Skip to main content

Constitutive and Induced Resistance Genes

  • Chapter
Plant Resistance to Arthropods
  • 938 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  • Agrawal, A. A. 1998. Induced responses to herbivory and increased plant performance. Science. 279:1201–1202.

    Article  CAS  PubMed  Google Scholar 

  • Agrawal, A. A. 1999. Induced seasonal responses to herbivory in wild radish: Effects on several herbivores and plant fitness. Ecology. 80:1713–1723.

    Google Scholar 

  • Ahn, S. N., J. A. Anderson, M. E. Sorrells, and S. D. Tanksley. 1993. Homoeologous relationships of rice, wheat and maize chromosomes. Mol. Gen. Genet. 241:483–490.

    Article  CAS  PubMed  Google Scholar 

  • Alam, S. N., and M. B. Cohen. 1998. Detection and analysis of QTLs for resistance to the brown planthopper, Nilaparvata lugens, in a doubled-haploid rice population. Theor. Appl. Genet. 97:1370–1379.

    Article  CAS  Google Scholar 

  • Alborn, T., T. C. J. Turlings, T. H. Jones, G. Stenhagen, J. H. Loughrin, and J. H. Tumlinson. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science. 276:945–949.

    Article  CAS  Google Scholar 

  • Alfaro, R. I. 1995. An induced defense reaction in white spruce to attack by the white pine weevil, Pissodes strobi. Can. J. Forest Res. 25:1725–1730.

    Google Scholar 

  • Alonso, J.M., T. Hirayama, G. Roman, S. Nourizadeh, and J. R. Ecker. 1999. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science. 284:2148–2152.

    Article  CAS  PubMed  Google Scholar 

  • Amudhan, S., U. P. Rao, and J. S. Bentur. 1999. Total phenol profile in some rice varieties in relation to infestation by Asian rice gall midge Orseolia oryzae (Wood-Mason). Current Sci. 76:1577–1580.

    CAS  Google Scholar 

  • Anderson, P., and H. Alborn. 1999. Effects on oviposition behaviour and larval development of Spodoptera littoralis by herbivore-induced changes in cotton plants. Entomol. Exp. Appl. 92:45–51.

    Article  Google Scholar 

  • Argandona, V.H., M. Chaman, L. Cardemil, O. Munoz, G. E. Zuniga, and L. J. Corcuera. 2001. Ethylene production and peroxidase activity in aphid-infested barley. J. Chem. Ecol. 27: 53–68.

    CAS  PubMed  Google Scholar 

  • Arimura, G.-I., K. Tashiro, S. Kuhara, T. Nishioka, R. Ozawa, and J. Takabayashi. 2000. Gene responses in bean leaves induced by herbivory and herbivore-induced volatiles. Biochem. Biophys. Res. Commun. 277:305–310.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin, I. T. 1989. The mechanism of damage-induced alkaloids in wild tobacco. J. Chem Ecol. 15:1661–1669.

    Article  CAS  Google Scholar 

  • Baldwin, I. T. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc. Natl. Acad. Sci. USA. 95:8113–8118.

    CAS  PubMed  Google Scholar 

  • Baldwin, I. T., Z.-P. Zhang, N. Diab, T. E. Ohnmeiss, E. S. McCloud, G. Y. Lynds, and E. A. Schmelz. 1997. Quantification, correlations and manipulation of would-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta. 210:397–404.

    Google Scholar 

  • Baldwin, I. T., and J. C. Schultz. 1983. Rapid changes in tree leaf chemistry induced by damage: Evidence for communication between plants. Science. 221:277–279.

    CAS  Google Scholar 

  • Bell, E., R. A. Creelman, and J. E. Mullet. 1995. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc. Natl. Acad. Sci. USA. 92:8675–8679.

    CAS  PubMed  Google Scholar 

  • Bennetzen, J. L., and M. Freeling. 1993. Grasses as a single genetic system: Genome composition, collinearity, and compatibility. Trends Genet. 9:259–261.

    CAS  PubMed  Google Scholar 

  • Bergvinson, D. J., J. T. Arnason, and L.N. Pietrzak. 1994. Localization and quantification of cell wall phenolics in European corn borer resistant and susceptible maize inbreds. Can. J. Bot. 72:243–1249.

    Google Scholar 

  • Bergey, D. R., G. A. Howe, and C. A. Ryan. 1996. Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc. Natl. Acad. Sci. USA. 93:12053–12058.

    Article  CAS  PubMed  Google Scholar 

  • Bi, J. L., and G. W. Felton. 1995. Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J. Chem. Ecol. 21:1511–1530.

    Article  CAS  Google Scholar 

  • Bi, J. L., J. B. Murphy, and G. W. Felton. 1997. Antinutritive and oxidative components as mechanisms of induced resistance in cotton to Helicoverpa zea. J. Chem. Ecol. 23:97–117.

    CAS  Google Scholar 

  • Bodnaryk, R. P. 1992. Effects of wounding on glucosinolates in the cotyledons of oilseed rape and mustard. Phytochem. 31:2671–2677.

    Article  CAS  Google Scholar 

  • Boland, W., J. Hopke, and J. Piel. 1998. Biosynthesis of jasomates. In: P. Schreier, M. Herderich, H.-U. Humpf and W. Schwab (Eds.), Natural Product Analysis; Chromotography, Spectroscopy, Biological Testing. Friedr. Vieweg, Braunschweig/Wiesbaden. pp. 255–269.

    Google Scholar 

  • Bostock, R.M. 1999. Signal conflicts and synergies in induced resistance to multiple attackers. Physiol. Mol. Plant Path. 55:99–109.

    Google Scholar 

  • Botha, A.M., M.A.C. Nagel, A. J. Van der Westhuizen, and F. C. Botha. 1998. Chitinase isoenzymes in near-isogenic wheat lines challenged with Russian wheat aphid, exogenous ethylene and mechanical wounding. Bot. Bull. Acad. Sin. 39:99–106.

    CAS  Google Scholar 

  • Bowels, D. J. 1990. Defense-related proteins in higher plants. Ann. Rev. Biochem. 58:837–907.

    Google Scholar 

  • Boyko, E. V., and C. M. Smith 2004. Expression of Pto and Pti-like genes is involved in wheat resistance response to aphid attack. In: Plant & Animal Genome XII. Final Abstracts Guide. Workshop Abstracts. January 10–14, 2004, San Diego, CA, W200.

    Google Scholar 

  • Boyko, E. V., K. S. Gill, L. Mickelson-Young, S. Nasuda, W. J. Raupp, J. N. Ziegler, S. Singh, D. S. Hassawi, A. K. Fritz, D. Namuth, N. L. V. Lapitan, and B. S. Gill. 1999. A high-density genetic linkage map of Aegilops tauschii, the DS-genome progenitor of bread wheat. Theor. Appl. Genet. 99:16–26.

    Article  CAS  Google Scholar 

  • Boyko, E. V., R. Kalendar, V. Korzun, A. Korol, A., Schulman, and B. S. Gill. 2002. A high density genetic map of Aegilops tauschii includes genes, retro-transposons, and microsatellites which provide unique insight into cereal chromosome structure and function. Plant Mol. Biol. 48:767–790.

    Article  CAS  PubMed  Google Scholar 

  • Boyko, E., S. Starkey, and C. M. Smith. 2004. Molecular genetic mapping of Gby, a new greenbug resistance gene in bread wheat. Theor. Appl. Genet. 109:1230–1236.

    Article  CAS  PubMed  Google Scholar 

  • Broadway, R. M., C. Gongore, W. C. Kain, J. P. Sanderson, J. A. Monroy, K. C. Bennett, J. B. Warner, and M. P. Hoffman. 1998. Novel chitinolytic enzymes with biological activity against insects. J. Chem. Ecol. 24:985–998.

    Article  CAS  Google Scholar 

  • Brody, A. K. and R. Karban. 1992. Lack of a tradeoff between constitutive and induced defenses among varieties of cotton. Oikos. 65:301–306.

    Google Scholar 

  • Bronner, R., E. Westphal, and F. Dreger. 1991. Enhanced peroxidase activity associated with the hypersensitive response of Solanum dulcamara to the gall mite Aceri cladophthirus (Acari, Eriophyoidea). Can. J. Bot. 69:2192–2196.

    CAS  Google Scholar 

  • Brotman, Y., L. Silberstein, I. Kovalski, C. Perin, C. Dogimont, M. Pitrat, J. Klingler, G. A. Thompson, and R. Perl-Treves. 2002. Resistance gene homologues in melon are linked to genetic loci conferring disease and pest resistance. Theor. Appl. Genet. 104: 1055–1063.

    CAS  PubMed  Google Scholar 

  • Brown, G. C., F. Nurdin, J. G. Rodriguez, and D. F. Hildebrand. 1991. Inducible resistance of soybean (var ‘Williams’) to two spotted spider mite (Tetranychus urticae Koch). J. Kanas Entomol. Soc. 64:388–393.

    Google Scholar 

  • Bryngelsson, T., J. Sommer-Knudsen, P.L. Gregersen, D. B. Collinge, B. Ek, and H. Thordal-Christensen. 1994. Purification, characterization, and molecular cloning of basic PR-1-type pathogenesis-related proteins from barley. Molecular Plant-Microbe Interactions 7:267–275.

    CAS  PubMed  Google Scholar 

  • Casaretto, J. A., and L. J. Corcuera. 1998. Proteinase inhibitor accumulation in aphid-infested barley leaves. Phytochem. 49:2279–2286.

    Article  CAS  Google Scholar 

  • Castro, A. M., S. Ramos, A. Vasicek, A. Worland, D. Gimenez, A. A. Clua, and E. Suarez. 2001. Identification of wheat chromosomes involved with different types of resistance to greenbug (Schizaphis graminum Rond.) and the Russian wheat aphid (Diuraphis noxia Mordvilko). Euphytica. 118:131–137.

    Article  Google Scholar 

  • Chaman, M. E., L. J. Corcuera, G. E. Zuniga, L. Cardemil, and V. H. Argandona. 2001. Induction of soluble and cell wall peroxidases by aphid infestation in barley. J. Agric. Food Chem. 49:2249–53.

    Article  CAS  PubMed  Google Scholar 

  • Chao, W. S., Y-Q., Gu, V. Pautot, E. A. Bray, and L. L. Walling. 1999. Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid. Plant Physiol. 129:979–992.

    Google Scholar 

  • Chittoor, J. M., J. E. Leach and F. F. White. 1997. Differential induction of a peroxidase gene family during infection of rice by Xanthomonus oryzae pv. oryzae. Mol. Plant-Microbe Interact. 10:861–871.

    CAS  PubMed  Google Scholar 

  • Ciepiela, A. 1989. Biochemical basis of winter wheat resistance to the grain aphid, Sitobion avenae. Entomol. Exp. Appl. 51:269–275.

    CAS  Google Scholar 

  • Constabel, C. P., L. Yip, J. J. Patton, and M. E. Chistopher. 2000. Polyphenol oxidase from hybrid poplar. Cloning and expression in response to wounding and herbivory. Plant Physiol. 124:285–295.

    Article  CAS  PubMed  Google Scholar 

  • Devos, K. M., M. Atkinson, C. N. Chinoy, C. Liu, and M. D. Gale. 1992. RFLP-based genetic map of the homoeologons group 3 chromosomes of wheat and rye. Theor. Appl. Genet. 83:931–939.

    Article  CAS  Google Scholar 

  • Diatchenko, L., Y.-F. C. Lau, A. P. Campbell, A. Chenchik, F. Moqadam, B. Huang, S. Lukyanov, K. Lukyanov, N. Gurskaya, E. D. Sverdlov, and P. D. Siebert. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA. 93:6025–6030.

    Article  CAS  PubMed  Google Scholar 

  • Dicke, M., and H. Dijkman. 1993. Herbivory induces systemic production of plant volatiles that attract predators of the herbivore: Extraction of endogenous elicitor. J. Chem. Ecol. 19:581–599.

    Article  CAS  Google Scholar 

  • Dicke, M., R. Gols, D. Ludeking, and M. A. Posthumus. 1999. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants J. Chem. Ecol. 25:1907–1922

    Article  CAS  Google Scholar 

  • Dixon, R.A., and C. L. Lamb. 1990. Molecular communication in interactions between plants and microbial pathogens. Ann. Rev. Plant Physiol. Plant. Mol. Biol. 41:339–367.

    CAS  Google Scholar 

  • Dogimont, C., A. Bendahmane, J. Pauquet, E. Burget, S. Desloire, L. Hagen, M. Caboche, and M. Pitrat. 2003. Map-based cloning of the Vat melon gene that confers resistance to both aphid colonization and virus transmission. Proc. 11th International Congress on Molecular Plant-Microbe Interactions, July 18–26, 2003, St. Petersburg, Russia.

    Google Scholar 

  • Dubcovsky, J., A.J. Lukaszewski, M. Echaide, E.F. Antonelli, and D.R. Porter, 1998. Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Sci. 38:1655–1660.

    CAS  Google Scholar 

  • Edwards, P. J., and S. D. Wratten. 1983. Wound induced defences in plants and their consequences for patterns of insect grazing. Oecologia. 59:88–93.

    Article  Google Scholar 

  • Ellis, J., P. N. Dodds, and T. Pryor. 2000, Structure, function and evolution of plant disease resistance genes. Curr. Opinion Plant Biol. 3:278–284.

    Article  CAS  Google Scholar 

  • Engelberth, J., H. T. Alborn, E. A. Schmelz, and J. H. Tumlinson. 2004. Airborne signals prime plants against insect herbivore attack. Proc. Natl. Acad. Sci. 101:1781–1785.

    Article  CAS  PubMed  Google Scholar 

  • English-Loeb, G., R. Karban, and M. A. Walker. 1998. Genotypic variation in constitutive and induced resistance in grapes against spider mite (Acari: Tetranychidae) herbivores. Environ. Entomol. 27:297–304.

    Google Scholar 

  • Felton, G. W., J. L. Bi, C. B. Summers, A. J. Mueller, and S. S Duffey. 1994a. Potential role of lipoxygenases in defense against insect herbivory. J. Chem. Ecol. 20:651–666.

    CAS  Google Scholar 

  • Felton, G. W., C. B. Summers, and A. J. Mueller. 1994b. Oxidative responses in soybean foliage to herbivory by bean leaf beetle and three-cornered alfalfa hopper. J. Chem. Ecol. 20:639–650.

    CAS  Google Scholar 

  • Ferree, D. C., and F. R. Hall. 1981. Influence of physical stress on photosynthesis and transpiration of apple leaves. J. Amer. Soc. Hort. Sci. 106:348–351.

    CAS  Google Scholar 

  • Feuillet, C., and B. Keller. 1999. High genome density is conserved at syntenic loci of small and large grass genomes. Proc. Natl. Acad. Sci. USA. 96: 8265–8270.

    Article  CAS  PubMed  Google Scholar 

  • Fidantsef, A.L., M. J. Stout, J. S. Thaler, S. S. Duffey, and R. M. Bostock. 1999. Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physiol. Mol. Plant. Pathol. 54: 97–114.

    Article  CAS  Google Scholar 

  • Forslund, K., J. Perrersson, T. Bryngelsson, and L. Jonsson. 2000. Aphid infestation induces PR-proteins differentially in barley susceptible or resistant to the bird cherry-oat aphid. Physiol. Plant. 110:496–502.

    Article  CAS  Google Scholar 

  • Frey, M., C. Stettner, P. W. Pare, E. A. Schmelz, J. H. Tumlinson, and A. Gierl. 2000. An herbivore elicitor activates the gene for indole emission in maize. Proc. Natl. Acad. Sci. 97:14801–14806.

    CAS  PubMed  Google Scholar 

  • Geervliet, J. B. F., L. E. M. Vet, and M. Dicke. 1994. Volatiles from damaged plants as major cues in long-range host-searching by the specialist parasitoid Cotesia rubecula. Entomol. Exp. Appl. 73:289–297.

    CAS  Google Scholar 

  • Graham, M. A., L. F. Marek, D. Lohnes, P. Cregan, and R. Shoemaker. 2000. Expression and genome organization of resistance gene analogs in soybean. Genome. 43:86–90.

    Article  CAS  PubMed  Google Scholar 

  • Halitschke, R., A. Kessler, J. Kahl, A. Lorenz, and I. T. Baldwin. 2000. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata. Oecologia. 124: 408–417.

    Article  Google Scholar 

  • Haltischke, R., U. Schittko, G. Pohnert, W. Boland, and I. T. Baldwin. 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty amino-acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol. 125:711–717.

