journal of Applied Mechanics, 53:661–666, 1986.

    MATH  Google Scholar 

  9. J.G. Ren. A new theory of laminated plate. Composite Science and Technology, 26:225–239, 1986.

    Article  Google Scholar 

  10. A.J.M. Ferreira. Analysis of composite plates using a layerwise shear deformation theory and multiquadrics discretization. Mechanics of Advanced Materials and Structures, 2004, to appear.

    Google Scholar 

  11. D.H. Robbins and J.N. Reddy. Modelling of thick composites using a laminate layerwise theory. Int. J. Num. Meth. Eng., 36:655–677, 1993.

    Article  MATH  Google Scholar 

  12. E. Carrera. C0 reissner-mindlin multilayered plate elements including zig-zag and interlaminar stress continuity. International Journal of Numerical Methods in Engineering, 39:1797–1820, 1996.

    MATH  Google Scholar 

  13. H. Arya, R.P. Shimpi, and N.K. Naik. A zigzag model for laminated composite beams. Composite structures, 56:21–24, 2002.

    Article  Google Scholar 

  14. R.P. Shimpi and A.V. Ainapure. A beam finite element based on layerwise trigonometric shear deformation theory. Composite structures, 53:153–162, 2001.

    Article  Google Scholar 

  15. R.L. Hardy. Multiquadric equations of topography and other irregular surfaces. Geophys. Res., 176: 1905–1915, 1971.

    Google Scholar 

  16. R.L. Hardy. Theory and applications of the multiquadric-biharmonic method: 20 years of discovery. Computers Math. Applic., 19(8/9):163–208, 1990.

    MathSciNet  MATH  Google Scholar 

  17. E.J. Kansa. Multiquadrics— a scattered data approximation scheme with applications to computational fluid dynamics. i: Surface approximations and partial derivative estimates. Comput. Math. Appl., 19(8/9): 127–145, 1990.

    MathSciNet  MATH  Google Scholar 

  18. E.J. Kansa. Multiquadrics— a scattered data approximation scheme with applications to computational fluid dynamics. ii: Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl., 19(8/9):147–161, 1990.

    MathSciNet  MATH  Google Scholar 

  19. A.J.M. Ferreira. A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates. Composite Structures, 59:385–392, 2003.

    Article  Google Scholar 

  20. A.J.M. Ferreira. Thick composite beam analysis using a global meshless approximation based on radial basis functions. Mechanics of Advanced Materials and Structures, 10:271–284, 2003.

    Article  Google Scholar 

  21. A.J.M. Ferreira, C.M.C. Roque, and P.A. L.S. Martins. Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method. Composites:Part B, 34:627–636, 2003.

    Article  Google Scholar 

  22. A.J.M. Ferreira, C.M.C. Roque, and R.M.N. Jorge. Analysis of composite plates by trigonometric shear deformation theory and multiquadrics. submitted, 2004.

    Google Scholar 

  23. G. Akhras, M.S. Cheung, and W. Li. Finite strip analysis for anisotropic laminated composite plates using higher-order deformation theory. Computers & Structures, 52(3):471–477, 1994.

    Article  MATH  Google Scholar 

  24. G. Akhras, M.S. Cheung, and W. Li. Static and vibrations analysis of anisotropic laminated plates by finite strip method. Int. J. Solids Struct, 30(22):3129–3137, 1993.

    MATH  Google Scholar 

  25. J.N. Reddy. A simple higher-order theory for laminated composite plates. J. Appl. Mech., 51: 745–752, 1984.

    Article  MATH  Google Scholar 

  26. N.J. Pagano. Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater, 4:20–34, 1970.

    Google Scholar 

  27. S. Srinivas. A refined analysis of composite laminates. J. Sound and Vibration, 30:495–507, 1973.

    MATH  Google Scholar 

  28. B.N. Pandya and T. Kant. Higher-order shear deformable theories for flexure of sandwich plates finite element evaluations. Int. J. Solids and Structures, 24:419–451, 1988.

    Article  Google Scholar 

  29. A.J.M. Ferreira and J.T. Barbosa. Buckling behaviour of composite shells. Composite Structures, 50:93–98, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Roque, C.M., Ferreira, A.J., Jorge, R.M. (2005). Modelling of Composite and Sandwich Plates by a Trigonometric Layerwise Theory and Multiquadrics. In: Thomsen, O., Bozhevolnaya, E., Lyckegaard, A. (eds) Sandwich Structures 7: Advancing with Sandwich Structures and Materials. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3848-8_23

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3848-8_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3444-2

  • Online ISBN: 978-1-4020-3848-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics