Advertisement

The Ions

Chapter
Part of the Atmospheric and Oceanographic Sciences Library book series (ATSL, volume 32)

Keywords

Solar Activity Ionization Rate Middle Atmosphere Lower Ionosphere Lower Thermosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aikin, A.C., R.A. Goldberg, W. Jones, and J.A. Kane, Observations of the midlatitude lower ionosphere in winter. J Geophys Res: 82, 1869, 1977.Google Scholar
  2. Appleton, E.V., Regularities and irregularities in the ionosphere, 1. Proc Roy Soc A: 162, 451, 1937.Google Scholar
  3. Appleton, E., and W.R. Piggott, Ionospheric absorption measurements during a sunspot cycle. J Atmos Terr Phys: 8, 141, 1954.Google Scholar
  4. Arijs, E., Positive and negative ions in the stratosphere. Ann Geophys: 1, 149, 1983.Google Scholar
  5. Arijs, E., Stratospheric ion chemistry: Present understanding and outstanding problems. Planet Space Sci: 40, 255, 1992.CrossRefGoogle Scholar
  6. Arijs, E., and G. Brasseur, Acetonitrile in the stratosphere and implication for positive ion composition. J Geophys Res: 91, 4003, 1986.Google Scholar
  7. Arijs, E., J. Ingels, and D. Nevejans, Mass spectrometric measurement of positive ion composition in the stratosphere. Nature: 271, 642, 1978.CrossRefGoogle Scholar
  8. Arijs, E., D. Nevejans, and J. Ingels, Unambiguous mass determination of major stratospheric positive ions. Nature: 288, 684, 1980.CrossRefGoogle Scholar
  9. Arijs, E., D. Nevejans, P. Frederick, and J. Ingels, Negative ion composition measurements in the stratosphere. Geophys Res Lett: 8, 121, 1981.Google Scholar
  10. Arijs, E., D. Nevejans, and J. Ingels, Stratospheric positive ion composition measurements, ion abundances and related trace gas detection. J Atmos Terr Phys: 44, 43, 1982a.Google Scholar
  11. Arijs, E., D. Nevejans, P. Frederick, and J. Ingels, Stratospheric negative ion composition measurements, ion abundances and related trace gas detection. J Atmos Terr Phys: 44, 681, 1982b.Google Scholar
  12. Arijs, E., D. Nevejans, and J. Ingels, Positive ion composition measurements and acetonitrile in the upper stratosphere. Nature: 303, 314, 1983a.CrossRefGoogle Scholar
  13. Arijs, E., D. Nevejans, J. Ingels, and P. Frederick, Positive ion composition measurements between 33 and 20 km altitude. Ann Geophys: 2, 161, 1983b.Google Scholar
  14. Arnold, F., The middle atmosphere ionized component, in Proc of the ESA-Symposium on Rocket-and Balloon-Programmes. Bournemouth, 1980.Google Scholar
  15. Arnold, F., Atmospheric ions. Studies in Env Sci: 26, 103, 1986.Google Scholar
  16. Arnold, F., and D. Krankowsky, Ion composition and electron-and ion-loss processes in the earth’s atmosphere, pp. 93–127, in Dynamical and Chemical Coupling Between the Neutral and Ionized Atmosphere. Grandal, B., and Holtet, J.A., (eds.), D. Reidel Publishing Company, Dordrecht, Holland, 1977.Google Scholar
  17. Arnold, F., and G. Henschen, First mass analysis of stratospheric negative ions, Nature: 275, 521, 1978.CrossRefGoogle Scholar
  18. Arnold, F., and D. Krankowsky, Mid-latitude lower ionosphere structure and composition measurements during winter. J Atmos Terr Phys: 41, 1127, 1979.CrossRefGoogle Scholar
