Skip to main content

Part of the book series: Topics in Safety, Risk, Reliability and Quality ((TSRQ,volume 8))

Abstract

Directive 96/82/EC (better known as “Seveso-II” Directive) on the control of major hazards caused by dangerous substances leads to relevant innovations in the safety requirements of process plants, that have a relevant impact on risk management. Among these are the inclusion of substances likely to be formed in the loss of control of chemical processes in site inventory, the evaluation of domino accident hazard, and the requirement of land-use planning criteria. The development of land-use planning (LUP) criteria for the minimisation of the industrial risk to which the population is exposed calls for the application of quantitative area risk analysis (QARA) techniques. However, the QARA techniques currently available are mainly based on the modification of risk analysis techniques originally developed for the major accident risk assessment of single risk sources. Thus, these techniques show important limitations, mainly in the assessment of the effects on the global industrial risk due to the contemporary presence of different risk sources in a narrow area. Therefore, the application of QARA techniques to land use planning in the framework of “Seveso-II” Directive requires the further development of procedures to assess specific problems as the presence of linear risk sources due to the transport of hazardous substances, the release of substances formed in the loss of control of chemical processes, domino accident hazards. This contribution addresses two of the open technological problems that arise in the application of QARA techniques to LUP. The methodologies available and the research needs in the quantitative assessment of domino hazards and of the hazards deriving from the release of dangerous substances formed in the loss of control of chemical processes are discussed. The potential impact on LUP of these hazards is also evidenced, discussing the results of two Italian case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Central Environmental Control Agency Rijnmond: “Risk Analysis of Six Potentially Industrial Objects in the Rijnmond Area, a Pilot Study — A Report to the Rijnmond Public Authority”, D. Reidel Publishing Company, Dortrecht (NL): 1982

    Google Scholar 

  2. Health and Safety Executive: “Canvey: Summary of an investigation of potential hazards from operations in the Canvey Island/Thurrock Area”, HM Stationery Office, London (UK): 1982

    Google Scholar 

  3. D. Egidi, F.P. Foraboschi, G. Spadoni, A. Amendola: “The ARIPAR project: an analysis of the major accident risks connected with industrial and trasnportation activities in the Ravenna area”, Reliability Engineering and System Safety 49:75 (1995)

    Article  Google Scholar 

  4. G. Spadoni, D. Egidi, S. Contini: “Through Aripar-GIS the quantified area risk analysis supports land-use planning activities”. J. Hazardous Materials 71:423 (2000)

    Article  Google Scholar 

  5. S. Contini: “Rischio d’area: metodologia e software ARIPAR”, Rapporto POP Sicilia D/N/17/02.1/sc, 1996

    Google Scholar 

  6. C. Delvosalle: “Domino effects phenomena: definition, overview and classification, Proc. European seminar on domino effects, Leuven (B): 1996, p.11.

    Google Scholar 

  7. C. Delvosalle: “A methodology for the identification and evaluation of domino effects”, Rep. CRC/MT/003, Belgian Ministry of Employment and Labour, Bruxelles (B): 1998.

    Google Scholar 

  8. F.I. Khan, S.A. Abbasi: “Models for domino effect analysis in chemical process industries”. Proc. Safety Prog. 17:107 (1998)

    Article  Google Scholar 

  9. F.P. Lees: “Loss Prevention in the process industries” (II ed.), Butterwoth-Heineman, Oxford (UK): 1996

    Google Scholar 

  10. S. Contini, S. Boy, M. Atkinson, N. Labath, M. Banca, J.P. Nordvik: “Domino effect evaluation of major industrial installations: a computer aided methodological approach”, Proc. European seminar on domino effects, Leuven (B): 1996, p.1

    Google Scholar 

  11. P. Latha, G. Gautam, K.V. Raghavan: “Strategies for tha quantification of thermally initiated cascade effects”, J. Loss Prev.Proc. Ind. 5:18 (1992)

    Article  Google Scholar 

  12. R.L. Greenwood: “Research into the methodologies and criteria for domino effects”, Proc. European seminar on domino effects, Leuven (B): 1996, p.19

    Google Scholar 

  13. M. Morris, A. Miles, J. Copper: “Quantification of escalation effects in offshore quantitative risk assessment”, J. Loss Prev.Proc. Ind. 7:337 (1994)

    Article  Google Scholar 

  14. G.N. Pettitt, R.R. Schumacher, L.A. Seeley “Evaluating the probability of major hazardous incidents as a result of escalation events”, J. Loss Prev.Proc.Ind. 6:37 (1993)

    Article  Google Scholar 

  15. D.F. Bagster, R.M. Pitblado: “The estimation of domino incident frequencies: an approach”, Proc. Safety Environ. 69:196 (1991)

    Google Scholar 

  16. Center for Chemical Process Safety: “Guidelines for chemical process quantitative risk analysis” (II Ed.), A.I.Ch.E., New York: 2000.

    Google Scholar 

  17. V. Cozzani, S. Zanelli: “An Approach to the Assessment of Domino Accidents Hazard in Quantitative Area Risk Analysis”. Proc. 10th Int. Symp. on Loss Prev. and Safety Promotion in the Proc. Ind., Elsevier, Amsterdam: 2001, p.1263

    Google Scholar 

  18. P.H. Bottelberghs, B.J.M. Ale: “Consideration of Domino effects in the Implementation of the Seveso II Directive in the Netherlands”, European Seminar on Domino Effects, Leuven (B), 1996

