Skip to main content

Methods for studying nodule development and function

  • Chapter
Lotus japonicus Handbook

Abstract

Interaction between Lotus japonicus and Mesorhizobium loti results in the development of a specialised organ: the root nodule. Lotus root nodules develop from de-differentiated root cells, which form a meristem that undergoes a limited number of cell divisions. The result is a determinate, roughly spherical organ. Invading rhizobia colonise cells in the nodule cortex, each of which ultimately accommodates many thousands of nitrogen-fixing bacteria called bacteroids. Differentiation of both plant and bacterial cells is crucial for symbiotic nitrogen fixation (SNF), and genetic defects in either partner can compromise SNF. Identification of Lotus and M. loti genes that are necessary for nodule development and function is a major focus of current research. This chapter briefly describes the major steps in Lotus nodule development and differentiation, before presenting methodologies that are used routinely to characterise these processes in wild type and mutant interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banba M, Siddique ABM, Kouchi H, Izui K, Hata S (2001) Lotus japonicus forms early senescent root nodules with Rhizobium etli. Molecular Plant-Microbe Interactions 14, 173–180.

    CAS  PubMed  Google Scholar 

  • Berleth T, Jurgens G (1993) The role of the monopteros gene in organizing the basal body region of the Arabidopsis embryo. Development 118, 575–587.

    Google Scholar 

  • Bisseling T, Moen AA, van den Bos RC, van Kammen A (1980) The sequence of appearance of leghaemoglobin and nitrogenase components I and II in root nodules of Pisum sativum L. Journal of General Microbiology 118, 377–381.

    CAS  Google Scholar 

  • Broughton. Wj, and Dilworth MJ. (1971). Control of Leghaemoglobin Synthesis in Snake Beans. Biochemical Journal 125, 1075–1080.

    CAS  PubMed  Google Scholar 

  • Colebatch G, Kloska S, Trevaskis B, Freund S, Altmann T, and Udvardi MK. (2002b). Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays. Molecular Plant-Microbe Interactions 15, 411–420.

    CAS  PubMed  Google Scholar 

  • Czechowski T, Bari RP, Stitt M, Scheible W-R, and Udvardi MK (2004) Real-time RT-PCR profiling of over 1,400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root-and shoot-specific genes. The Plant Journal 38, 366–79.

    Article  CAS  PubMed  Google Scholar 

  • Desbrosses G, Kopka C, Ott T, and Udvardi MK. (2004) Lotus japonicus LjKUP encodes a potassium transporter of the plasma membrane and is induced significantly during nodule organogenesis. Molecular Plant-Microbe Interactions 17, 789–797.

    CAS  PubMed  Google Scholar 

  • Egli MA, Larson RJ, Hruschka WR, and Vance CP (1991) Synthesis of nodulins and nodule-enhanced polypeptides by plant gene-controlled ineffective alfalfa nodules. Journal of Experimental Botany 42, 969–977.

    CAS  Google Scholar 

  • Gerrits PO, and Smid L (1983) A new, less toxic polymerization system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial sections. Journal of Microscopy 132, 81–85.

    CAS  PubMed  Google Scholar 

  • Handberg K, and Stougaard J. (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. The Plant Journal 2, 487–496.

    Article  Google Scholar 

  • Hardy RWF, Holsten RD, Jackson EK, and Burns RC (1968) The acetylene — ethylene assay for N 2 fixation: Laboratory and field evaluation. Plant Physiology 43, 1185–1207.

    CAS  Google Scholar 

  • Harris JM, Wais R, and Long SR. (2003) Rhizobium-induced calcium spiking in Lotus japonicus. Molecular Plant-Microbe Interactions 16, 335–341.

    CAS  PubMed  Google Scholar 

  • Imaizumi-Anraku H, Kouchi H, Syono K, Akao S, and Kawaguchi M (2000) Analysis of ENOD40 expression in alb1, a symbiotic mutant of Lotus japonicus that forms empty nodules with incompletely developed nodule vascular bundles. Molecular and General Genetics 264, 402–410.

    CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, and Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mezorhizobium loti. DNA Research 7, 331–338.

    CAS  PubMed  Google Scholar 

  • Kato T, Kawashima K, Miwa M, Mimura Y, Tamaoki M, Kouchi H, and Suganuma N (2002) Expression of genes encoding late nodulins characterized by a putative signal peptide and conserved cysteine residues is reduced in ineffective pea nodules. Molecular Plant-Microbe Interactions 15, 129–137.

    CAS  PubMed  Google Scholar 

  • Kawashima K, Suganuma N, Tamaoki M, and Kouchi H (2001) Two types of pea leghaemoglobin genes showing different O 2 -binding affinities and distinct patterns of spatial expression in nodules. Plant Physiology 125, 641–651.

    Article  CAS  PubMed  Google Scholar 

  • Krussel L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Tabata S, de Bruijn F, Pajuelo E, Sandal N, and Stougaard J. (2002) Shoot control of nodule organogenesis and root development is mediated by a serine/threonine receptor kinase. Nature 420, 422–426.

    Google Scholar 

  • Lopez-Lara I, van den Berg JDJ, Thomas-Oates JE, Glushka J, Lugtenberg BJJ, and Spaink, HP. (1995) Structural identification of the lipo-chitin oligosaccharide nodulation signals of Rhizobium loti. Molecular. Microbiology 15, 627–638.