  19. Arnold, F., and G. Hauck, Lower stratosphere trace gas detection using aircraft-borne active chemical ionization mass spectrometry. Nature: 315, 307, 1985.CrossRefGoogle Scholar
  20. Arnold, F., J. Kissel, D. Krankowsky, H. Wieder, and J. Zähringer, Negative ions in the lower ionosphere: A mass spectrometric measurement. J Atmos Terr Phys: 33, 1169, 1971.Google Scholar
  21. Arnold, F., D. Krankowsky, and K.H. Marien, First mass spectrometric measurements of positive ions in the stratosphere. Nature: 267, 30, 1977.CrossRefGoogle Scholar
  22. Arnold, F., H. Böhringer, and G. Henschen, Composition measurements of stratospheric positive ions. Geophys Res Lett: 5, 653, 1978.Google Scholar
  23. Arnold, F., G. Henschen, and E.E. Ferguson, Mass spectrometric measurements of fractional ion abundances in the stratosphere — Positive ions. Planet Space Sci: 29, 185, 1981.Google Scholar
  24. Banks, P., and G. Kockarts, Aeronomy. Academic Press, New York, 1973.Google Scholar
  25. Becker, K.H., and A. Ionescu, Acetonitrile in the lower troposphere. Geophys Res Lett: 9, 1349, 1982.Google Scholar
  26. Beig, G., and D.K. Chakrabarty, On modeling stratospheric positive ions, J Atmos Chem: 6, 175, 1988.CrossRefGoogle Scholar
  27. Beig, G., S. Walters, and G. Brasseur, A two-dimensional model of ion composition in the stratosphere, 1. Positive ions. J Geophys Res: 98, 12,767, 1993a.Google Scholar
  28. Beig, G., S. Walters, and G. Brasseur, A two-dimensional model of ion composition in the stratosphere, 2. Negative ions. J Geophys Res: 98, 12,775, 1993b.Google Scholar
  29. Beran, D., and W. Bangert, Trace constituents in the mesosphere and lower thermosphere during winter anomaly events, J Atmos Terr Phys: 41, 1091, 1979.CrossRefGoogle Scholar
  30. Beynon, W.J.G., E.R. Williams, F. Arnold, D. Krankowsky, W.C. Bain, and P.H.G. Dickinson, D-region rocket measurements in winter anomaly absorption conditions. Nature: 261, 118, 1976.CrossRefGoogle Scholar
  31. Bills, R.E., and C.S. Gardner, Lidar observations of mesospheric Fe and sporadic Fe layers at Urbana, Illinois. Geophys Res Lett: 17, 143, 1990.Google Scholar
  32. Björn, L.G., and F. Arnold, Mass spectrometric detection of precondensation nuclei at the arctic summer mesopause. Geophys Res Lett: 8, 1167, 1981.Google Scholar
  33. Böhringer, H., and F. Arnold, Acetonitrile in the stratosphere — Implications from laboratory studies. Nature: 290, 321, 1981.Google Scholar
  34. Böhringer, H., D.W. Fahey, F.C. Fehsenfeld, and E.E. Ferguson, The role of ionmolecule reactions in the conversion of N2O5 to HNO3 in the stratosphere. Planet Space Sci: 31, 185, 1983.Google Scholar
  35. Brasseur, G., Physique et Chimie de l’Atmosphere Moyenne. Masson, Paris, 1982.Google Scholar
  36. Brasseur, G., and M. Nicolet, Chemospheric processes of nitric oxide in the mesosphere and stratosphere. Planet Space Sci: 21, 939, 1973.CrossRefGoogle Scholar
  37. Brasseur, G., and A. Chatel, Modelling of stratospheric ions: A first attempt. Ann Geophys: 1, 173, 1983.Google Scholar
  38. Brasseur, G., and P. De Baets, Minor constituents in the mesosphere and lower thermosphere, J Geophys Res: 91, 4025, 1986.Google Scholar