    Google Scholar 

  19. V. J. Clancey: “Diagnostic features of explosion damage”, 6th Int. Meeting of Forensic Sciences, Edinburgh, 1972

    Google Scholar 

  20. S. Glasstone: “The effects of nuclear weapons”, Atom. Energy Comm, Washington DC, 1962

    Google Scholar 

  21. W.C. Brasie, D.W. Simpson: “Guidelines for estimating explosion damage”, Loss Prevention 2,91 (1968)

    Google Scholar 

  22. G. L. Wells: “Safety in Process Plant Design”, Wiley, Chichester, 1980, p 170

    Google Scholar 

  23. V. Cozzani, F. Gozzi, A. Mazzoni, S. Zanelli: “Assessment of probabilistic models for the estimation of accident propagation hazards”. Proc. Eur.Conf. Safety and Reliability, MG, Torino 2001, p.807

    Google Scholar 

  24. F.I. Khan, S.A. Abbasi: “An assessment of the likelihood of occurence, and the damage potential of domino effect in a typical cluster of industries” J. Loss Prev.Proc.Ind. 14:283 (2001)

    Article  Google Scholar 

  25. A. Mazzoni: “Metodologie quantitative per l’analisi sistematica dell’effetto domino”, Thesis in Chemical Engineering, University of Pisa (I), 2001

    Google Scholar 

  26. N.A. Eisenberg, C.J. Lynch, R.J. Breeding: “Vulnerability model: a simulation system for assessing damage resulting from marine spills”, Rep. CG-D-136-75, Enviro Control Inc., Rockville, MD, 1975

    Google Scholar 

  27. F.I. Khan, S.A. Abbasi: “DOMIEFFECT (DOMIno eFFECT): a new software for domino effect analysis in chemical process industries”. Environment Modelling and Software, 13:163 (1998)

    Article  Google Scholar 

  28. V. Cozzani, A. Amendola, S. Zanelli: “The formation of hazardous substances in industrial accidents”. La Chimica e l’Industria 79:1357 (1997)

    Google Scholar 

  29. V. Cozzani, S. Zanelli, A. Amendola and M. Smeder: “EUCLIDE database for the study of chemical reaction hazards”. Proc. Annual Meeting of the Society for Risk Analysis, Center for Risk Research, Stockholm, Sweden, 1997, p.224.

    Google Scholar 

  30. V. Cozzani, S. Zanelli: “EUCLID: A study on the Emission of Unwanted Compounds Linked to Industrial Disasters”. EUR 17351 EN, European Commission, 1997

    Google Scholar 

  31. V. Cozzani, S. Zanelli: “Precursors of dangerous substances formed in the loss of control of chemical systems”. J. Haz. Mat. 65:93 (1999)

    Article  Google Scholar 

  32. J. Wei, J.C.W. Kuo: “A lumping analysis in monomolecular reaction systems: analysis of the exactly lumpable system”, Ind.Eng.Chem. Fundam. 8:114 (1969)

    Article  Google Scholar 

  33. P.G. Coxson, K.B. Bischoff: “Lumping strategy: 1. Introductory techniques and application of cluster analysis” Ind.Eng.Chem.Res. 26:1239 (1987)

    Article  Google Scholar 

  34. D.K. Liguras, D.T. Allen: “Comparison of lumped and molecular modeling of hydropyrolysis” Ind.Eng.Chem.Res. 31:45 (1992)

    Article  Google Scholar 

  35. V. Cozzani, M. Smeder, S. Zanelli: “Formation of hazardous compounds by unwanted reactions in industrial accidents” J.Haz.Mat. 63:131 (1998)

    Article  Google Scholar 

  36. S.T. Cole, P.J. Wicks: “Proceedings of II Industrial Fires Workshop”, EUR 15967 EN, European Commission, Luxembourg: 1995.

    Google Scholar 

  37. K.E. Petersen, B. Rasmussen: “Industrial Fires III”, EUR 17477 EN, European Commission, Luxembourg, 1996.

    Google Scholar 

  38. M. Molag, H. Bartelds, D. De Weger: “Toxic products from pesticide fires”, Report 92-366/112327-17897, TNO, Apeldoorn, The Netherlands, 1992

    Google Scholar 

  39. L. Smith-Hansen: “Toxic hazards from chemical warehouse fires”, Report RISØ-R-713(EN), RISØ National Laboratory, Roskilde, Denmark, 1994

    Google Scholar 

  40. C. Costa, G. Treand, F. Moineault, J.L. Gustin: Assessment and toxic effects of chemical and pesticide pool fires based on experimental data obtained using the Tewarson apparatus”. Proc. 10th Int. Symp. on Loss Prevention and Safety Promotion in the Process Industries, Elsevier, Amsterdam: 2001, p.867

    Google Scholar 

  41. F. Barontini, V. Cozzani, L. Petarca: “Thermal stability and decomposition products of hexabromocyclododecane”. Ind. Eng. Chem.Res. 40:3270 (2001)

    Article  Google Scholar 

  42. J.D. Clark, A.S. Shah, J.C. Peterson, L. Patelis, R.J.A. Kersten, A.H. Heemskerk, M. Grogan, S. Camden: “The thermal stability of ethyl diazoacetate”, Thermochimica Acta, in press (2002)

    Google Scholar 

  43. M. Mossa Verre: “Analisi del rischio per l’area di Livorno e strategie di intervento”, ARPAT, Florence (I): 2000

    Google Scholar 

  44. V. Cozzani, L. Foschi, G. Francalanza, S. Zanelli, in “Risk management in the European Union of 2000”, G.A. Papadakis (Ed.); EUR 19664 EN, European Commission, Luxembourg: 2001; p.411

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Cozzani, V., Zanelli, S. (2005). Quantitative Area Risk Analysis: Available Tools and Open Problems. In: Gheorghe, A.V. (eds) Integrated Risk and Vulnerability Management Assisted by Decision Support Systems. Topics in Safety, Risk, Reliability and Quality, vol 8. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3721-X_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3721-X_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3451-0

  • Online ISBN: 978-1-4020-3721-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics