Skip to main content

Evolution in heterogeneous environments and the potential of maintenance of genetic variation in traits of adaptive significance

  • Chapter
Genetics of Adaptation

Part of the book series: Georgia Genetics Review III ((GEGR,volume 3))

Abstract

The maintenance of genetic variation in traits of adaptive significance has been a major dilemma of evolutionary biology. Considering the pattern of increased genetic variation associated with environmental clines and heterogeneous environments, selection in heterogeneous environments has been proposed to facilitate the maintenance of genetic variation. Some models examining whether genetic variation can be maintained, in heterogeneous environments are reviewed. Genetic mechanisms that constrain evolution in quantitative genetic traits indicate that genetic variation can be maintained but when is not clear. Furthermore, no comprehensive models have been developed, likely due to the genetic and environmental complexity of this issue. Therefore, I have suggested two empirical approaches to provide insight for future theoretical and empirical research. Traditional path analysis has been a very powerful approach for understanding phenotypic selection. However, it requires substantial information on the biology of the study system to construct a causal model and alternatives. Exploratory path analysis is a data driven approach that uses the statistical relationships in the data to construct a set of models. For example, it can be used for understanding phenotypic selection in different environments, where there is no prior information to develop path models in the different environments. Data from Brassica rapa grown in different nutrients indicated that selection changed in the different environments. Experimental evolutionary studies will provide direct tests as to when genetic variation is maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonovics, J. & A.D. Bradshaw, 1970. Evolution in closely adjacent plant populations VIII. Clinal patterns at a mine boundary. Heredity 25: 349–362.

    Google Scholar 

  • Arnold, S.J., 1992. Constraints on phenotypic evolution. Am. Nat. 140: S85–S107.

    Google Scholar 

  • Bell, G., 1991. The ecology and genetics of fitness in Chlamydomonas IV. The properties of mixtures of genotypes of the same species. Evolution 45: 1036–1046.

    Google Scholar 

  • Bell, G., 1992. The ecology and genetics of fitness in Chlamydomonas V. The relationship between genetic correlation and environmental variance. Evolution 46: 561–566

    Google Scholar 

  • Bell, G., 1997a. Selection: the Mechanism of Evolution. Chapman and Hall, New York.

    Google Scholar 

  • Bell, G.A.C., 1997b. Experimental evolution in Chlamydomonas I. Short-term selection in uniform and diverse environments. Heredity 78: 490–497.

    Google Scholar 

  • Bell, G. & X. Reboud, 1997. Experimental evolution in Chlamydomonas II. Genetic variation in strongly contrasted environments. Heredity 78: 498–506.

    Google Scholar 

  • Bennett, A.F., R.E. Lenski & J.E. Mittler, 1992. Evolutionary adaptation to temperature I. Fitness responses of Escherichia coli to changes in its thermal environment. Evolution 46: 16–30.

    Google Scholar 

  • Borash, D.J., A.G. Gibbs, A. Joshi & L.D. Mueller, 1998. A genetic polymorphism maintained by natural selection in a temporally varying environment. Am. Nat. 151: 148–156.

    Google Scholar 

  • Bossart, J.L. & J.M. Scriber, 1995. Maintenance of ecologically significant genetic variation in the tiger swallowtail butterfly through differential selection and gene flow. Evolution 49: 1163–1171.

    Google Scholar 

  • Bulmer, M.G., 1985. The Mathematical Theory of Quantitative Genetics. Oxford Univ. Press., New York.

    Google Scholar 

  • Bulmer, M.G., 1989. Maintenance of genetic variability by mutation-selection balance: a child’s guide through the jungle. Genome 31: 761–767.

    Google Scholar 

  • Campbell, D.R., 1996. Evolution of floral traits in a hermaphroditic plant: field measurements of heritabilities and genetic correlations. Evolution 54: 1442–1453.