  39. Brasseur, G., E. Arijs, A. De Rudder, D. Nevejans, and J. Ingels, Acetonitrile in the atmosphere. Geophys Res Lett: 10, 725, 1983.Google Scholar
  40. Budden, K.G., Radio Waves in the Ionosphere. Cambridge Univ. Press, 1961.Google Scholar
  41. Burns, C.J., E. Turunen, M. Matveinen, H. Ranta, and J.K. Hargreaves, Chemical modeling of the quiet D-and E-Region using EISCAT electron density profiles. J Atmos Terr Phys: 53, 115, 1991.CrossRefGoogle Scholar
  42. Callis, L.B., R.E. Boughner, N. Natarajan, J.D. Lambeth, D.N. Baker, and J.B. Blake, Ozone depletion in the high altitude lower stratosphere, 1979–1990. J Geophys Res: 96, 2921, 1991.Google Scholar
  43. Chapman, S., Notes on atmospheric sodium. Astrophys J: 90, 309, 1939.CrossRefGoogle Scholar
  44. Crutzen, P.J., and S. Solomon, Response of mesospheric ozone to particle precipitation. Planet Space Sci: 28, 1147, 1980.CrossRefGoogle Scholar
  45. Crutzen, P.J., I.S.A. Isaksen, and G.C. Reid, Solar proton events: Stratospheric sources of nitric oxide. Science: 189, 457, 1975.Google Scholar
  46. Danilov, A.D., and J. Taubenheim, NO and temperature control of the D-Region. Space Sci Rev: 34, 413, 1983.CrossRefGoogle Scholar
  47. Davies, K., Ionospheric radio propagation, National Bureau of Standard, Monograph 80, 1965 and Dover Publications, New York, 1966.Google Scholar
  48. Dubach, J., and W.A. Barker, Charged particle induced ionization rates in planetary atmospheres. J Atmos Terr Phys: 33, 1287, 1971.CrossRefGoogle Scholar
  49. Fehsenfeld, F.C., and E.E. Ferguson, Thermal energy positive ion reactions in a wet atmosphere containing ammonia. J Chem Phys: 59, 6272, 1973.CrossRefGoogle Scholar
  50. Fehsenfeld, F.C., and E.E. Ferguson, Laboratory studies of negative ion reactions with atmospheric trace constituent. J Chem Phys: 61, 3181, 1974.Google Scholar
  51. Fehsenfeld, F.C., C.J. Howard, and A.L. Schmeltekopf, Gas phase ion chemistry of HNO3. J Chem Phys: 63, 2835, 1975.Google Scholar
  52. Fehsenfeld, F.C., I. Dotan, D.L. Albritton, C.J. Howard, and E.E. Ferguson, Stratospheric positive ion chemistry of formaldehyde and methanol, J Geophys Res: 83, 1333, 1978.Google Scholar
  53. Ferguson, E.E., D-Region ion chemistry. Rev Geophys Space Phys: 9, 997, 1971.Google Scholar
  54. Ferguson, E., Sodium hydroxide in the stratosphere. Geophys Res Lett: 5, 1035, 1978.Google Scholar
  55. Ferguson, E.E., Ion-molecule reactions in the atmosphere, in Kinetics of Ion-Molecule Reactions. Ausloos, P. (ed.), Plenum Press, New York, 1979.Google Scholar
  56. Frederick, J.E., Solar corpuscular emission and neutral chemistry in the Earth’s middle atmosphere. J Geophys Res: 81, 3179, 1976.Google Scholar
  57. Fritzenwallner, J., Globales Modell zur Verteilung der Positiven und Negativen Ionen in der Unteren Ionosphären der Erde. Ph.D. thesis, University of Bern, Switzerland, 1997.Google Scholar
  58. Fritzenwallner, J., and E. Kopp, Model calculations of the silicon and magnesium chemistry in the mesosphere and lower thermosphere. Adv Space Res: 21, 859, 1998a.Google Scholar