    Google Scholar 

  • Han, B. Y., and Z. M. Chen. 2002. Composition of the volatiles from intact and mechanically pierced tea aphid-tea shoot complexes and their attraction to natural enemies of the tea aphid. J. Chem. Ecol. 50:2571–2575.

    CAS  Google Scholar 

  • Hardie, J. R., R. Issacs, J. A. Pickett, L. J. Wadhams, and C. M. Woodcock. 1994. Methyl salicylate an (-)-(1R,5S)-myrtenal are plant-derived repellents from the black bean aphid, Aphis fabae Scop. (Homoptera: Aphididae). J. Chem. Ecol. 20:2847–2855.

    Article  CAS  Google Scholar 

  • Harrison, S., and R. Karban. 1986. Behavioral response of spider mites (Tetranychus urticae) to induced resistance of cotton plants. Ecol. Entomol. 11:181–188.

    Google Scholar 

  • Haukioja, E. 1991. Induction of defenses in trees. Ann. Rev. Entomol. 36:25–42.

    Article  CAS  Google Scholar 

  • Havill, N. P., and K. F. Raffa. 1999. Effects of elicitation treatment and genotypic variation on induced resistance in Populus: impacts on gypsy moth (Lepidoptera: Lymantriidae) development and feeding behavior. Oecologia. 120:295–303.

    Article  Google Scholar 

  • Havlickova, H., M. Cvikrova, and J. Eder. 1996. Phenolic acids in wheat cultivars in relation to plant suitability for and response to cereal aphids. Z. Pflanzenkr. Pflanzensch. 103:535–542.

    CAS  Google Scholar 

  • Havlickova, H., M. Cvikrova, J. Eder, and M. Hrubcova. 1998. Alterations on the levels of phenolics and peroxidases activities induced by Rhopalosiphum padi (L.) in two winter wheat cultivars. Z. Pflanzenkr. Pflanzensch. 105:140–148.

    CAS  Google Scholar 

  • Heil, M., and R. M. Bostock. 2002. Induced systemic resistance (ISR) against pathogens in the context of induced plant defenses. Ann. Bot. 89:503–512.

    Article  CAS  PubMed  Google Scholar 

  • Hermsmeier, D., U. Schittko, and I. T. Baldwin. 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth-and defense-related plant mRNAs. Plant Physiol. 125:683–700.

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand, D. F, J. G. Rodriquez, G. C. Brown, K. T. Lu, and C. S. Volden. 1986. Peroxidative responses of leaves in two soybean genotypes injured by twospotted spider mites (Acari: Tetranychidae). J. Econ. Entomol. 79:1459–1465.

    Google Scholar 

  • Hlywka, J. J., G. R. Stephenson, M. K. Sears, and R. Y. Yada. 1994. Effects of insect damage on glycoalkoloid content in potatoes (Solanum tuberosum). J. Agric. Food Chem. 42:2545–2550.

    Article  CAS  Google Scholar 

  • Hohmann, U., A. Graner, T. R. Endo, B. S. Gill, and R. G. Herrmann. 1995. Comparison of wheat physical maps with barley linkage maps for group 7 chromosomes. Theor. Appl. Genet. 91:618–626.

    CAS  Google Scholar 

  • Hougen-Eitzman, D., and R. Karban. 1995. Mechanisms of interspecific competition that results in successful control of Pacific mites following inoculations of Willamette mites on grapevines. Oecologia. 103:157–161.

    Article  Google Scholar 

  • Huang, J., H. J. McAuslane, and G. S. Nuessly. 2003. Resistance in lettuce to Diabrotica balteata (Coleoptera: Chrysomelidae): The roles of latex and inducible defense. Environ. Entomol. 32:9–16.

    Google Scholar 

  • Hulbert, S. H., T. E. Richter, J. D. Axtell, and J. L. Bennetzen. 1990. Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc. Natl. Acad. Sci. USA. 87:4251–4255.

    CAS  PubMed  Google Scholar 

  • Hwang, C. F., A. V. Bhakta, G. M. Truesdell, W. M. Pudlo, and V. M. Williamson. 2000. Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant Cell. 12:1319–1329.

    Article  CAS  PubMed  Google Scholar 

  • Kaitaniemi, P., K. Ruohomäki, V. Ossipov, E. Haukioja, and K. Pihlaja. 1998. Delayed induced changes in the biochemical composition of host plant leaves during an insect outbreak. Oecologia. 116:182–190.

    Article  Google Scholar 

  • Kaitaniemi, P., K. Ruohomäki, T. Tammaru, and E. Haukioja. 1999. Induced resistance of host tree foliage during and after a natural insect outbreak. J. Animal Ecol. 68:382–389.

    Google Scholar 

  • Kaloshian, I., M. G. Kinser, D. E. Ullman, and V. M. Willamson. 1997. The impact of Meu1-mediated resistance in tomato on longevity, fecundity, and behavior of the potato aphid, Macrosiphum euphorbiae. Entomol. Exp. Appl. 83:181–187.

    Article  Google Scholar 

  • Kaloshian, I., W. H. Lange, and V. M. Willamson. 1995. An aphid-resistance locus is tightly linked to the nematode-resistance gene, Mi, in tomato. Proc. Natl. Acad. Sci. USA. 92:622–625.

    CAS  PubMed  Google Scholar 

  • Karban, R. 1985. Resistance against spider mites in cotton induced by mechanical abrasion. Entomol. Exp. Appl. 37:137–141.

    Google Scholar 

  • Karban, R. 1992. Inducible resistance in agricultural systems. In: D. W. Tallamy and M. J. Raupp (Eds.), Phytochemical Induction by Herbivores, Wiley, New York. pp. 403–419.

    Google Scholar 

  • Karban, R., and J. R. Carey. 1984. Induced resistance of cotton seedlings to mites. Science. 225:53–54.

    Google Scholar 

  • Katsar, C. S., A. H. Paterson, G. L. Teetes, and G. C. Peterson. 2002. Molecular analysis of sorghum resistance to the greenbug (Homoptera: Aphididae). J. Econ. Entomol. 95:448–457.

    CAS  PubMed  Google Scholar 

  • Kendall, D. M., and L. B. Bjostad. 1990. Herbivory by Thrips tabaci induces greater ethylene production in intact onions than mechanical damage alone. J. Chem. Ecol. 16:981–991.

    Article  CAS  Google Scholar 

  • Kessler, A., and I. T. Baldwin. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science. 291:2141–2144.

    Article  CAS  PubMed  Google Scholar 

  • Kfoury, L., and G. Masonie. 1995. Characteristics of the resistance of the peach cultivar Rubira to Myzus persicae Sulzer. Agronomie. 15:277–284.

    Google Scholar 

  • Kielkiewicz, M. 2002. Influence of carmine spider mite Tetranychus cinnabarinus Boisd. (Acarida: Tetranychidae) feeding on ethylene production and the activity of oxidative enzymes in damaged tomato plants. In: F. Bernini, R. Nannelli, G. Nuzzaci, and E. de Lillo (Eds.), Acarid Phylogeny and Evolution. Adaptations in mites and ticks. Kluwer Academic Publishers, pp. 389–392.

    Google Scholar 

  • Klingler, J., G. Powell, G. A. Thompson, and R. Isaacs. 1998. Phloem specific aphid resistance in Cucumis melo line AR 5: effects on feeding behaviour and performance of Aphis gossypii. Entomol. Exp. Appl. 86:79–88.

    Article  Google Scholar 

  • Kloepper, J. W., S. Tuzun, and J. A. Kuc. 1992. Proposed definitions related to induced disease resistance. Biocontrol Sci. Technol. 2:349–351.

    Google Scholar 

  • Kogan, M., and J. Paxton. 1983. Natural inducers of plant resistance to insects. In: P. A. Hedin (Ed.), Plant Resistance to Insects. Am. Chem. Soc. Symp. Series 208, American Chemical Society, Washington, DC. pp. 153–171.

    Google Scholar 

  • Koritsas, V. M., J. A. Lewis, and G. R. Fenwick. 1991. Glucosinloate responses of oilseed rape, mustard and kale to mechanical wounding and infestation by cabbage stem flea beetle (Psylliodes chrysocephala). Ann. Appl. Biol. 118:209–221.

    Google Scholar 

  • Lagudah, E. S., O. Moullet, and R. Appels. 1997. Map-based cloning of a gene sequence encoding a nucleotide binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome. 40:659–665.

    CAS  PubMed  Google Scholar 

  • Langstrom, B., and C. Hellqvist. 1993. Induced and spontaneous attacks by pine shoot beetles on young Scots pine trees: tree mortality and beetle performance. J. Appl. Entomol. 115:25–36.

    Google Scholar 

  • Leather, S. R., A. D. Watt, and G. I. Forrest. 1987. Insect-induced chemical changesin young lodgepole poine (Pinus contorta): the effect of previous defoliation on oviposition, growth and survival of the pine beauty moth, Panolis flammea. Ecol. Entomol. 12:275–281.

    Google Scholar 

  • Lee, J. E., T. Vogt, B. Hause, and M. Lëbler. 1997. Methyl jasmonate induces an O-methyltransferase in barley. Plant Cell Physiol. 38:851–862.

    CAS  PubMed  Google Scholar 

  • Leister, D., J. Kurth, D. A. Laurie, M. Yano, T. Sasaki, A. Graner, and P. Schulze-Lefert. 1999. Rflp-and physical mapping of resistance gene homologues in rice (O. sativa) and barley (H. vulgare). Theor. Appl. Genet. 98: 509–520.

    Article  CAS  Google Scholar 

  • Leszczynski, B. 1985. Changes in phenols content and metabolism in leaves of susceptible and resistant winter wheat cultivars infested by Rhopalosiphum padi (L.) (Hom., Aphididae). Z. Angew. Entomol. 100: 343–348.

    CAS  Google Scholar 

  • Leszczynski, B., W. F. Tjallingii, A. F. G. Dixon, and R. Swiderski. 1995. Effect of methoxyphenols on grain aphid feeding behaviour. Entomol. Exp. Appl. 76:157–162.

    CAS  Google Scholar 

  • Li, X., M. A. Schuler, and M. R. Berenbaum. 2002. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature. 419:712–715.

    CAS  PubMed  Google Scholar 

  • Lieutier, F., J. Garcia, A. Yart, and P. Romary. 1995. Wound reactions of Scots pine (Pinus sylvestris L.) to attacks by Tomicus piniperda L. and Ips sexdentatus Boern (Gal, Scolytidae). J. Appl. Entomol. 119:591–600.

    Google Scholar 

  • Lieutier, F., G. Vouland, M. Pettinetti, J. Garcia, P. Romary, and A. Yart. 1992. Defence reactions of Norway spruce (Picea abies Karst) to artificial insertion of Dendroctonus micans Kug (Col. Scolytidae). J. Appl. Entomol. 114:174–186.

    Google Scholar 

  • Lieutier, F., A. Yart, C. Jay-Allemand, and L. Delmorme. 1991. Preliminary investigations on phenolics as a response of Scots pine phloem to attack by bark beetles and associated fungi. European J. For. Pathol. 21:354–364.