    Google Scholar 

  • Chang, S.-M. & R.G. Shaw, 2003. The contribution of spontaneous mutation to variation in environmental response in Arabidopsis thaliana: response to nutrients. Evolution 57: 984–994.

    PubMed  Google Scholar 

  • Charlesworth, B. & K.A. Hughes, 1999. The maintenance of genetic variation in life-history traits, pp. 369–391 in Evolutionary Genetics: From Molecules to Morphology, Vol. 1., edited by R.S. Singh & C.B. Krimbas. Cambridge University Press.

    Google Scholar 

  • Cheetham, A.H., J.B.C. Jackson & L.A.C. Hayek, 1995. Quantitative genetics of bryozoan phenotypic evolution 3. Phenotypic plasticity and the maintenance of genetic variation. Evolution 49: 290–296.

    Google Scholar 

  • Cheplick, G.P., 2003. Evolutionary significance of genotypic variation in developmental reaction norms for a perennial grass under competitive stress. Evol. Ecol. 17: 175–196.

    Google Scholar 

  • Christiansen, F.B., 1974. Sufficient conditions for protected polymorphism in a subdivided population. Amer. Nat. 108: 157–166.

    Google Scholar 

  • Conner, J.K., 1996. Understanding natural selection: an approach integrating selection gradients, multiplicative fitness components, and path analysis. Ethol. Ecol. Evol. 8: 387–397.

    Google Scholar 

  • Conner, J.K. & S. Rush, 1997. Measurements of selection on floral traits in black mustard, Brassica nigra. J. Evol. Biol. 10: 327–335.

    Google Scholar 

  • Conner, J.K., S. Rush & P. Jennetten, 1996. Measurements of natural selection on floral traits in wild radish (Raphanus raphanistum) I. Selection through lifetime female fitness. Evolution 50: 1127–1136.

    Google Scholar 

  • Cooper, V.S., A.F. Bennett & R.E. Lenski, 2001. Evolution of thermal dependence of growth rate of Escherichia coli populations during 20,000 generations in a constant environment. Evolution 55: 889–896.

    PubMed  Google Scholar 

  • Curtsinger, J.W., P.M. Service & T. Prout, 1994. Antagonistic pleiotropy, reversal of dominance, and genetic polymorphism. Am. Nat. 144: 210–228.

    Google Scholar 

  • Donohue, K. & J. Schmitt, 1999. The genetic architecture of plasticity to density in Impatiens capensis. Evolution 53: 1377–1386.

    Google Scholar 

  • Dudley, S.A., 1996. The response to differing selection on plant physiological traits: evidence for local adaptation. Evolution 50: 103–110.

    Google Scholar 

  • Elena, S.F. & R.E. Lenski, 1997. Long-term experimental evolution in Escherichia coli VII. Mechanisms maintaining genetic variability within populations. Evolution 51: 1058–1067.

    Google Scholar 

  • Endler, J.A., 1986. Natural Selection in the Wild. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Evans, A.S., 1989. Phenotypic Plasticity of Physiological and Life History Characteristics: Evolutionary Implications in Rapid-cycling Brassica campestris L. Ph.D. Thesis. The University of Chicago, Chicago, IL.

    Google Scholar 

  • Evans, A.S., 1991. Leaf physiological aspects of nitrogen-use efficiency in Brassica campestris L.: quantitative genetic variation across nutrient treatments. Theor. Appl. Genet. 81: 64–70.

    Google Scholar 

  • Falconer, D.S., 1952. The problem of environment and selection. Am. Nat. 86: 293–298.

    Google Scholar 

  • Falconer, D.S. & T.F.C. Mackay, 1996. Introduction to Quantitative Genetics, 4th edn., Longman Group, Ltd., Essex, England.

    Google Scholar 

  • Felsenstein, J., 1976. The theoretical population genetics of variable selection and migration. Annu. Revi. Genet. 10: 253–280.

    Google Scholar 

  • Fisher, R.A., 1999. The Genetical Theory of Natural Selection. Complete Variorum edn. Oxford University Press, Oxford.