  59. Fritzenwallner, J., and E. Kopp, Model calculations of the negative ion chemistry in the mesosphere with special emphasis on the chlorine species and the formation of cluster ions. Adv Space Res: 21, 891, 1998b.Google Scholar
  60. Garcia, R.R., S. Solomon, G.C. Reid, S.K. Avery, Transport of nitric oxide and the D region winter anomaly. J Geophys Res: 92, 977, 1987.Google Scholar
  61. Granier, C., J.P. Jégou, and G. Mégie, Atomic and ionic calcium in the earth’s upper atmosphere. J Geophys Res: 94, 9917, 1989.Google Scholar
  62. Hall, L.A., and H.E. Hinteregger, Solar radiation in the extreme ultraviolet and its variation with solar rotation. J Geophys Res: 75, 6959, 1970.Google Scholar
  63. Hamm, S., G. Helas, and P. Warneck, Acetonitrile in the air over Europe. Geophys Res Lett: 16, 483, 1989.Google Scholar
  64. Hargreaves, J.K., The Upper Atmosphere and Solar-Terrestrial Relations. Van Nostrand Reinhold, 1979.Google Scholar
  65. Hargreaves, J.K., The Solar-Terrestrial Environment. Cambridge Univ. Press, 1992.Google Scholar
  66. Hartree, D.R., The propagation of electro-magnetic waves in a refracting medium in a magnetic field, in Proc Cambridge Phil Soc: 27, 143, 1931.CrossRefGoogle Scholar
  67. Heaps, M.G., Parameterization of the cosmic ray ion-pair production rate above 18 km. Planet Space Sci: 26, 513, 1978a.CrossRefGoogle Scholar
  68. Heaps, M.G., The Effect of a Solar Proton Event on the Minor Neutral Constituents of the Summer Polar Mesosphere. US Army Atmospheric Sci Lab Report ASL-TR-0012, 1978b.Google Scholar
  69. Henschen, G., and F. Arnold, Extended positive ion composition measurements in the stratosphere — Implication for neutral trace gases. Geophys Res Lett: 8, 999, 1981.Google Scholar
  70. Hunten, D.M., and M.B. McElroy, Metastable O2(1Δ) as a major source of ions in the D-region. J Geophys Res: 73, 2421, 1968.Google Scholar
  71. Jackman, C.H., Effect of energetic particles on minor constituents in the middle atmosphere. J Geomagn Geoelect: 43, 637, 1991.Google Scholar
  72. Jackman, C.H., H.S. Porter, and J.E. Frederick, Upper limits on production rate of NO per ion pair. Nature: 280, 170, 1979.CrossRefGoogle Scholar
  73. Jackman, C.H., J.E. Frederick, and R.S. Stolarski, Production of odd nitrogen in the stratosphere and mesosphere: An intercomparison of source strengths. J Geophys Res: 85, 7495, 1980.Google Scholar
  74. Jackman, C.H., A.P. Douglass, R.B. Rood, R.D. McPeters, and P.E. Maede, Effect of solar events on the middle atmosphere during the past two solar cycles as computed using a two-dimensional model. J Geophys Res: 95, 7417, 1990.Google Scholar
  75. Jackman, C.H., J.E. Nielsen, D.J. Allen, M.C. Cerniglia, R.D. McPeeters, A.R. Douglass, and R.B. Rood, The effects of the October 1989 solar proton events on the stratosphere as computed using a 3-Dimensional model. Geophys Res Lett: 20, 459, 1993.Google Scholar
  76. Jackman, C.H., M.C. Cerniglia, J.E. Nielsen, D.J. Allen, J.M. Zawodny, R.D. McPeters, A.R. Douglass, J.E. Rosenfield, and R.B. Rood, Two-dimensional and three-dimensional model simulations, measurements, and interpretation of the in.uence of the October 1989 solar proton events on the middle atmosphere. J Geophys Res: 100, 11,641, 1995.CrossRefGoogle Scholar
