Skip to main content

MONITORING TOOLS TO ASSESS VEGETATION SUCCESSIONAL REGRESSION AND PREDICT CATASTROPHIC SHIFTS AND DESERTIFICATION IN MEDITERRANEAN RANGELAND ECOSYSTEMS

  • Conference paper
  • 1694 Accesses

Part of the book series: NATO Security Through Science Series ((NASTC,volume 3))

Abstract

The relationship between grazing intensity and ecosystem performance is complex and can depend on the prevailing ecological conditions. Previous studies have revealed that,in traditional grazing ecosystems, grazing can reduce ecosystem diversity in poor soils, butincrease diversity and productivity in rich ecosystems subject to moderate grazing pressure. We are interested in detecting long-term structural changes or drift in an ecosystem before itis too late to prevent irreversible degradation. We analyzed vegetation spatial patterns andcomplexities of four Mediterranean communities: Tihmadit Region (Middle Atlas, Morocco),Camiyayla (Namrum) Region (Taurus Mountain, Turkey), Sykia Region (south of theSithonia Peninsula, Greece), and Cabo de Gata Nijar Natural Park, Spain. Grazingdisturbance was most intense near shelter and water points, which lead to gradients in soilsurface disruption, compaction, and changes in the composition and cover of perennialvegetation. Dense matorral was more resistant to species loss than were moderately denseand scattered matorral, and grassland. Information fractal dimension decreased as we movedfrom a dense matorral to a discontinuous matorral, and increased as we moved to a morescattered matorral and to a grassland, which resulted in two opposing processes (interactiondeclining with ecosystem development, and immigration increasing with degradation) in acommon pattern, i.e., small patches homogeneously distributed in the landscape. Characteristic species of the natural vegetation declined in frequency and organization inresponse to higher grazing disturbance, while species of disturbed areas exhibited theopposite trend. Overall, the spatial organization of the characteristic plants of each community decreased with increasing vegetation degradation, with the intensity of the trend being related to the species' sensitivity to grazing. Developmental instability analyses of key species were used to determine the sensitivity of dominant key species to grazing pressure. Palatable species, which are better adapted to being eaten, such as Periploca laevigata, Phillyrea latifolia and Genista pseudopilosa, were able to resist moderate grazing pressure, while species of disturbed, grazed sites did not change developmental instability in response to increasing grazing pressure, such as Thymus hyemalis, Teucrium lusitanicum and Cistus monspeliensis. The usefulness of these monitoring tools in preventing land degradation is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Aidoud, A., Aidoud-Lounis F., Slimani, H. Effects of grazing on soil and desertification: a review from the southern Mediterranean rim. Pages 133–148. In: Ecological basis of livestock grazing in Mediterranean ecosystems (Papanastasis, V. P. & Peter, D. Eds.). European Commission EUR 18308. 1998.

    Google Scholar 

  • Alados, C. L., Escós J., Emlen J. M. Scale asymmetry: a tool to detect developmental instability under the fractal geometry scope. Pages 25–36. In: Fractals in the Natural and Applied Sciences. (MM Novak, Ed.). Elsevier, North-Holland. 1994.

    Google Scholar 

  • Alados, C. L., Emlen, J. M., Wachocki, B., Freeman, C. D. Instability of development and fractal architecture in dryland plants as an index of grazing pressure. J. Arid Environ, 1998: 38: 63–76.

    Article  Google Scholar 

  • Alados, C. L., Giner, M. L., Dehesa, L., Escós, J, Barroso, F., Emlen, J. M., Freeman, C. D. Developmental instability and fitness in Periploca laevigata experiencing grazing disturbance. Int J Plant Sci, 2002; 163: 969–978.

    Article  Google Scholar 

  • Alados, C. L., Puedo, Y., Giner, M. L., Navarro, T., Escós, J, Barroso, F., Cabezudo, B., Emlen, J. M. Quantitative characterization of plant spatial patterns by fractal analysis. Ecol Model, 2003; 163: 1–17.

    Article  Google Scholar 

  • Alados, C. L., ElAich, A., Papanastasis, V. P., Ozbek, H., Navarro, T., Freitas, H., Vrahnakis, M., Larrossi, D., Cabezudo, B. Change in plant spatial patterns and diversity along the successional gradient of Mediterranean grazing ecosystems. Ecol. Model., 2004; 180: 523–535.

    Article  Google Scholar 

  • Anne, P., Mawri, F., Gladstone, S., Freeman, D. C. Is fluctuating asymmetry a reliable biomonitor of stress? a test using life history parameters in soybean. Int J Plant Sci 1998; 159: 559–565.