    Google Scholar 

  • Galloway, L.F., 1995. Response to natural environmental heterogeneity: maternal effects and selection on life-history characters and plasticities in Mimulus guttatus. Evolution 49: 1095–1107.

    Google Scholar 

  • Gillespie, J.H. & M. Turelli, 1989. Genotype-environment interactions and the maintenance of polygenic variation. Genetics 121: 129–138.

    Google Scholar 

  • Gimelfarb, A., 1990. How much genetic variation can be maintained by genotype-environment interactions? Genetics 124: 443–445.

    PubMed  Google Scholar 

  • Grime, J.P., 1994. The role of plasticity in exploiting environmental heterogeneity, in Exploitation of Environmental Heterogeneity by Plants, edited by M.M. Caldwell & R.W. Pearcy. Academic Press, San Diego.

    Google Scholar 

  • Harris, D.J. & J.S. Jones, 1995. Genotype-specific habitat selection and thermal ecology in Nucella lapillus (L.) (the dogwhelk). Heredity 74: 311–314.

    Google Scholar 

  • Hatcher, L., 1994. A Step-by-Step Approach to Using the SAS System for Factor Analysis and Structural Equation Modeling. SAS Institute Inc. Pub. Cary, NC.

    Google Scholar 

  • Hedrick, P.W., 1986. Genetic polymorphism in heterogeneous environments: a decade later. Ann. Rev. Ecol. Syst. 17: 535–566.

    Google Scholar 

  • Houle, D., 1992. Comparing evolvability and variability of quantitative traits. Genetics 130: 195–204.

    PubMed  Google Scholar 

  • Houle, D., 1998. How should we explain variation in the genetic variance of traits? Genetica 102/103: 241–251.

    Google Scholar 

  • Jia, F.-Y., M.D. Greenfield & R.D. Collins, 2000. Genetic variance of sexually selected traits in waxmoths: maintenance by genotype by environment interaction. Evolution 54: 953–967.

    PubMed  Google Scholar 

  • Kalisz, S. & G.M. Wardle, 1994. Life history variation in Campanula Americana (Campanulaceae): population differentiation. Am. J. Bot. 81: 521–527.

    Google Scholar 

  • Karan, D., J.-P. Morin, P. Gibert, B. Moreteau, S.M. Scheiner & J.R. David, 2000. The genetics of phenotypic plasticity. IX. Genetic architecture, temperature, and sex differences in Drosophila melanogaster. Evolution 54: 1035–1040.

    PubMed  Google Scholar 

  • Kassen, R., 2002. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15: 173–190.

    Google Scholar 

  • Kassen, R. & G. Bell, 1998. Experimental evolution in Chlamydomonas. IV. Selection in environments that vary through time at different scales. Heredity 80: 732–741.

    Google Scholar 

  • Kassen, R. & G. Bell, 2000. The ecology and genetics of fitness in Chlamydomonas X. The relationship between genetic correlation and genetic distance. Evolution 54: 425–432.

    PubMed  Google Scholar 

  • Kause, A., I. Saloniemi, J.-P. Morin, E. Haukioja, S. Hanhimäki & K. Ruohomäki, 2001. Seasonally varying diet quality and the quantitative genetics of development time and body size in birch feeding insects. Evolution 55: 1992–2001.

    PubMed  Google Scholar 

  • Kingsolver, J.G. & D.W. Schemske, 1991. Path analyses of selection. Trends Ecol. Evol. 6: 276–280.

    Google Scholar 

  • Kingsolver, J.G., H.E. Hoekstra, J.M. Hoekstra, D. Berrigan, S.N. Vignieri, C.E. Hill, A. Hoang, P. Gilbert & P. Beerli, 2001. The strength of phenotypic selection in natural populations. Am. Nat. 157: 245–261.

    Google Scholar 

  • Lande, R. & S.J. Arnold, 1983. The measurement of selection on correlated characters. Evolution 37: 1210–1226.

