Skip to main content

Drought and saline stress

  • Chapter

Abstract

This chapter examines the response of L. japonicus plants to different types of osmotic stress in the context of the changes most commonly noticed in other plant species. Up to 12-fold proline accumulation was detected in L. japonicus plants in relation to drought and salt stress treatments. In parallel to the accumulation of proline as an osmolyte, the above mentioned stress conditions produced in L. japonicus an increased level of oxidative damage as evaluated through measurement of thio barbituric acid reactive substances (TBARS). Characterisation of the L. japonicus response to osmotic stress is a prerequisite for the use of this plant as a model legume to assist in applied projects aimed to improve salt and drought tolerance of other closely related Lotus species. Different Lotus species are currently used to improve both pastures and hay quality wherein other forage legume species are not suitable (see chapter 1.2). However, many of these Lotus species are not well adapted to high temperature, salt, or drought.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alia A, Mohanty P, and Matysk J. (2001). Effect of proline in the production of synglet oxygen. Amino acid 21, 195–200.

    CAS  Google Scholar 

  • Blumenthal M and McGraw R. (1999). Lotus adaptation, use and management. In: Trefoil: The science and technology of Lotus. (Beuselinck P, Ed.). American Society of Agronomy, pp. 97–120.

    Google Scholar 

  • Bors W, Langebartels C, Michel C, Sandermann JH. (1989). Polyamines as radicals scavengers and protectants against ozone damage. Phytochemistry 28, 1589–1595.

    CAS  Google Scholar 

  • Borsani O, Díaz P, Agius F, Valpuesta V, and Monza J. (2001). Water stress generates an oxidative streess through the induction of a specific Cu/Zn superoxide dismutase in Lotus corniculatus leaves. Plant Science 161, 757–763.

    Article  CAS  Google Scholar 

  • Borsani O, Díaz P, and Monza J. (1999). Proline is involved in water stress responses of Lotus corniculatus nitrogen fixing and nitrate fed plants. Journal of Plant Physiology 155, 269–273.

    CAS  Google Scholar 

  • Borsani O, Valpuesta V, and Botella J. (2003). Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tissue and Organ Culture 73, 101–115.

    Article  CAS  Google Scholar 

  • Bowler C, Van Montagnou M and Inzé D. (1992). Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology 43, 83–116.

    CAS  Google Scholar 

  • Boyer J. (1982). Plant productivity and environment. Science 218, 443–448.

    Google Scholar 

  • Bray E. (1993). Molecular responses to water deficit. Plant Physiology 103, 1035–1040.

    CAS  PubMed  Google Scholar 

  • Carter E, Theodorus M, and Morris P. (1997). Responses of Lotus corniculatus to environmental change I. Effect of elevated CO 2 , temperature and drought on growth and plant development. New Phytologist 136, 245–253.

    Article  Google Scholar 

  • Glenn E, Brown J, and Blumwald E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Science 18, 227–255.

    Google Scholar 

  • Handberg K, and Stougaard J. (1992). Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. The Plant Journal 2, 487–496.

    Article  Google Scholar 

  • Hanson A, and Hitz W. (1982). Metabolics responses of mesophytes to plant water deficits. Annual Review of Plant Physiology 33, 163–203.

    Article  CAS  Google Scholar 

  • Hasegawa M, Bressan R, Zhu J-K, and Bhonert H. (2000). Plant Cellular and Molecular Responses to High Salinity. Annual Reiew of Plant Physiology 51, 493–499.

    Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, and Verma D. (2000). Removal of feedback inhibition of pyrroline 5 carboxylate reductase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology 122, 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  • Kramer P. (1983). Water relations of plants. Academic Press, 489 pp.

    Google Scholar 

  • Mattioni, C, Lacerenza, N. Troccoli, A, De Leonardis, A, and Di Fonzo, N. (1997). Water and salt stress-induced alterations in proline metabolism of Triticum durum seedlings. Physiol. Plant. 101:787–792.

    Article  CAS  Google Scholar 

  • Niu X, Bressan R, Hasegawa P, and Pardo J. (1995). Ion homoestasis in NaCl stress environments. Plant Physiology 109, 735–742.

    CAS  PubMed  Google Scholar 

  • Olsson M, Nilsson K, Liljenberg C, and Hendry G. (1996). Drought stress in seedlings: lipid metabolism and lipid peroxidation during recovery from drought in Lotus corniculatus and Cerastium fontanum. Physiologia Plantarum 96, 577–584.

    Article  CAS  Google Scholar 

  • Papadopoulos Y and Kelman W. (1999). Traditional breeding of Lotus species. In: Trefoil: The science and technology of Lotus (Beuselinck P, Ed.). American Society of Agronomy pp 187–198.

    Google Scholar 

  • Radi, R, Peluffo, G, Alvarez, M, Naviliat, M, and Cayota, M. (2001). Unravelling peroxynitrite formation in biological systems. Free Radical Biology & Medicine 230, 463–488.

    Google Scholar 

  • Rodríguez-Navarro A. (2000). Potassium transport in fungi and plants. Biochimica and Biophysica Acta 1469, 1–30.

    Google Scholar 

  • Sanada Y, Ueda H, Kuribayashi K, Andoh T, Hayashi F, Tamai N, and Wada K. (1995). Novel light-dark change of proline levels in halophythe (Mesembryanthemum crystallinum l.) and glycophytes (Hordeum vulgare L and Triticum aestivum L.): Leaves and roots under salt stress. Plant Cell Physiology 36, 965–970.

    CAS  Google Scholar 

  • Sánchez-Díaz M y Aguirreolea J. (1993). Efectos fisiológicos que causa la falta persistente de agua en los cultivos. Phytoma España 51, 26–36.

    Google Scholar 

  • Serrano R, Mulet JM, Ríos G, Márquez JA, de Larriona IF, Leube MP, Mendizabal I, Pascual-Ahuir A, Proft, MRR, and Montesinos C. (1999). A glimpse of the mechanism of ion homeostasis during salt stress. Journal of Experimental Botany 50, 1023–1036.

    Article  CAS  Google Scholar 

  • Smirnof N, and Cumbes Q. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemsitry 28, 1057–1060.

    Google Scholar 

  • Smirnoff N, and Stewart G. (1985). Nitrate assimilation and traslocation by higher plants: Comparative physiology and ecological consequences. Physiologia Plantarum 64, 133–140.

    CAS  Google Scholar 

  • Wheeler D, Edmeades D, Christie R, and Gardner R. (1992). Effect of aluminium on the growth of 34 plant species: a summary of results obtained in low ionic strength solution culture. Plant Soil 146, 61–66.

    CAS  Google Scholar 

  • Zhu JK, Hasegawa PM, and Bressan RA. (1997). Molecular aspects of osmotic stress. Critical Reviews in Plant Science 16, 253–277.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Márquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Díaz, P., Monza, J., Márquez, A. (2005). Drought and saline stress. In: Márquez, A.J. (eds) Lotus japonicus Handbook. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3735-X_3

Download citation

Publish with us

Policies and ethics