    Article  Google Scholar 

  • Barroso, F. G., Martínez, T. F., Paz, T., Alados, C. L., Escós, J. Relationship of Periploca laevigata (Asclepidaceae) tannins to livestock herbivory. J Arid Env, 2003; 53: 125–135.

    Article  Google Scholar 

  • Cammeraat, L. H., Willott, S. J., Compton, S. G., Incoll, L. D. The effects of ants’ nests on the physical, chemical and hydrological properties of a rangeland soil in semi-arid Spain. Geoderma, 2002; 105: 1–20.

    Article  CAS  Google Scholar 

  • Cardinale, B. J., Palmer, M. A., Collins, S. L. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature, 2002; 415(6870): 426–429.

    CAS  Google Scholar 

  • Castro, H., Nabais, C., Alados, C. L., Freitas, H. Effects of cessation of grazing on leaf-level photosynthesis of Periploca laevigata. Appl Veg Sci, 2003; 6: 255–260.

    Google Scholar 

  • Cerdá, A. Soil erosion after land abandonment in a semiarid environment of southeastern Spain. Arid Soil Res. Rehab., 1997a; 11 (2): 163–176.

    Google Scholar 

  • Cerdá, A. The effect of patchy distribution of Stipa tenacissima L. on runoff and erosion. J. Arid Env., 1997b; 36: 37–51.

    Google Scholar 

  • Chapin, F. S. Integrated responses of plants to stress. BioScience, 1991; 41: 29–36.

    Google Scholar 

  • Chapin, F.S., Autumn, K., Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am Nat, 1993; 142: S78-S92.

    Google Scholar 

  • Couteron, P., Lejeune, O. 2001. Periodic spotted patterns in semiarid vegetation explained by a propagation-inhibition model. J Ecol, 2001; 89: 616–628.

    Google Scholar 

  • Crawley, M. J. Herbivory, the dynamics of animal-plant interactions. Berkeley: University of California Press, 1983.

    Google Scholar 

  • Cropp, R., Gabric, A. 2002. Ecosystem adaptation: do ecosystem maximize resilience? Ecology, 2002; 83: 2019–2026.

    Google Scholar 

  • DiCastri, G., Mooney, H. A. Mediterranean type ecosystems: origin and structure. Ecol. Stud 7. Springer Verlag, Berlin, 1973.

    Google Scholar 

  • Di Castri, F., Goodall, D. W., Spetch, R. L. Mediterranean-type shrubland. Ecosystems of the World. Vol 11. Elsevier, Amsterdam, 1981.

    Google Scholar 

  • Edelin, C. Images de l’architecture des coniferes. These de 3eme cycle. VSTL. Montpellier, 1977.

    Google Scholar 

  • Escós, J., Alados, C. L., Emlen, J. M. Fractal structures and fractal functions as disease indicators. Oikos, 1995; 74: 310–314.

    Google Scholar 

  • Escós, J., Alados, C. L., Emlen, J. M. Grazing impact on plant fractal architecture and fitness of a Mediterranean shrub (Anthyllis cytisoides). Funct Ecol, 1997; 11: 66–78.

    Google Scholar 

  • Farmer, D., Ott, E., Yorke, J. A. The dimension of chaotic attractors. Physica, 1983; 7D: 153–180.

    Google Scholar 

  • Fowler, N. L. Disorderliness in plant communities: comparisons, causes and consequences. Pages 291–306. In: Perspectives on plant competition (Grace J.B., Tilman D., Eds.). Academic Press. Inc. San Diego, USA, 1990.

    Google Scholar 

  • Freeman, D. C., Graham, J. H., Emlen, J. M. Developmental stability in plants: symmetries, stress and epigenesis. Genetica, 1993; 89: 97–119.

    Google Scholar 

  • Freeman, D. C., Graham, J. H., Emlen, J. M., Tracy, M. A., Hough, R. A., Alados, C. L., Escós, J. Plant developmental instability: new measures, applications, and regulations. Pages 367–386. In: Developmental Instability, causes and consequences (Polak, M., Ed.). Oxford University Press, 2003.

    Google Scholar 

  • Graham, J. H., Freeman, D. C., Emlen, J. M. Developmental stability: A sensitive indicator of population under stress. Pages 136–158. In: Environmental Toxicology and Risk Assessment. ASTM STP 1179. (Landis W.G., Hughes J.S., Lewis M.A., Eds.). American Society for Testing and Materials, Philadelphia, 1993.