    Google Scholar 

  • Leroi, A.M., A.K. Chippindale & M.R. Rose, 1994a. Long-term laboratory evolution of a genetic life-history trade-off in Drosophila melanogaster. 1. The role of genotype-by-environment interaction. Evolution 48: 1244–1257.

    Google Scholar 

  • Leroi, A.M., W.R. Chen & M.R. Rose, 1994b. Long-term laboratory evolution of a genetic life-history trade-off in Drosophila melanogaster. 2. Stability of genetic correlations. Evolution 48: 1258–1268.

    Google Scholar 

  • Levene, H., 1953. Genetic equilibrium when more than one ecological niche is available. Am. Nat. 87: 331–333.

    Google Scholar 

  • Levins, R., 1968. Evolution in Changing Environments. Monographs in Population Biology. Vol. 2. Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  • Li, B., J.-I. Suzuki & T. Hara, 1998. Latitudinal variation in plant size and relative growth rate in Arabidopsis thaliana. Oecologia 115: 293–301.

    Google Scholar 

  • Luttikhuizen, P.C., J. Drent, W. van Delden & T. Piersma, 2003. Spatially structure genetic variation in a broadcast spawning bivalve: quantitative vs. molecular traits. J. Evol. Biol.16: 260–272.

    PubMed  Google Scholar 

  • Lynch, M., 1996. A quantitative-genetic perspective on conservation issues, pp. 471–501 in Conservation Genetics: Case Histories From Nature, edited by J.C. Avise & J.L. Hamrick. Chapman and Hall, New York.

    Google Scholar 

  • Lynch, M. & B. Walsh, 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Lynch, M., L. Latta, J. Hicks & M. Giorgianni, 1998. Mutation, selection, and the maintenance of life-history variation in a natural population. Evolution 52: 727–733.

    Google Scholar 

  • Lynch, M., M. Pfrender, K. Spitze, N. Lehman, J. Hick, D. Allen, L. Latta, M. Ottene, F. Bogue & J. Colbourne, 1999. The quantitative and molecular genetic architecture of a subdivided species. Evolution 53: 100–110.

    Google Scholar 

  • Mackay, T.F.C., 1981. Genetic variation in varying environments. Gen. Res. 37: 79–93.

    Google Scholar 

  • Mackay, T.F.C., 2001. The genetic architecture of quantitative traits. Ann. Rev. Gen. 35: 303–339.

    Google Scholar 

  • Maynard Smith, J. & R. Hoekstra, 1980. Polymorphism in a varied environment: how robust are the models? Gen. Res. 35: 45–57.

    Google Scholar 

  • Mitchell, R.J., 1993. Path analysis: pollination, pp. 211–231 in Design and Analysis of Ecological Experiments, edited by S.M. Scheiner & J. Gurevitch. Chapman and Hall, New York.

    Google Scholar 

  • Mitton, J.B., 1997. Selection in Natural Populations. Oxford University Press, New York.

    Google Scholar 

  • Mopper, S., K. Landau & P. Van Zandt, 2000. Adaptive evolution and neutral variation in a wild leafminer meta-population, pp. 116–138 in Adaptive Genetic Variation in the Wild, edited by T.A. Mousseau, B. Sinervo & J. Endler. Oxford University Press, Oxford.

    Google Scholar 

  • Moran, N.A., 1991. Phenotype fixation and genotypic diversity in the complex life cycle of the aphid Pemphigus betae. Evolution 45: 957–970.

    Google Scholar 

  • Mousseau, T.A. & D.A. Roff, 1987. Natural selection and the heritability of fitness components. Heredity 59: 181–197.

    PubMed  Google Scholar 

  • Mousseau, T.A., B. Sinervo & J. Endler, 2000. Adaptive Genetic Variation in the Wild. Oxford University Press, New York.

