Skip to main content

High Energy Neutrino Astronomy and Underwater Detectors

  • Conference paper
Neutrinos and Explosive Events in the Universe

Part of the book series: NATO Science Series ((NAII,volume 209))

  • 541 Accesses

Abstract

Neutrinos are considered promising probes for high energy astrophysics. Many indications suggest, indeed, that cosmic objects where acceleration of charged particles takes place, e.g. GRBs and AGNs, are the sources of the detected UHE-CRs. Accelerated hadrons, interacting with ambient gas or radiation, can produce HE neutrinos. Differently from charged particles and gamma rays having \(E_\gamma > TeV\), neutrinos can reach the Earth from far cosmic accelerators, traveling in straight line, therefore carrying direct information on the source. Theoretical models indicate that a detection area of ≃ km2 is required for the measurement of HE cosmic ? fluxes. The underwater/ice Cherenkov technique is widely considered the most promising experimental approach to build high energy neutrino detectors. The first generation of underwater/ice neutrino telescope, BAIKAL and AMANDA, despite their limited size have already set first constraints on TeV neutrino production astrophysical models. The quest for the construction of km2 size detectors have already started: in the South Pole the ICECUBE neutrino telescope is under construction; the ANTARES, NEMO and NESTOR Collaborations are working towards the installation of a neutrino telescope in the Mediterranean Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Davis et al. Physical Review Letters, 20:1205, 1968.

    Article  ADS  Google Scholar 

  2. J. Bahcall Physical Review Letters, 12:300, 1964.

    Article  ADS  Google Scholar 

  3. Y. Fukuda et al. Nuclear Instruments and Methods, A501:418, 2003. SuperKamiokande web page http://www-sk.icrru.u-tokyo.ac.jp

    ADS  Google Scholar 

  4. Q.R. Ahmed et al. Physical Review Letters, 12:300, 1964. SNO web page http://www.sno.phy.queensu.ca

    Article  ADS  Google Scholar 

  5. K. Eguchi et al. Physical Review Letters, 90:021802, 2003. KAMLAND webpage http://wwwawa.tohoku.ac.jp/html/KamLAND/index.html

    Article  ADS  Google Scholar 

  6. M. Ambrosio et al. Physics Letters, B566(2-3):35, 2003.

    ADS  Google Scholar 

  7. R. Becker-Szendy et al. Nuclear Instruments and Methods, A(324):363, 1993.

    ADS  Google Scholar 

  8. R.M. Bionta et al. Physical Review Letters, (58):1494, 1987.

    Google Scholar 

  9. K. Hirata et al. Physical Review Letters, (63):16, 1989.

    Google Scholar 

  10. K. Hirata et al. Physical Review Letters, (58):1490, 1987.

    Google Scholar 

  11. J.W. Cronin, T.k. Gaisser and S.P. Swordy Cosmic Rays at the Energy Frontier Scientific American, January 1997.

    Google Scholar 

  12. E. Fermi Physical Review, 75:1169, 1949.

    Article  ADS  MATH  Google Scholar 

  13. A.R. Bell Monthly Not. R. Astr. Soc., 182:147, 1978. for a description see also M.S. Longair High Energy Astrophysics, Vol 1. and 2. Cambridge Univerity Press, 1994.

    ADS  Google Scholar 

  14. V.L. Ginzburg and S.I. Syrovatskii Soviet Physics Uspekhi, 3:504, 1961.

    Article  MathSciNet  ADS  Google Scholar 

  15. K. Mannheim Science, 279:684, 1998.

    Article  ADS  Google Scholar 

  16. E. Waxmann and J. Bahcall, Phisical Review Letters, 78:2292, 1997.

    Article  ADS  Google Scholar 

  17. P.L. Biermann and P.A. Strittmatter Astrophysical Journal, 322:643, 1997.

    Article  ADS  Google Scholar 

  18. G.T. Zatzepin and V.A. Kuzmin Soviet Physics JETP Letters, 4:78, 1966 and K. Greisen Physical Review Letters, 16:748, 1966

    ADS  Google Scholar 

  19. L. Costamante and G. Ghisellini Astronomy and Astrophysics, 56:384, 2002.

    Google Scholar 

  20. Y. Ashie et al. Phisical Review Letters, 93:101801, 2004.

    Article  ADS  Google Scholar 

  21. R. Enamoto et al. Nature, 416:823, 2002.

    Article  ADS  Google Scholar 

  22. F. Aharonian et al. astro-ph/0408145, 2004.

    Google Scholar 

  23. F. Aharonian and A. Neronov astro-ph/0408303, 2004.

    Google Scholar 

  24. A. Levinson and E. Waxman Phisical Review Letters, 87:171101, 2001.

    Article  ADS  Google Scholar 

  25. E. Waxman and J. Bahcall Physical Review, D64:023001, 1999.

    Google Scholar 

  26. K. Mannheim, R.J. Protheroe and J.P Rachen Physical Review, D63:023003, 2001.

    ADS  Google Scholar 

  27. E. Waxman and K. Mannheim Europhysics News, 32(6), 2001.

    Google Scholar 

  28. C. Distefano et al. Astrophysical Journal, B78:2292, 2001.

    Google Scholar 

  29. D. Guetta et al. Astroparticle Physics, 19:403, 2003.

    Article  ADS  Google Scholar 

  30. P. Battacharije et G. Sigl Physics Reports, 327:109, 2000.

    Article  ADS  Google Scholar 

  31. T.K. Gaisser, F. Halzen and T. Stanev Physics Reports, D258:173,1995.

    Article  ADS  Google Scholar 

  32. M.A. Markov and I.M. Zheleznykh Nuclear Physics, 27:385, 1961.

    Article  ADS  Google Scholar 

  33. R. Gandhi et al., Physical Review, D58:93009, 1998.

    ADS  Google Scholar 

  34. S. Razzaque, P. Meszaros, E. Waxman. Physical Review, D69:023001, 2004.

    ADS  Google Scholar 

  35. W. Bednarek Astronomy and Astrophysics, D407:1, 2003.

    Article  ADS  Google Scholar 

  36. P. Sapienza for the NEMO Collaboration. Status of Simulations in NEMO. In VLVvT Workshop Proc., pages 114–118, Amsterdam, 2003. Editor E. de Wolf, NIKHEF, Amsterdam, The Netherlands. Proceedings available at http://www.vlvnt.nl/proceedings

    Google Scholar 

  37. A. Atoyan and C. Dermer Physical Review Letters, 87:221102, 2001. and A. Atoyan and C. Dermer, New Astron. Review, 48:381, 2004.

    Article  ADS  Google Scholar 

  38. C.D. Mobley. Light and Water: radiative transfer in natural waters Academic Press, 1994.

    Google Scholar 

  39. G. Riccobene for the NEMO Collaboration Overview over Mediterranean Optical Properties. In VLV?T Workshop Proc., pages 93–96, Amsterdam, 2003. Proceedings available at http://www.vlvnt.nl/proceedings

    Google Scholar 

  40. V. Balkanov et al. Nuclear Instrumnets and Methods, A498:231, 2003.

    Article  ADS  Google Scholar 

  41. A. Roberts et al. Review of Modern Physics, 64:259, 1992. DUMAND webpage http://www.phys.hawaii.edu/dmnd/dumand.html

    Article  ADS  Google Scholar 

  42. L. Sulak. These Proceedings

    Google Scholar 

  43. I. Belolaptikov et al. Astroparticle Physics, 7:263, 1997.

    Article  ADS  Google Scholar 

  44. R. Wischnewski for the BAIKAL Collaboration. In 28th International Cosmic Ray Conference Proc., Tsukuba, Japan, 2003.

    Google Scholar 

  45. E. Andres et al. Nature, 40:441, 2001. AMANDA web page http://amanda.uci.edu

    Article  ADS  Google Scholar 

  46. see A. Silvestri for the AMANDA Collaboration. In these Proceedings

    Google Scholar 

  47. J. Ahrens et al. Astroparticle Physics, 20:507, 2004. ICECUBE web page http://icecube.wisc.edu

    Article  ADS  Google Scholar 

  48. ANTARES: A Deep Sea Telescoper for High Energy Neutrinos. available at ANTARES web page http://antares.in2p3.fr

    Google Scholar 

  49. E.V. Korolkova for the ANTARES Collaboration. The status of the ANTARES experiment In Proceedings of the CRIS 2004, Catania, Italy, 2004. Proceedings available at http://www.ct.infn.it/ cris.

    Google Scholar 

  50. M.S. Musumeci for the NEMO Collaboration Mechanical Structures for a Deep Seawater Neutrino Detector. In VLV?T Workshop Proc., pages 153–156, Amsterdam, 2003. Proceedings available at http://www.vlvnt.nl/proceedings

    Google Scholar 

  51. D.J.L Bailey, PhD Thesis, University of Oxford, UK, 2003.

    Google Scholar 

  52. E. Migneco for the NEMO Collaboration. NEMO: Status of the project In Proceedings of the CRIS 2004, Catania, Italy, 2004. Proceedings available at http://www.ct.infn.it/c˜ris. NEMO web page http://nemoweb.lns.infn.it

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Migneco, E., Riccobene, G. (2005). High Energy Neutrino Astronomy and Underwater Detectors. In: Shapiro, M.M., Stanev, T., Wefel, J.P. (eds) Neutrinos and Explosive Events in the Universe. NATO Science Series, vol 209. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3748-1_16

Download citation

Publish with us

Policies and ethics