  77. Jégou, J.P., C. Granier, M.L. Chanin, and G. Mégie, General theory of the alkali metals present in the earth’s upper atmosphere, 1. Flux model: Chemical and dynamical processes. Ann Geophys: 3, 163, 1985a.Google Scholar
  78. Jégou, J.P., C. Granier, M.L. Chanin, and G. Mégie, General theory of the alkali metals present in the earth’s upper atmosphere, 2. Seasonal and meridional variations. Ann Geophys: 3, 299, 1985b.Google Scholar
  79. Johnson, C.Y., E.B. Meadows, and J.C. Holmes, Ion composition of the arctic ionosphere. J Geophys Res: 63, 443, 1958.Google Scholar
  80. Kawahira, K., An observational study of the D-region winter anomaly and sudden stratospheric warmings. J Atmos-Terr Phys: 44, 947, 1982.Google Scholar
  81. Kawamoto, H., and T. Ogawa, A steady-state model of negative ions in the lower stratosphere. Planet Space Sci: 32, 1223, 1984.CrossRefGoogle Scholar
  82. Kawamoto, H., and T. Ogawa, Minor species of negative ions in the lower stratosphere. Res Lett Atmos Electr: 5,1, 1985.Google Scholar
  83. Kazil, J., E. Kopp, S. Chabrillat, and J. Bishop, The University of Bern atmosphere ion model: Time-dependent modeling of the ions in the mesophere and lower thermosphere. J Geophys Res: 108, d14, 4432, doi 10.1029/2002JD003024, 2003.Google Scholar
  84. Kelley, M.C., The Earth’s Ionosphere: Plasma Physics and Electrodynamics. Academic Pres, 1989.Google Scholar
  85. Keneshea, T.J., R.S. Narcisi, and W. Swider, Jr., Diurnal model of the E region. J Geophys Res: 75, 845, 1970.Google Scholar
  86. Kley, D., G.M. Lawrence, and E.J. Stone, The yield of N (2 D) atoms in the dissociative recombination of NO+. J Chem Phys: 66, 4157, 1977.CrossRefGoogle Scholar
  87. Knop, G., and F. Arnold, Stratospheric trace gas detection using a new balloon-borne ACIMS method: Acetonitrile, acetone and nitric acid. Geophys Res Lett: 14, 1262, 1987a.Google Scholar
  88. Knop, G., and F. Arnold, Atmospheric acetonitrile measurements in the tropopause region using aircraft-borne active chemical ionization mass spectrometry. Planet Space Sci: 35, 259, 1987b.CrossRefGoogle Scholar
  89. Kopp, E., and U. Herrmann, Ion composition in the lower ionosphere. Ann Geophys: 2, 83, 1984.Google Scholar
  90. Koshelev, V.V., Variations of transport conditions and winter anomaly in the Dionospheric region. J Atmos Terr Phys: 41, 431, 1979.CrossRefGoogle Scholar
  91. Koshelev, V.V., The winter anomaly in the ionospheric D-region — Some numerical calculations. J Atmos Terr Phys: 49, 81, 1987.CrossRefGoogle Scholar
  92. Kull, A., E. Kopp, C. Granier, and G. Brasseur, Ions and electrons of lower-latitude D region. J Geophys Res: 102, 9705, 1997.CrossRefGoogle Scholar
  93. Labitzke, K., K. Paetzoldt, and H. Schwentek, Planetary waves in the strato-and mesosphere during the western European winter anomaly campaign 1975/76 and their relation to ionospheric absorption. J Atmos Terr Phys: 41, 1149, 1979.CrossRefGoogle Scholar
  94. Leu, M.T., M.A. Biondi, and R. Johnsen, Measurements of the recombination of elections with H3O+ (H2O)n series ions. Phys Rev: A7, 292, 1973.Google Scholar
  95. Massie, S.T., Nitric Oxide Delta Band Absorption Measurements in the Lower Thermosphere. PhD thesis, University of Colorado, Boulder, Colo, 1979.Google Scholar