    Google Scholar 

  • Pigliucci, M. & C.D. Schlichting, 1998. Reaction norms of Arabidopsis. V. Flowering time controls phenotypic architecture in response to nutrient stress. J. Evol. Biol. 11: 285–301

    Google Scholar 

  • Prout, T., 1968. Sufficient conditions for multiple niche polymorphism. Am. Nat. 102: 493–496.

    Google Scholar 

  • Prout, T. & O. Savolainen, 1996. Genotype-by-environment interaction is not sufficient to maintain variation: levene and the leafhopper. Am. Nat. 148: 930–936.

    Google Scholar 

  • Rausher, M.D., 1992. The measurement of selection on quantitative traits: biases due to environmental covariance between traits and fitness. Evolution 46: 616–626.

    Google Scholar 

  • Reed, D. H. & R. Frankham, 2001. How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55: 1095–1103.

    PubMed  Google Scholar 

  • Richard, M., T. Bernhardt & G. Bell, 2000. Environmental heterogeneity and the spatial structure of fern species diversity in one hectare of old-growth forest. Ecography 23: 231–245.

    Google Scholar 

  • Richards, A.D., 1986. Plant Breeding Systems. Allen and Unwin, London.

    Google Scholar 

  • Roff, D.A., 1997. Evolutionary Quantitative Genetics. Chapman and Hall, New York.

    Google Scholar 

  • Roff, D.A. & T.A. Mousseau, 1987. Quantitative genetics and fitness: lessons from Drosophila. Heredity 58: 103–118.

    PubMed  Google Scholar 

  • Rose, M.R., T.J. Nusbaum & A.K. Chippindale, 1996. Laboratory evolution: the experimental wonderland and the Cheshire cat syndrome, pp. 221–241 in Adaptation, edited by M.R. Rose & G.V. Lauder. Academic Press, Inc., San Diego, CA.

    Google Scholar 

  • SAS, 2001. Statistical Analysis System, SAS Institute Inc., SAS/STAT software version 8.2 Cary, NC.

    Google Scholar 

  • Sasaki, A. & G. de Jong, 1999. Density dependence and unpredictable selection in a heterogeneous environment: compromise and polymorphism in the ESS reaction norm. Evolution 53: 1329–1342.

    Google Scholar 

  • Scheiner, S.M., 1993. Genetics and evolution of phenotypic plasticity. Ann. Rev. Ecol. Syst. 34: 35–68.

    Google Scholar 

  • Scheiner, S.M. & H.S. Callahan, 1999. Measuring natural selection on phenotypic plasticity. Evolution 53: 1704–1713.

    Google Scholar 

  • Scheiner, S.M., R.J. Mitchell & H.S. Callahan, 2000. Using path analysis to measure natural selection. J. Evol. Biol. 13: 423–433.

    Google Scholar 

  • Scheiner, S.M. & L.Y. Yampolsky, 1998. The evolution of Daphnia pulex in a temporally varying environment. Genet. Res. 72: 25–37.

    Google Scholar 

  • Schmidt, P.S. & D.M. Rand, 2001. Adaptive maintenance of genetic polymorphism in an intertidal barnacle: habitat-and life-stage-specific survivorship of Mpi genotypes. Evolution 55: 1336–1344.

    PubMed  Google Scholar 

  • Shaw, R.G., G.A.J. Platenkamp, F.H. Shaw & R.H. Podolsky, 1995. Quantitative genetics of response to competitors in Nemophila menziesii: a field experiment. Genetics 139: 397–406.

    PubMed  Google Scholar 

  • Shaw, R.G., D.L. Byers & E. Darmo, 2000. Spontaneous mutational effects on reproductive traits of Arabidopsis thaliana. Genetics 155: 369–378.

    PubMed  Google Scholar 

  • Shipley, B., 1997. Exploratory path analysis with applications in ecology and evolution. Am. Nat. 149: 1113–1138.

    Google Scholar 

  • Shipley, B., 2000. Cause and Correlation In Biology, a User’s Guide To Path Analysis, Structural Equations and Causal Inference. Cambridge U. Press, Cambridge.