    Google Scholar 

  • Grime, J. P. Plant strategies and Vegetation Processes. John Wiley, New York, 1979.

    Google Scholar 

  • Hessen, I. Life strategies in a semi-arid grassland community mechanisms of dispersal and reproduction within Lapiedro-martinezii-stipetum tenacissimae (southeastern Spain). Feddes Repertorium, 1999; 110: 265–285.

    Google Scholar 

  • Hirata, M., Fujita, H., Miyazaki, A. Changes in grazing areas and feed resources in a dry area of north-eastern Syria. J Arid Environ, 1998; 40: 319–329.

    Article  Google Scholar 

  • Hobbs, R. J., Huenneke, L. F. Disturbance, diversity, and invasion: Implications for conservation. Conserv Biol, 1992; 6: 324–337.

    Article  Google Scholar 

  • Holling, C. S. Resilience and stability of ecological systems. Annu Rev Ecol Syst, 1973; 4: 1–23

    Article  Google Scholar 

  • Hutchings, M. J., John, E. A., Wijesinghe, D. Towards understanding the consequences of soil heterogeneity for plant populations and communities. Ecology, 2003; 84: 2322–2334.

    Google Scholar 

  • Kershaw, K. A. 1963. Pattern in vegetation and its causality. Ecology, 1963; 44: 377–388.

    Google Scholar 

  • Koehn, R. K., Bayne, B. L. Towards a physiological and genetical understanding of the energetics of the stress response. Biol J Lin Soc, 1989; 37: 157–171.

    Article  Google Scholar 

  • Krummel, J. R., Gardner, R. H., Sugihara, G., O’Neill, R. V., Coleman, P. R. Landscape patterns in a disturbed environment. Oikos, 1987; 48: 321–324.

    Google Scholar 

  • Li, B. L. Fractal geometry applications in description and analysis of patch patterns and patch dynamics. Ecol Model, 2000; 132: 33–50.

    Google Scholar 

  • Martinez Mena, M., Rogel, J. A., Albaladejo, J., Castillo, V. M. Influence of vegetal cover on sediment particle size distribution in natural rainfall conditions in a semiarid environment. Catena, 2000; 38 (3): 175–190.

    Google Scholar 

  • McNaughton, S. J. Ecology of a grazing ecosystem: the Serengety. Ecol Monogr, 1985; 55: 259–294.

    Google Scholar 

  • Milchunas, D. G., Sala, O. E., Lauenroth, W. K. A generalized model of the effect of grazing by large herbivores on grasslands community structure. Am Nat, 1988; 130: 168-198.

    Google Scholar 

  • Milchunas, D. G., Lauenroth, W. K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol Monogr, 1993; 63: 327–366.

    Google Scholar 

  • M⊘ller, A.P., Shykoff, J. A. Morphological developmental stability in plants: patterns and causes. Int J Plant Sci, 1999; 160 (6 Suppl): S135-S146.

    Google Scholar 

  • Nash, M. S., Whitford, W. G., Soyza, A. G., Van Zee, J. W., Havstad, K. M. Livestock activity and Chihuahuan desert annual-plant communities: boundary analysis of disturbance gradients. Ecol Appl, 1999; 9: 814–823.

    Google Scholar 

  • Noy-Meir, I., Gutman, M., Kaplan, Y. Responses of Mediterranean grassland plants to grazing and protection. J Ecol, 1989; 77: 290–310.

    Google Scholar 

  • Olff, H., Ritchie, M. E. Effects of herbivores on grassland plant diversity. TREE, 1998; 13: 261–265.

    Google Scholar 

  • Palmer. A. R., Strobeck, C. Fluctuating asymmetry: measurement, analysis, patterns. Annu Rev Ecol Syst, 1986; 17: 391–421.

    Google Scholar 

  • Peng, C. K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F., Simons, M., Stanley, H. E. Long-range correlations in nucleotide sequences. Nature, 1992; 356: 168–170.

    Article  CAS  Google Scholar 

  • Peterson, G. D. Contagious disturbance, ecological memory, and the emergence of landscape pattern. Ecosystems, 2002; 5: 329–338.

    Article  Google Scholar 

  • Pickett, S. T. A., Cadenasso, M. L. Landscape ecology: spatial heterogeneity in ecological system. Science, 1995; 269: 331–334.