  96. McCrumb, J.L., and F. Arnold, High-sensitivity detection of negative ions in the stratosphere. Nature: 294, 136. 1981.CrossRefGoogle Scholar
  97. Mechtly, E.A., and J.S. Shirke, Rocket electron concentration measurements on winter days of normal and anomalous absorption. J Geophys Res: 73, 6243, 1968.Google Scholar
  98. Mechtly, E.A., and L.G. Smith, Seasonal variation of the lower ionosphere at Wallops Island during the IQSY. J Atmos Terr Phys: 30, 1555, 1968.Google Scholar
  99. Narcisi, R.S., and A.D. Bailey, Mass spectrometric measurements of positive ions at altitudes from 64 to 112 kilometers. J Geophys Res: 70, 3687, 1965.Google Scholar
  100. Narcisi, R.S., A.D. Bailey, L. Della Lucca, C. Sherman, and D.M. Thomas, Mass spectrometric measurements of negative ions in the D-and lower E-regions. J Atmos Terr Phys: 33, 1147, 1971.CrossRefGoogle Scholar
  101. Nicolet, M., Contribution à l’étude de la structure de l’ionosphère. Mem Inst Méetéor Belgique: 19, 83, 1945.Google Scholar
  102. Nicolet, M., and A.C. Aikin, The formation of the D region of the ionosphere. J Geophys Res: 65, 1469, 1960.Google Scholar
  103. Nicolet, M., and W. Peetermans, The production of nitric oxide in the stratosphere by oxidation of nitrous oxide. Ann Geophys: 28, 751, 1972.Google Scholar
  104. Niehaus, A., Excitation and dissociation of molecules by electron bombardment. Measurement of the formation probability for neutral fragments as a function of electron energy (in German). Z Naturf: 22a, 690, 1967.Google Scholar
  105. Norton, R.B., and C.A. Barth, Theory of nitric oxide in the earth’s atmosphere. J Geophys Res: 75, 3903, 1970.Google Scholar
  106. Offermann, D., An integrated GBR campaign for the study of the D region winter anomaly in western Europe 1975/76. J Atm Terr Phys: 41, 1047, 1979.Google Scholar
  107. Paulsen, D.E., R.E. Huffman, and J.C. Larrabee, Improved photoionization of O2(1Δg) in the D region. Radio Sci: 7, 51, 1972.Google Scholar
  108. Phelps, A.V., and J.L. Pack, Electron collision frequencies in nitrogen and in the lower ionosphere. Phys Rev Lett: 3, 340, 1959.CrossRefGoogle Scholar
  109. Plane, J.M.C., The chemistry of meteoric metals in the earth’s upper atmosphere. Int Rev Phys Chem: 10, 55, 1991.Google Scholar
  110. Plane, J.M.C., C.S. Gardner, J. Yu, C.Y. She, R.R. Garcia, and H.C. Pumphrey, Mesopheric Na layer at 40°N, Modeling and observations. J Geophys Res: 104, 3773, 1999.CrossRefGoogle Scholar
  111. Potemra, T.A., Ionizing radiation affecting the lower ionosphere, in ELF-VLF Radio Wave Propagation. Holtet, J.A. (ed.), Reidel Publishing, Dordrecht, The Netherlands, 21, 1974.Google Scholar
  112. Qian, J., and C.S. Gardner, Simultaneous lidar measurements of mesospheric Ca, Na, and temperature profile at Urbana, Illinois. J Geophys Res: 100, 7453, 1995.CrossRefGoogle Scholar
  113. Rapp, D., P. Englander-Golden, and D.D. Briglia, Cross sections for dissociative ionization of molecules by electron impact. J Chem Phys: 42, 4081. 1965.CrossRefGoogle Scholar
  114. Rees, M.H., Aurnal ionization and excitation by incident energetic electrons. Planet Space Sci: 11, 1209, 1963.Google Scholar
  115. Rees, M.H., and R.G. Roble, The morphology of N and NO in auroral substorms. Planet Space Sci: 27, 453, 1979.CrossRefGoogle Scholar
  116. Rees, M.H., Physics and Chemistry of the Upper Atmosphere. Cambridge Univ. Press, 1989.Google Scholar
  117. Reid, G.C., The production of water cluster positive ions in the quiet daytime Dregion, J Geophys Res: 25, 275, 1977.Google Scholar
  118. Reid, G.C., S. Solomon, and R.R. Garcia, Response of the middle atmosphere to the solar proton events of August–December 1989. Geophys Res Lett: 18, 1019, 1991.Google Scholar
  119. Richards, P.G., J.A. Fennelly, and D.G. Torr, EUVAC: A solar EUV flux model for aeronomic calculations. J Geophys Res: 99, 8981, 1994.Google Scholar
  120. Rosenberg, T.J., and L.J. Lanzerotti, Direct energy inputs to the middle atmosphere, in Middle Atmosphere Electrodynamics, N.C. Maynard (ed.), NASA CP-2090, 43, 1979.Google Scholar
  121. Rusch, D.W., J.-C. Gérard, S. Solomon, P.J. Crutzen, and G.C. Reid, The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere, 1. Odd nitrogen. Planet Space Sci: 29, 767, 1981.CrossRefGoogle Scholar
  122. Schneider, J., V. Bürger, and F. Arnold, Methyl cyanide and hydrogen cyanide measurements in the lower stratosphere: Implications for methyl cyanide sources and sinks. J Geophys Res: 102,25,501, 1997.Google Scholar
  123. Schwentek, H., Regular and irregular behavior of the winter anomaly in ionospheric absorption. J Atmos Terr Phys: 33, 1647, 1971.Google Scholar
  124. Sen, H.K., and A.A. Wyller, On the generalizations of the Appleton-Hartree magnetoionic formulas. J Geophys Res: 65, 3931, 1960.CrossRefGoogle Scholar
  125. Slipher, V.M., Emissions in the spectrum of the light of the night sky. Publ Astron Soc Pac: 41, 262, 1929.Google Scholar
  126. Smith, D., N.G. Adams, and M.J. Church, Mutual neutralization rates of ionospherically important ions. Planet Space Sci: 24, 697, 1976.CrossRefGoogle Scholar
  127. Smith, D., N.G. Adams, and E. Alge, Ion-ion mutual neutralization and ion-neutral switching reactions of some stratospheric ions. Planet Space Sci: 29, 449, 1981.CrossRefGoogle Scholar
  128. Smith, G.P., L.C. Lee, and P.C. Cosby, Photodissociation and photodetachment of molecular negative ions, VIII. Nitrogen oxides and hydrates. J Chem Phys: 71, 4464, 1979.Google Scholar
  129. Snider, J.R., and G.A. Dawson, Surface acetonitrile near Tucson, Arizona. Geophys Res Lett 11, 241, 1984.Google Scholar
  130. Solomon, S., The possible effects of translationally excited nitrogen atoms on lower thermospheric odd nitrogen. Planet Space Sci: 31, 135, 1983.CrossRefGoogle Scholar
  131. Solomon, S., D.W. Rusch, J.-C. Gérard, G.C. Reid, and P.J. Crutzen, The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere, 2. Odd hydrogen. Planet Space Sci: 29, 885, 1981.CrossRefGoogle Scholar
  132. Solomon, S., P.J. Crutzen, and R.G. Roble, Photochemical coupling between the thermosphere and the lower atmosphere, 1. Odd nitrogen from 50 to 120 km. J Geophys Res: 87, 7206, 1982a.Google Scholar
  133. Solomon, S., G.C. Reid, R.G. Roble, and P.J. Crutzen, Photochemical coupling between the thermosphere and the lower atmosphere, 2. D region ion chemistry and the winter anomaly. J Geophys Res: 87, 7221, 1982b.Google Scholar