    Google Scholar 

  • Sinervo, B., 2000. Adaptation, natural selection, and optimal life-history allocation in the face of genetically based tradeoffs, pp. 41–64 in Adaptive Genetic Variation in the Wild, edited by T.A. Mousseau, B. Sinervo & J. Endler. Oxford University Press, Oxford.

    Google Scholar 

  • Sokal, R.R. & F.J. Rohlf, 1995. Biometry, 3rd edn., W.H. Freeman and Co., New York.

    Google Scholar 

  • Spirtes, P., C. Glymour & R. Scheines, 1993. Causation, prediction and search. Springer-Verlag, New York.

    Google Scholar 

  • Stanton, M.L., C. Galen & J. Shore, 1997. Population structure along a steep environmental gradient: consequences of flowering time and habitat variation in the snow buttercup, Ranunculus adoneus. Evolution 51: 79–94.

    Google Scholar 

  • Stratton, D.A., 1995. Spatial scale of variation in fitness of Erigeron annuus. Am. Nat. 146: 608–624.

    Google Scholar 

  • Takano, T., S. Kusakabe & T. Mukai, 1987. The genetic structure of natural populations of Drosophila melanogaster. XX. Comparison of genotype-environment interaction in viability between a northern and a southern population. Genetics 117: 245–254.

    PubMed  Google Scholar 

  • Tauber, T.A. & M.J. Tauber, 1992. Phenotypic plasticity in Chrysoperla: genetic variation in the sensory mechanism and in correlated reproductive traits. Evolution 46: 1754–1773.

    Google Scholar 

  • Vavrek, M.C, J.B. Mcgraw & H.S. Yang 1996. Within-population variation in demography of Taraxacum official maintenance of genetic diversity. Ecology 77: 2098–2107.

    Google Scholar 

  • Van Kleunen, M. & M. Fischer, 2001. Adaptive evolution of plastic foraging responses in a clonal plant. Ecology 82: 3309–3319.

    Google Scholar 

  • Vieira, C., E.G. Pasyukova, Z.-B. Zeng, J.B. Hackett, R.F. Lyman & T.F.C. Mackay, 2000. Genotype-environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster. Genetics 154: 213–227.

    PubMed  Google Scholar 

  • Via, S., 1987. Genetic constraints on the evolution of phenotypic plasticity, pp 47–71 in Genetic Constraints on Adaptive Evolution, edited by V. Loeschcke. Springer-Verlag, Berlin.

    Google Scholar 

  • Via, S., R. Gomulkiewicz, G. de Jong, S.M. Scheiner, C.D. Schlichting & P.H. van Tienderen, 1995. Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol. Evol. 10: 212–217.

    Google Scholar 

  • Via, S. & R. Lande, 1985. Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39: 505–522.

    Google Scholar 

  • Williams, P.H. & C.B. Hill, 1986. Rapid-cycling populations of Brassicas. Science 232: 1385–1389.

    Google Scholar 

  • Windig, J.J., 1997. The calculation and significance testing of genetic correlations across environments. J. Evol. Bio. 10: 853–874.

    Google Scholar 

  • Zhivotovsky, L.A., M.W. Feldman & A. Bergman, 1996a. Fitness patterns and phenotypic plasticity in a spatially heterogeneous environment. Gen. Res. 68: 241–248.

    Google Scholar 

  • Zhivotovsky, L.A., M.W. Feldman & A. Bergman, 1996b. On the evolution of phenotypic plasticity in a spatially heterogeneous environment. Evolution 50: 547–558.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rodney Mauricio

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Byers, D.L. (2005). Evolution in heterogeneous environments and the potential of maintenance of genetic variation in traits of adaptive significance. In: Mauricio, R. (eds) Genetics of Adaptation. Georgia Genetics Review III, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3836-4_10

Download citation

Publish with us

Policies and ethics