Skip to main content

The genetic basis of adaptation: lessons from concealing coloration in pocket mice

  • Chapter
Genetics of Adaptation

Part of the book series: Georgia Genetics Review III ((GEGR,volume 3))

Abstrac

Recent studies on the genetics of adaptive coat-color variation in pocket mice (Chaetodipus intermedius) are reviewed in the context of several on-going debates about the genetics of adaptation. Association mapping with candidate genes was used to identify mutations responsible for melanism in four different populations of C. intermedius. Here, I review four main results (i) a single gene, the melanocortin- l-receptor (Mclr), appears to be responsible for most of the phenotypic variation in color in one population, the Pinacate site; (ii) four or fewer nucleotide changes at Mclr appear to be responsible for the difference in receptor function; (iii) studies of migration-selection balance suggest that the selection coefficient associated with the dark Mc1r allele at the Pinacate site is large; and (iv) different (unknown) genes underlie the evolution of melanism on three other lava flows. These findings are discussed in light of the evolution of convergent phenotypes, the average size of phenotypic effects underlying adaptation, the evolution of dominance, and the distinction between adaptations caused by changes in gene dosage versus gene structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbosa, M.D.F.S., Q.A. Nguyen, V.T. Tchernev, J.A. Ashley, J.C. Detter, S.M. Blaydes, S.J. Brandt, D. Chotai, C. Hodgman, R.C.E. Solari, M. Lovett, & S.F. Kingsmore, 1996. Identification of the homologous beige and Chediak-Higashi-Syndrome genes. Nature 382: 262–265.

    PubMed  Google Scholar 

  • Barsh, G.S., 1996. The genetics of pigmentation: from fancy genes to complex traits. Trend. Genet. 12: 299–305.

    Google Scholar 

  • Benson, S.B., 1933. Concealing coloration among some desert rodents of the southwestern United States. Univ. Calif. Pub. Zool. 40: 1–70.

    Google Scholar 

  • Britten, R.J. & E.H. Davidson, 1969. Gene regulation for higher cells: a theory. Science 165: 349–357.

    PubMed  Google Scholar 

  • Bronner-Fraser, M., 1995. Origins and developmental potential of the neural crest. Exp. Cell Res. 218: 405–417.

    PubMed  Google Scholar 

  • Bultman, S.J., M.L. Klebig, E.J. Michaud, H.O. Sweet, M.T. Davisson, & R.P. Woychik, 1994 Molecular analysis of reverse mutations from nonagouti (a) to black-and-tan (at) and white-bellied agouti (AW) reveals alternative forms of agouti transcripts. Genes Develop. 8: 481–490.

    PubMed  Google Scholar 

  • Charlesworth, B., 1992. Evolutionary rates in partially self-fertilizing species. Am. Nat. 140: 126–148.

    Google Scholar 

  • Charlesworth, B., 1994. The genetics of adaptation: lessons from mimicry. Am. Nat. 144: 839–847.

    Google Scholar 

  • Charlesworth, B., J.A. Coyne & N.H. Barton, 1987. The relative rates of evolution of sex chromosomes and autosomes. Am. Nat. 130: 113–146.

    Google Scholar 

  • Cowen, L.E., J.B. Anderson & L.M. Kohn, 2002. Evolution of drug resistance in Candida albicans. Ann. Rev. Microbiol. 56: 139–165.

    Google Scholar 

  • Daborn, P.J., J.L. Yen, M.R. Bogwitz, G. LeGoff, E. Feil, S. Jeffers, N. Tijet, T. Perry, D. Heckel, P. Batterham et al., 2002. A single P450 allele associated with insecticide resistance in Drosophila. Science 297: 2253–2256.

    PubMed  Google Scholar 

  • Darwin, C., 1859. The Origin of Species by Mean of Natural Selection. John Murray, London.

    Google Scholar 

  • Dice, L.R., 1940. Ecologic and genetic variability within species of Peromyscus. Am. Nat. 74: 212–221.

    Google Scholar 

  • Dice, L.R., 1947. Effectiveness of selection by owls of deer-mice (Peromyscus maniculatus) which contrast in color with their background. Contr. Lab. Vert. Biol., Univ. Michigan 34: 1–20.

    Google Scholar 

  • Dice, L.R. & P.M. Blossom, 1937. Studies of mammalian ecology in southwestern North America with special attention to the colors of desert mammals. Publ. Carnegie Inst. Washington 485: 1–129.

    Google Scholar 

  • Doebley, J., A. Stec & L. Hubbard, 1997. The evolution of apical dominance in maize. Nature 386: 485–488.

    Google Scholar 

  • Dobzhansky, T., 1937. Genetics and the Origin of Species. Columbia University Press, New York.

    Google Scholar 

  • Dobzhansky, T., 1970. Genetics of the Evolutionary Process. Columbia University Press, New York.

    Google Scholar 

  • Enard W., P. Khaitovich, J. Klose, S. Zollner, F. Heissig, P. Giavalisco, K. Nieselt-Struwe, E. Muchmore, A. Varki, R. Ravid, G.M. Doxiadis, R.E. Bontrop & S. Paabo, 2002. Intra-and interspecific variation in primate gene expression patterns. Science 296: 340–343.

    PubMed  Google Scholar 

  • Erickson, C.A., 1993. From the crest to the pheriphery: control of pigment-cell migration and lineage segregation. Pigment Cell Res. 6: 336–347.

    PubMed  Google Scholar 

  • Feng, G.H., T. Bailin, J. Oh & R.A. Spritz, 1997. Mouse pale ear (ep) is homologous to human Hermasky-Pudlak syndrome and contains a rare AT-AC intron. Hum. Mol. Genet. 6: 793–797.

    PubMed  Google Scholar 

  • Fidock, D.A., T. Nomura, A.K. Talley, R.A. Cooper, S.M. Dzekunov, M.T. Ferdig, L.M.B. Ursos, A.B.S. Sidhu, B. Naude, K.W. Deitsch, X.Z. Su, J.C. Wootton, P.D. Roepe & T.E. Wellems, 2000. Mutations in the P-falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell. 6: 861–871.

    PubMed  Google Scholar 

  • Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford.

    Google Scholar 

  • Haag, E.S. & J.R. True, 2001. Perspective: from mutants to mechanisms? Assessing the candidate gene paradigm in evolutionary biology. Evolution 55: 1077–1084.

    PubMed  Google Scholar 

  • Haldane, J.B.S., 1924. A mathematical theory of natural and artificial selection, Part 1. Trans. Camb. Philos. Soc. 23: 19–41.

    Google Scholar 

  • Haldane, J.B.S., 1932. The Causes of Evolution. Longmans, Green & Co, Ltd., New York.

    Google Scholar 

  • Hoekstra, H.E., K.E. Drumm & M.W. Nachman, 2004. Ecological genetics of adaptive color polymorphism in pocket mice: geographic variation in selected and neutral genes. Evolution 58: 1329–1341.

    PubMed  Google Scholar 

  • Hoekstra, H.E. & M.W. Nachman, 2003. Different genes underlie adaptive melanism in different populations of rock pocket mice. Mol. Ecol. 12: 1185–1194.

    PubMed  Google Scholar 

  • Hughes, D., 2003. Exploiting genomics, genetics and chemistry to combat antibiotic resistance. Nat. Rev. Genet. 4: 432–441.

    PubMed  Google Scholar 

  • Jackson, I.J., 1994. Molecular and developmental genetics of mouse coat color. Ann. Rev. Genet. 28: 189–217.

    PubMed  Google Scholar 

  • Jackson, I.J., 1997. Homologous pigmentation mutations in human, mouse and other model organisms. Human Mol. Genet. 6: 1613–1624.

    Google Scholar 

  • Jasieniuk, M., A.L. Brule-Babel & I.N. Morrison, 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44

    Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kondrashov, A.S., S. Sunyaev & F.A. Kondrashov, 2002. Dobzhansky-Muller incompatibilities in protein evolution. Proc. Nat. Acad. Sci. 99: 14878–14883.

    PubMed  Google Scholar 

  • Lack, D.L., 1947. Darwin’s Finches. University Press, Cambridge.

    Google Scholar 

  • Mauricio, R., 2001. Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat. Rev. Genet. 2: 370–381.

    PubMed  Google Scholar 

  • Mayr, E., 1942. Systematics and the Origin of Species. Columbia University Press, New York.

    Google Scholar 

  • Mayr, E., 1963. Animal Species and Evolution. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Merrell, D.J., 1969. The evolutionary role of dominant genes. Genet. Lect. (Oregon State University, Corvalis) 1: 167–194.

    Google Scholar 

  • Nachman, M.W., H.E. Hoekstra & S.L. D’Agostino, 2003. The genetic basis of adaptive melanism in pocket mice. Proc. Nat. Acad. Sci. USA 100: 5268–5273.

    PubMed  Google Scholar 

  • Newton, J.M., A.L. Wilkie, L. He, S.A. Jordan, D.L. Metallinos, N.G. Holmes, I.J. Jackson & G.S. Barsh, 2000. Melanocortin 1 receptor variation in the domestic dog. Mamm. Genome 11: 24–30.

    Google Scholar 

  • Orr, H.A., 1998. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52: 935–949.

    Google Scholar 

  • Orr, H.A. & J.A. Coyne, 1992. The genetics of adaptation: a reassessment. Am. Nat. 140: 725–742.

    Google Scholar 

  • Orr, H.A., 1999. The evolutionary genetics of adaptation: a simulation study. Genet. Res. Camb. 74: 207–214.

    Google Scholar 

  • Orr, H.A. & A.J. Betancourt, 2001. Haldane’s sieve and adaptation from the standing genetic variation. Genetics 157: 875–884.

    PubMed  Google Scholar 

  • Palopoli, M.F. & N.H. Patel, 1996. Neo-Darwinian developmental evolution: can we bridge the gap between pattern and process? Curr. Op. Genet. Dev. 6: 502–508.

    PubMed  Google Scholar 

  • Palumbi, S.R., 2001. Humans as the world’s greatest evolutionary force. Science 293: 1786–1790.

    PubMed  Google Scholar 

  • Prota, G., 1992. Melanins and Melanogenesis. Academic Press Inc., San Diego, CA.

    Google Scholar 

  • Raymond, M., C. Berticat, M. Weill, N. Pasteur & C. Chevillon, 2001. Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation? Genetica 112–113: 287–296.

    PubMed  Google Scholar 

  • Reznick, D.N. & C.K. Ghalambor, 2001. The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetics 112–113: 183–198.

    Google Scholar 

  • Robbins, L.S., J.H. Nadeau, K.R. Johnson, M.A. Kelly, L. Rosellirehfuss, E. Baack, K.G. Mountjoy & R.D. Cone, 1993. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter receptor function. Cell 72: 827–834.

    PubMed  Google Scholar 

  • Silvers, W.K., 1979. The Coat Colors of Mice: A Model for Mammalian Gene Action and Interaction. Springer-Verlag, New York.

    Google Scholar 

  • Stebbins, G.L., Jr., 1950. Variation and Evolution in Plants. Columbia University press, New York.

    Google Scholar 

  • Steel, K.P., D.R. Davidson & I.J. Jackson, 1992. TRP-2/DT, a new early melnoblast marker shows that the steel growth factor (c-kit ligand) is a survival factor. Development 115: 1111–1119.

    PubMed  Google Scholar 

  • Turner, J.R.G., 1981. Adaptation and evolution in Heliconius: a defense of NeoDarwinism. Ann. Rev. Ecol. Syst. 12: 99–121.

    Google Scholar 

  • Vrieling, H., D.M.J. Duhl, S.E. Millar, K.A. Miller & G.S. Barsh, 1994. Differences in dorsal and ventral pigmentation result from regional expression of the mouse agouti gene. Proc. Natl. Acad. Sci. 91: 5667–5671.

    PubMed  Google Scholar 

  • Walsh, C., 2000. Molecular mechanisms that confer antibacterial drug resistance. Nature 406: 775–781.

    PubMed  Google Scholar 

  • Wang, R.L., A. Stec, J. Hey, L. Lukens, & J. Doebley, 1999. The limits of selection during maize domestication. Nature 398: 236–239.

    PubMed  Google Scholar 

  • Wootton, J.C., X. Feng, M.T. Ferdig, R.A. Cooper, J. Mu, D.I. Baruch, A.J. Magill & X.Z. Su, 2002. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418: 320–323.

    PubMed  Google Scholar 

  • Wright, S., 1929. Fisher’s theory of dominance. Am. Nat. 63: 274–279.

    Google Scholar 

  • Wright, S., 1931. Evolution in Mendelian populations. Genetics 16: 97–159.

    Google Scholar 

  • Wright, S., 1934. Physiological and evolutionary theories of dominance. Am. Nat. 68: 25–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rodney Mauricio

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Nachman, M.W. (2005). The genetic basis of adaptation: lessons from concealing coloration in pocket mice. In: Mauricio, R. (eds) Genetics of Adaptation. Georgia Genetics Review III, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3836-4_11

Download citation

Publish with us

Policies and ethics