    CAS  Google Scholar 

  • Rebollo, S., Gomez-Sal, A. Recent changes in transhumance systems: effects on mountain pasture management and conservation. Pages 312–317. In: Ecological basis of livestock grazing in Mediterranean ecosystems (Papanastasis V. P., Peter D., eds). European Commission EUR 18308, 1998.

    Google Scholar 

  • Rietkerk, M., Ouedraogo, T., Kumar, L., Sanou, S., Langevelde, F., Kiema, A., Van de Koppel, J., Van Andel, J., Hearne, J., Skidmore, A. K., De Ridder, N., Stroosnijder, L., Prins, H. H. T. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel. Plant and Soil, 2002; 239: 69–77.

    Article  CAS  Google Scholar 

  • Ruiz, J. P., Ruiz, M. Ecological history of transhumance in Spain. Biol Conserv, 1986; 37: 73–86.

    Article  Google Scholar 

  • Sánchez, G, Puigdefábregas, J. Interaction between plant growth and sediment movement in semi-arid slopes. Geomorphology, 1994; 9: 243–260.

    Google Scholar 

  • Sirkou, D., Alados, C. L., Papanastasis, V. P., Vrahnakis, M. S., Iovi, K., Ginner, M. L., Ispikoudis, I. Assessment of grazing effects on Mediterranean shrubs Phillyrea latifolia L. and Cistus monspeliensisL. with developmental instability and fractal dimension. J Med Ecol., 2002; 3: 19–29.

    Google Scholar 

  • Sole Benet, A., Calvo, A., Cerdá, A., Lazaro, R., Pini, R., Barbero, J. Influences of microrelief patterns and plant cover on runoff related processes in badlands from Tabernas (SE Spain). Catena, 1997; 31(1–2): 23–38.

    Google Scholar 

  • Solé, R. V., Alonso, D., McKane, A. Self-organized instability in complex ecosystems. Phil Trans R Soc Lond B, 2002; 357: 667–681.

    Google Scholar 

  • Stachowicz, J. J., Fried, H., Osman, R. W., Whitlatch, R. B. Ecology, 2002; 83: 2575–2590.

    Google Scholar 

  • Stockwell, C. A., Hendry, A. P., & Kinnison, M. T. Conteporary evolution meets conservation biology. TREE, 2003; 18: 94–101.

    Google Scholar 

  • Tan-Kristanto, A., Hoffmann, A., Woods, R., Batterham, P., Cobbett, C., Sinclair, C. Thanslational asymmetry as a sensitive indicator of cadmium stress in plants: a laboratory test with wild-type and mutant Arabidopsis thaliana. New Phytol, 2003; 159: 471–477.

    Article  CAS  Google Scholar 

  • Thomansson, H. Ecomorphologie et port des végétaux. Example de quelques formations ligneuses de Madagascar. Bulletin du Museum de la Historie Naturell Paris 3 sér. N°460. Botanique, 1977; 31: 49–69.

    Google Scholar 

  • Turner, M. D. Spatial and temporal scaling of grazing impact on the species composition and productivity of Sahelian annual grasslands. J Arid Env, 1999; 41: 277–297.

    Article  Google Scholar 

  • Waddington, C. H. The strategy of genes. Allen and Uniwin, London, 1957.

    Google Scholar 

  • Weller, D. E. Self-thinning exponent correlated with allometric measures of plant geometry. Ecology, 1987; 68, 813–821.

    Google Scholar 

  • White, J. Allometric interpretation of the self-thinning rule. J Theor Biol, 1981; 89, 475–500.

    Article  Google Scholar 

  • World Commission on Environment and Development. Our Common Future. Oxford University Press, Oxford, 1987.

    Google Scholar 

  • Wu, H., Sharpe, P. J. H., Walker, J., Penridge, L. K. Ecological field theory: a spatial analysis of resource interference among plants. Ecol Model, 1985; 29: 215–243.

    Article  Google Scholar 

  • Zakharov, V. Animal asymmetry: populations phenogenetic approach. Nauka. Moscow, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Alados, C., ElAich, A., Papanastasis, V., Ozbek, H., Freitas, H. (2006). MONITORING TOOLS TO ASSESS VEGETATION SUCCESSIONAL REGRESSION AND PREDICT CATASTROPHIC SHIFTS AND DESERTIFICATION IN MEDITERRANEAN RANGELAND ECOSYSTEMS. In: Kepner, W.G., Rubio, J.L., Mouat, D.A., Pedrazzini, F. (eds) Desertification in the Mediterranean Region. A Security Issue. NATO Security Through Science Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3760-0_20

Download citation

Publish with us

Policies and ethics