    Google Scholar 

  • Lin, H. M. Kogan, and D. Fischer. 1990. Induced resistance in soybean to the Mexican bean beetle (Coleoptera: Coccinellidae): Comparisons of inducing factors. Environ. Entomol. 19:1852–1857.

    Google Scholar 

  • Linde-Laursen, I., J. S. Heslop-Harrison, K. W. Shepherd, and S. Taketa. 1997. The barley genome and its relationship with the wheat genomes. A survey with an internationally agreed recommendation for barley chromosome nomenclature. Hereditas. 126:1–16.

    Article  CAS  Google Scholar 

  • Liang, P. and A. B. Pardee. 1992. Differential display of eukaryotic mRNA by means of the polymerase chain reaction. Science. 257:967–971.

    CAS  PubMed  Google Scholar 

  • Liu, X. M., C. M. Smith, and B. S. Gill. 2002. Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6. Theor. Appl. Genet. 104:1042–1048.

    CAS  PubMed  Google Scholar 

  • Liu, X.M., C. M. Smith, B. S. Gill, and V. Tolmay. 2001. Microsatellite markers linked to six Russian wheat aphid resistance genes in wheat. Theor. Appl. Genet. 102:504–510.

    CAS  Google Scholar 

  • Loughrin, J. H., A. Manukian, R. A. Heath, and J. H. Tumlinson. 1995. Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. J. Chem. Ecol. 21:1217–1227.

    CAS  Google Scholar 

  • Mago, R., S. Nair, and M. Mohan. 1999. Resistance gene analogues from rice: cloning, sequencing and mapping. Theor. Appl. Genet. 99:50–57.

    Article  CAS  Google Scholar 

  • Martin, G. B., A. J. Bogdanove, and G. Sessa. 2003. Understanding the functions of plant disease resistance proteins. Ann. Rev. Plant Biol. 54: 23–61.

    CAS  Google Scholar 

  • Mattiacci, L., M. Dicke, and M. A. Posthumas. 1995. Beta-glucosidase — an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc. Natl. Acad. Sci. USA. 92: 2036–2040.

    CAS  PubMed  Google Scholar 

  • McAuslane, H. J., and H. T. Alborn. 1998. Systemic induction of allelochemicals in glanded and glandless isogenic cotton by Spodoptera exigua feeding. J. Chem. Ecol. 24:399–416.

    Article  CAS  Google Scholar 

  • McAuslane, H. J., H. T. Alborn, and J. P. Toth. 1977. Systemic induction of terpenoid aldehydes in cotton pigment glands by feeding of larval Spodoptera exigua. J. Chem. Ecol. 23:2861–2879.

    Google Scholar 

  • McCall, P. J., T. C. J. Turlings, J. Loughrin, A. D. Proveaux, and J. H. Tumlinson. 1994. Herbivoreinduced volatile emission from cotton (Gossypium hirsutum L.) seedlings. J. Chem. Ecol. 20:3039–3050.

    Article  CAS  Google Scholar 

  • McNicol, R. J., B. Williamson, P. L. Jennings, and J. A. T. Woodford. 1983. Resistance to raspberry cane midge (Resseliella theobaldi) and its association with wound periderm in Rubus crataegifolius and its red raspberry derivatives. Ann. Appl. Biol. 103:489–495.

    Google Scholar 

  • Mehdy, M. C. 1994. Active oxygen species in plant defense against pathogens. Plant Physiol. 105:467–472.

    CAS  PubMed  Google Scholar 

  • Miller, H. L., P. A. Neese, D. L Ketring, and J. W. Dillwith. 1994. Involvement of ethylene in aphid infestation of barley. J. Plant Growth Reg. 13:167–171.

    CAS  Google Scholar 

  • Miller, C. A., A. Altinkut, and N. L. V. Lapitan. 2001. A microsatellite marker for tagging Dn2, a wheat gene conferring resistance to the Russian wheat aphid. Crop Sci. 41:1584–1589.

    CAS  Google Scholar 

  • Milligan, S., J. Bodeau, J. Yaghoobi, I. Kaloshian, P. Zabel, and V. Williamson. 1998. The root-knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell. 10:1307–1319.

    Article  CAS  PubMed  Google Scholar 

  • Mingeot, D., and J. M. Jacquemin. 1997. A wheat cDNA coding for a thaumatin-like protein reveals a high level of RFLP in wheat. Theor. Appl. Genet. 95:822–827.

    Article  CAS  Google Scholar 

  • Moharramipour, S., H. Tsumki, K. Sato, and H. Yoshida. 1997. Mapping resistance to cereal aphids in barley. Theor. Appl. Genet. 94:592–596.

    Article  CAS  Google Scholar 

  • Moran, P. J., and G. A. Thompson. 2001. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol. 125:1074–1085.

    Article  CAS  PubMed  Google Scholar 

  • Namuth, D. M., N.L.V. Lapitan, K.S. Gill, and B.S. Gill. 1994. Comparative mapping of Hordeum vulgare and Triticum tauschii. Theor. Appl. Genet. 89:865–872.

    Article  CAS  Google Scholar 

  • Nebeker, T. E. and J. D. Hodges. 1983. Influence of forestry practices on host-susceptibility to bark beetles. Z. Angew. Entomol. 96:194–208.

    Google Scholar 

  • Ni, X., S. S. Quisenberry, T. Heng-Moss, J. Markwell, G. Sarath, R. Klucas, and F. Baxendale. 2001. Oxidative responses of resistant and susceptible cereal leaves to symptomatic and nonsymptomatic cereal aphid (Hemiptera: Aphididae) feeding. J. Econ. Entomol. 94:743–751.