    CAS  PubMed  Google Scholar 

  • Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, and Stougaard J. (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425, 637–640.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, and Kawaguchi M (2002) HAR1-mediates systemic regulation of symbiotic organ development. Nature 420, 426–429.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura R, Ohmori M, and Kawaguchi M (2002) The novel symbiotic phenotype of enhanced-nodulating mutant of Lotus japonicus: astray mutant is an early nodulating mutant with wider nodulation zone. Plant & Cell Physiology 43, 853–859.

    CAS  Google Scholar 

  • Niwa S, Kawaguchi M, Imaizumi-Anraku H, Chechetka SA, Ishizaka M, Ikuta A, and Kouchi H. (2001) Responses of a model legume Lotus japonicus to lipochitin oligosaccharide nodulation factors purified from Mesorhizobium loti JRL501. Molecular Plant-Microbe Interactions 14, 848–856.

    CAS  PubMed  Google Scholar 

  • Olsthoorn MMA, Lopez-Lara IM, Peterson BO, Bock K, Haverkamp J, Spaink HP, and Thomas-Oates JE. (1998) Novel branched Nod factor structure results from alpha-(1->3) fucosyl transfer activity: The major lipo-chitin oligosaccharides from Mesorhizobium loti strain NZP2213-bear alpha-(1->3) fucosyl substituent on a nonterminal backbone residue. Biochemistry 37, 9024–9032.

    CAS  PubMed  Google Scholar 

  • Purdom D, Trese AT (1995) Morphological and molecular characteristics of host-conditioned ineffective root nodules in cowpea. Plant Physiology 109, 239–244.

    CAS  PubMed  Google Scholar 

  • Rodutoiu, S, Madsen, LH, Madsen, EB, Felle, HH, Umehara, Y, Gronlund, M, Sato, S, Nakamura, Y, Tabata, S, Sandal, N, and Stougaard, J. (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425, 585–592.

    Google Scholar 

  • Romanov VI, Gordon AJ, Minchin FR, Witty JF, Skot L, James CL, Borisov AY, and Tikhonovich IA (1995) Anatomy, physiology and biochemistry of root nodules of Sprint-2 Fix-, a symbiotically defective mutant of pea (Pisum sativum L). Journal of Experimental Botany 46, 1809–1816.

    CAS  Google Scholar 

  • Ruzin SE (1999) Infiltration and embedding tissues. In: Plant Microtechnique and Microscopy. Oxford University Press, NY, pp. 61–72.

    Google Scholar 

  • Schauser L, Roussis A, Stiller J, and Stougaard J. (1999). A plant regulator controlling development of symbiotic root nodules. Nature 402, 191–195.

    CAS  PubMed  Google Scholar 

  • van Spronsen PC, Gronlund M, Bras CP, Spaink H, and Kijne JW. (2001) Cell biological changes of outer cortical root cells in early determinate nodulation. Molecular Plant-Microbe Interactions 14, 839–847.

    PubMed  Google Scholar 

  • Suganuma, N, Nakamura, Y, Yamamoto, M, Ohta, T, Koiwa, H, Akao, S, and Kawaguchi, M. (2003) The Lotus japonicus Sen1 gene controls rhizobial differentiation into nitrogen-fixing bacteroids in nodules. Molecular Genetics and Genomics 269, 312–320.

    Article  CAS  PubMed  Google Scholar 

  • Suganuma N, Yamauchi H, and Yamamoto K (1995a) Enhanced production of ethylene by soybean roots after inoculation with Bradyrhizobium japonicum. Plant Science 111, 163–168.

    Article  CAS  Google Scholar 

  • Suganuma N, Tamaoki M, and Kouchi H (1995b) Expression of nodulin genes in plant-determined ineffective nodules of pea. Plant Molecular Biology 28:1027–1038.

    Article  CAS  PubMed  Google Scholar 

  • Szczyglowski K, and Amyot L. Symbiosis, Inventiveness by Recruitment? (2003) Plant Physiology 131, 935–940.

    Article  CAS  PubMed  Google Scholar 

  • Szczyglowski K, Shaw S.R, Wopereis J, Hamburger D, Copeland S, Dazzo F.B, and de Bruijn FJ. (1998) Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus. Molecular Plant-Microbe Interactions 11, 684–697.

    CAS  Google Scholar 

  • Tansengco ML, Hayashi M, Kawaguchi M, Imaizumi-Anraku H, and Murooka Y. (2003) crinkle, a novel symbiotic mutant that affects the infection thread growth and alters the root hair, trichome, and seed development in Lotus japonicus. Plant Physiology 131, 1054–1063.

    Article  CAS  PubMed  Google Scholar 

  • Towbin H, Staehelin T, and Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences USA 76, 4350–4353.

    CAS  Google Scholar 

  • Vessey JK. (1994) Measurement of nitrogenase activity in legume root nodules: In defence of the acetylene reduction assay. Plant and Soil 158, 151–162.

    Article  CAS  Google Scholar 

  • Voroshilova VA, Boesten B, Tsyganov VE, Borisov AY, Tikhonovich IA, and Priefer UB. (2001) Effect of mutations in Pisum sativum L. genes blocking different stages of nodule development on the expression of late symbiotic genes in Rhizobium leguminosarum bv. viciae. Molecular Plant-Microbe Interactions 14, 471–476.

    CAS  PubMed  Google Scholar 

  • Wopereis J, Pajuelo E, Gresshoff PM, Dazzo FB, de Bruijn FJ, Stougaard J, and Szczyglowski K. (2000) Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. The Plant Journal 23, 97–114.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Udvardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Hayashi1, M. et al. (2005). Methods for studying nodule development and function. In: Márquez, A.J. (eds) Lotus japonicus Handbook. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3735-X_4

Download citation

Publish with us

Policies and ethics