Skip to main content

Polyploidy, evolutionary opportunity, and crop adaptation

  • Chapter
Genetics of Adaptation

Part of the book series: Georgia Genetics Review III ((GEGR,volume 3))

Abstract

The finding that even the smallest of plant genomes has incurred multiple genome-wide chromatin duplication events, some of which may predate the origins of the angiosperms and therefore shape all of flowering plant biology, adds new importance to the molecular analysis of polyploidization/diploidization cycles and their phenotypic consequences. Early clues as to the possible phenotypic consequences of polyploidy derive from recent QTL mapping efforts in a number of diverse crop plants of recent and well-defined polyploid origins. A small sampling examples of the role(s) of polyploidy in conferring crop adaptation from human needs include examples of (1) dosage effects of multiple alleles in autopolyploids, and (2) ‘intergenomic heterosis’ conferring novel traits or transgressive levels of existing traits, associated with merging divergent genomes in a common allopolyploid nucleus. A particularly interesting manifestation of #2 is the evolution of complementary alleles at corresponding (‘homoeologous’) loci in divergent polyploid taxa derived from a common ancestor. Burgeoning genomic data for both botanical models and major crops offer new avenues for investigation of the molecular and phenotypic consequences of polyploidy, promising new insights into the role of this important process in the evolution of botanical diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arabidopsis Genome Initiative, 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

    Google Scholar 

  • Anonymous, 1997. Zonal Coordinators Annual Report of All-India Coordinated Cotton Improvement Project.

    Google Scholar 

  • Blanc, G., A. Barakat, R. Guyot, R. Cooke & M. Delseny, 2000. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12: 1093–1101.

    PubMed  Google Scholar 

  • Bowers, J.E., B.A. Chapman, J. Rong & A.H. Paterson, 2003. Unravelling angiosperm chromosome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422: 433–438.

    Article  PubMed  Google Scholar 

  • Boyer, J., 1982. Plant productivity and environment. Science 281: 443–448.

    Google Scholar 

  • D’Hont, A., P.S. Rao, P. Feldmann, L. Grivet, N. Islamfaridi, P. Taylor & J.C. Glaszmann, 1995. Identification and characterization of sugarcane intergeneric hybrids, Saccharum officinarum x Erianthus arundinaceus, with molecular markers and DNA in situ hybridization. Theor. Appl. Genet. 91: 320–326.

    Google Scholar 

  • Eckhardt, N., 2001. A sense of self: the role of DNA sequence elimination in allopolyploidization. Plant Cell 13: 1699–1704.

    PubMed  Google Scholar 

  • Hilu, K.W., 1993. Polyploidy and the evolution of domesticated plants. Am. J. Bot. 80: 1494–1499.

    Google Scholar 

  • Irvine, J.E., 1999. Saccharum species as horticultural classes. Theor. Appl. Genet. 98: 186–194.

    Google Scholar 

  • Jiang, C.X., R.J. Wright, K.M. El-Zik & A. H. Paterson, 1998. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc. Natl. Acad. Sci. USA 95: 4419–4424.

    PubMed  Google Scholar 

  • Kowalski, S.P., T.H. Lan, K.A. Feldmann & A.H. Paterson, 1994. Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved gene order. Genetics 138: 499–510.

    PubMed  Google Scholar 

  • Martin, W., A. Gierl & H. Saudler, 1989. Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339: 46–48.

    Google Scholar 

  • McGrath, J.M., M.M. Jancso & E. Pichersky, 1993. Duplicate sequences with a similarity to expressed genes in the genome of Arabidopsis thaliana. Theor. Appl. Genet. 86: 880–888.

    Google Scholar 

  • Ming, R., S.C. Liu, P.H. Moore, J.E. Irvine & A.H. Paterson, 2001. QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res. 11: 2075–2084.

    PubMed  Google Scholar 

  • Niles, G.A. and C.V. Feaster, 1984. Breeding, pp. 202–229 in Cotton edited by R.J. Kohel & C.F. Lewis. American Society of Agronomy, Madison, WI, USA.

    Google Scholar 

  • Paterson, A.H., Y.R. Lin, Z.K. Li, K.F. Schertz, J.F. Doebley, S.R.M. Pinson, S.C. Liu, J.W. Stansel & J.E. Irvine, 1995. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269: 1714–1718.

    Google Scholar 

  • Paterson, A.H, J.E. Bowers, M.D. Burow, X. Draye, C.G. Elsik, C.X. Jiang, C.S. Katsar, T.H. Lan, Y.R. Lin, R. Ming & R.J. Wright 2000. Comparative genomics of plant chromosomes. Plant Cell 12: 1523–1539.

    PubMed  Google Scholar 

  • Paterson, A.H., Y. Saranga, M. Menz, C.X. Jiang & R. Wright, 2002. QTL Analysis of genotype x environment interactions affecting cotton fiber quality. Theor. Appl. Genet. 106: 384–396.

    PubMed  Google Scholar 

  • Saranga, Y., I. Flash & D. Yakir, 1998. Variation in water-use efficiency and its relation to carbon isotope ratio in cotton. Crop Sci. 38: 782–787.

    Google Scholar 

  • Saranga, Y., M. Menz, C.X. Jiang, R.J. Wright, D. Yakir & A.H. Paterson, 2001. Genomic dissection of genotype x environment interactions conferring adaptation of cotton to arid conditions. Genome Res. 11: 1988–1995.

    PubMed  Google Scholar 

  • Vision, T., D.G. Brown & S.D. Tanksley, 2000. The origins of genomic duplications in Arabidopsis. Science 290: 2114–2117.

    PubMed  Google Scholar 

  • Wendel, J.F., 1989. New World tetraploid cottons contain Old World cytoplasm. Proc. Natl. Acad. Sci. USA 86: 4132–4136.

    Google Scholar 

  • Wendel, J., A. Schnabel & T. Seelanan, 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl. Acad. Sci. USA 92: 280–284.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rodney Mauricio

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Paterson, A.H. (2005). Polyploidy, evolutionary opportunity, and crop adaptation. In: Mauricio, R. (eds) Genetics of Adaptation. Georgia Genetics Review III, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3836-4_17

Download citation

Publish with us

Policies and ethics