    CAS  PubMed  Google Scholar 

  • Niemela, P., E. M. Aro, and E. Haukioja. 1979. Birch leaves as a resource for herbivores. Damaged-induced increase in leaf phenols with trypsin-inhibiting effects. Rep. Kevo Subarctic Res. Stat. 15:37–40.

    Google Scholar 

  • Nieto-Lopez, R. M., and T. K. Blake. 1994. Russian wheat aphid resistance in barley: Inheritance and linked molecular markers. Crop Sci. 34:655–659.

    Google Scholar 

  • Orozco-Cardenas, M. and C. A. Ryan. 1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via octadecanoid pathway. Proc. Natl. Acad. Sci. USA. 96:6553–6557.

    Article  CAS  PubMed  Google Scholar 

  • Palaniswamy, P., and R. J. Lamb. 1993. Wound-induced antixenotic resistance to flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae), in crucifers. Can. Entomol. 125:903–912.

    Google Scholar 

  • Pan, Q., J. Wendel, and R. Fluhr. 2000. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J. Mol. Evol. 50:203–213.

    CAS  PubMed  Google Scholar 

  • Pare, P. M. and J. H. Tumlinson. 1997. Induced synthesis of plant volatiles. Nature. 385:30–31.

    CAS  Google Scholar 

  • Paterson, A., Y.-R., Lin, Z. Li, K. F. Scherta, J. F. Doebley, S. R. M. Pinson, S.-C. Liu, J. W. Stansel, and J. E. Irvine. 1995. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science. 269:1714–1718.

    CAS  Google Scholar 

  • Pieterse, C. M., and L. C. van Loon. 1999. Salicylic acid-independent plant defense pathways. Trends Plant Sci. 4:52–58.

    Article  PubMed  Google Scholar 

  • Pitrat, M., and H. Lecoq. 1980. Inheritance of resistance to cucumber mosaic virus transmission by Aphis gossypii in Cucumis melo. Phytopathol. 70:958–961.

    Google Scholar 

  • Porter, D. R., and Webster, J. A. 2000. Russian wheat aphid-induced protein alterations in spring wheat. Euphytica. 111:199–203.

    Article  CAS  Google Scholar 

  • Rafi, M. M., R. S. Zemetra, and S. S. Quisenberry. 1996. Interaction between Russian wheat aphid (Homoptera:Aphidadae) and resistant and susceptible genotypes of wheat. J. Econ. Entomol. 89:239–246.

    Google Scholar 

  • Raffa, K. F., and E. B. Smelley. 1995. Interaction of pre-attack and induced monoterpene oncentrations in host conifer defense against bark beetle-fungus complexes. Oecologia. 102:285–295.

    Article  Google Scholar 

  • Ramachandran, R., D. M. Norris, J. K. Phillips, and T. W. Phillips. 1991. Volatiles mediating plantherbivore-natural enemy interactions: Soybean looper frass volatiles, 3-octanone and guaiacol, as kairomones for the parasitoid Microplitis demolitor. J. Agric. Food Chem. 39:2310–2317.

    Article  CAS  Google Scholar 

  • Raupp, M. J., and R. F. Denno. 1984. The suitability of damaged willow leaves as food for the leaf beetle, Plagiodera versicolora. Ecol. Entomol. 9: 443–448.

    Google Scholar 

  • Ren, X., X. Wang, H. Yuan, Q. Weng, L. Zhu, and G. He. 2004. Mapping quantitative trait loci and expressed sequence tags related to brown planthopper resistance in rice. Plant Breeding. 123:342–348.

    Article  CAS  Google Scholar 

  • Reymond, P., and E. E. Farmer. 1998. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1:404–11.

    Article  CAS  PubMed  Google Scholar 

  • Reymond, P., H. Weber, M. Damond, and E. E. Farmer. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell. 12:707–719.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, G. W., and C. M. Smith. 1985. Effects of leaf position, leaf wounding, and plant age of two soybean genotypes on soybean looper (Lepidoptera: Noctuidae) growth. Environ. Entomol. 14: 475–478.

    Google Scholar 

  • Rhoades, D. F. 1979. Evolution of a plant chemical defense against herbivores. In: G. A. Rozenthal and D. Janzen (Eds.), Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York. pp. 3–54.

    Google Scholar 

  • Rhodes, D. F. 1983. Herbivore population dynamics and plant chemistry. In: R. F. Denno and M. S. McClure (Eds.), Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York. pp. 155–220.

    Google Scholar 

  • Rieske, L. K., and K. F. Raffa. 1995. Ethylene emission by a deciduous tree, Tilia americana, in response to feeding by introduced basswood thrips, Thrips calcaranthus. J. Chem Ecol. 21:187–197.

    Article  CAS  Google Scholar 

  • Roberts, P. A., and I. J. Thomason. 1986. Variability in reproduction of isolates of Meloidogyne incognita and M. javanica on resistant tomato genotypes. Plant Disease. 70:547–551.

    Google Scholar 

  • Rohfritsch, O. 1981. A defense mechanism of Picea excelsa L. against the gall former Chormes abietis L. (Homoptera: Adelgidae). Z. Angew. Entomol. 92:18–26.

    Google Scholar 

  • Rojo, E., J. Leon, and J. J. Sanchez-Serrano. 1999. Cross-talk between wound signaling pathways determines local versus systemic gene expression in Arabidopsis thaliana. Plant J. 20:135–142.

    Article  CAS  PubMed  Google Scholar 

  • Rossi, M., F. L. Goggin, S. B. Milligan, I. Klaoshian, D. E. Ullman, and V. M. Williamson. 1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc. Natl. Acad. Sci. USA. 95:9750–9754.