  134. Solomon, S., G.C. Reid, D.W. Rusch, and R.J. Thomas, Mesospheric ozone depletion during the solar proton cvent of July 13, 1982. 2. Comparison between theory and measurements. Geophys Res Lett: 10, 257, 1983.Google Scholar
  135. Stewart, A.I., Photoionization coefficients and photoelectron impact excitation efficiences in the daytime ionosphere. J Geophys Res: 75, 6333, 1970.Google Scholar
  136. Swider, W., and T.J. Keneshea, Decrease of ozone and atomic oxygen in the lower mesosphere during a PCA event. Planet Space Sci: 21, 1969, 1973.CrossRefGoogle Scholar
  137. Sze, N.D., M.K.W. Ko, W. Swider, and E. Murad, Atmospheric sodium chemistry, I. The altitude region 70–100 km. Geophys Res Lett: 9, 1187, 1982.Google Scholar
  138. Thomas, L., Modeling the ion composition of the middle atmosphere. Ann Geophys: 1, 61, 1983.Google Scholar
  139. Thomas, L., and M.R. Bowman, Model studies of the D-region negative-ion composition during day-time and night-time. J Atmos Terr Phys: 35, 397, 1985.Google Scholar
  140. Thorne, R.M., Influence of relativistic electron precipitation on the lower ionosphere and stratosphere, in Dynamical and Chemical Coupling Between the Neutral and Ionized Atmosphere. Grandal, B., and J.A. Holtet (eds.), 161, Reidel Publishing, Dordrecht, The Netherlands, 1977a.Google Scholar
  141. Thorne, R.M., Energetic radiation belt electron precipitation: A natural depletion mechanism for stratospheric ozone. Science: 195, 287, 1977b.Google Scholar
  142. Tobiska, W.K., T. Woods, F. Eparvier, R. Viereck, L. Floyd, D. Bouwer, G. Rottman, and O.R. White, The SOLAR2000 empirical solar irradiance model and forecast tool. J Atmos Solar-Terr Phys: 62, 1233, 2000.Google Scholar
  143. Vampola, A.L., and D.J. Gorney, Electron energy deposition in the middle atmosphere. J Geophys Res: 88, 6267, 1983.Google Scholar
  144. Viggiano, A.A., and F. Arnold, The first height measurements of the negative ion composition of the stratosphere. Planet Space Sci: 29, 895, 1981.CrossRefGoogle Scholar
  145. Viggiano, A.A., R.A. Perry, D.L. Albritton, E.E. Ferguson, and F.C. Fehsenfeld, The role of H2SO4 in stratospheric negative-ion chemistry. J Geophys Res: 85, 4551, 1980.Google Scholar
  146. Warneck, P., Cosmic radiation as a source of odd nitrogen in the stratosphere. J Geophys Res: 77, 6589, 1972.Google Scholar
  147. Winters, H.F., Ionic absorption and dissociation cross section for nitrogen. J Chem Phys: 44, 1472, 1966.Google Scholar
  148. Wisemberg, J., and G. Kockarts, Negative ion chemistry in the terrestrial D-region and signal flow graph theory. J Geophys Res: 84, 4642, 1980.Google Scholar
  149. Zbinden, P.A., M.A. Hidalgo, P. Eberhardt, and J. Geiss, Mass spectrometer measurements of the positive ion composition in the D-and E-regions of the ionosphere. Planet Space Sci: 23, 1621, 1975.CrossRefGoogle Scholar
  150. Zipf, E.C., and R.W. McLaughlin, On the dissociation of nitrogen by electron impact and EUV photo-absorption. Planet Space Sci: 26, 449, 1978.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Personalised recommendations