    Article  CAS  PubMed  Google Scholar 

  • Rottger, V. U., and F. Klinghauf. 1976. Anderung im stoffwechsel von zuckerruben blattern durch befall mit Pegomya bettae Curt (Muscidae: Anthomyidae). Z. Angew. Entomol. 82:220–227.

    Google Scholar 

  • Ruohomäki, K. S. Hanhimäki, E. Haukioja, L. Iso-Iivari, S. Neuvonen, P. Niemelä, and J. Suomela. 1992. Variability in the efficiacy of delayed inducible resistance in mountain birch. Entomol. Exp. Appl. 62:107–115.

    Google Scholar 

  • Ryan, C. A., and G. Pearce. 2003. Systemins: A functional defined family of peptide signals that regulate defensive genes in Solanaceae species. Proc. Natl. Acad. Sci. USA. 100:14577–14580.

    CAS  PubMed  Google Scholar 

  • Sauge, M.-H., J.-P. Lacroze, J.-L. Poessël T. Pascal, and J. Kervella. 2002. Induced resistance by Myzus persicae in the peach cultivar ‘Rubira’. Entomol. Exp. Appl. 102:29–37.

    Article  Google Scholar 

  • Schmeltz, E. A. H. T. Alborn, E. Banchio, and J. H. Tumlinson. 2003. Quantitaive relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory. Planta. 216:665–673.

    Google Scholar 

  • Schultz, J. C., and I. T. Baldwin. 1982. Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science. 221: 149–151.

    Google Scholar 

  • Scutareanu, P., Y. L. Ma, M. Claeys, R. Dommisse, and M. W. Sabelis. 1999. Induction of a pcoumaroyl trihydroxy triterpene acid in Psylla-infested and mechanically damaged pear trees. J. Chem. Ecol. 25:2177–2191.

    Article  CAS  Google Scholar 

  • Seah, S., K. Sivasithamparam, A. Karalousis, and E. S. Lagudah. 1998. Cloning and characterization of a family of disease resistance gene analogs from wheat and barley. Theor. Appl. Genet. 97:937–945.

    Article  CAS  Google Scholar 

  • Shain, L., and W. E. Hillis. 1972. Ethylene production in Pinus radiata in response to Sirex amylostereum attack. Phytopathol. 62:1407–1409.

    CAS  Google Scholar 

  • Shen, K. A., B. C. Meyers, M. N. Islam-Faridi, D. Chin, D. M. Stelly, and R. W. Michelmore. 1998. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol. Plant-Microbe Interact. 11:815–823.

    CAS  PubMed  Google Scholar 

  • Shukle, R. H., P. B. Glover, Jr., and G. Mocelin. 1992. Responses of susceptible and resistant wheat associated with Hessian fly (Diptera: Cecidomyiidae) infestation. Environ. Entomol. 21:845–853.

    Google Scholar 

  • Slesak, E., M. Slesak, and B. Gabrys. 2001. Effect of methyl jasmonate on hydroxamic acid, protease activity, and bird cherry-oat aphid Rhoplaosiphum padi L. probing behavior. J. Chem. Ecol. 12:2529–2543.

    Google Scholar 

  • Smith, C. M. 1985. Expression, mechanisms, and chemistry of resistance in soybean, Glycine max L. (Merr.) to the soybean looper, Pseudoplusia includens (Walker). Insect Sci. Appl. 6:243–248.

    CAS  Google Scholar 

  • Smith, C. M. 2004. Plant resistance against pests: Issues and strategies, In: O. Koul, G. S. Dhaliwal and G. Cuperus, (Eds.), Integrated Pest Management: Potential, Constraints And Challenges. CABI Publ., Oxon, UK, pp. 147–167.

    Google Scholar 

  • Speulman, E., D. Bouchez, E. Holub, and J. L. Beynon. 1998. Disease resistance gene homologs correlate with disease resistance loci of Arabidopsis thaliana. Plant J. 14: 467–474.

    Article  CAS  PubMed  Google Scholar 

  • Srinivas, P., S. D. Danielson, C. M. Smith, and J. D. Foster. 2001a. Induced resistance to bean leaf beetle (Coleoptera: Chrysomelidae) in soybean. J. Entomol. Sci. 36:438–444.

    Google Scholar 

  • Srinivas, P., S. D. Danielson, C. M. Smith, and J. D. Foster. 2001b. Cross-resistance and resistance longevity as induced by bean leaf beetle, Cerotoma trifurcata andsoybean looper, Pseudoplusia includens herbivory on soybean. J. Insect Science. 1.5.

    Google Scholar 

  • Stotz, H. U., T. Koch, A. Biedermann, K. Weniger, W. Boland, and T. Mitchell-Olds. 2002. Evidence for regulation of resistance in Arabidodpsis to Egyptian cotton worm by salicylic and jasmonic acid signaling pathways. Planta. 214:648–652.

    Article  CAS  PubMed  Google Scholar 

  • Stotz, H. U., J. Kroymann, and T. Mitchell-Olds. 1999. Plant-insect interactions. Curr. Opin. Plant Biol. 2:268–272.

    Article  CAS  PubMed  Google Scholar 

  • Stotz, H. U., B. R. Pittendrigh, J. Kroyman, K. Weniger, J. Fritsche, A. Bauke, and T. Mitchell-Olds. 2000. Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiol. 124:1007–1017.

    Article  CAS  PubMed  Google Scholar 

  • Stout, M. J, and S. S. Duffey. 1996. Characterization of induced resistance in tomato plants. Entomol. Exp. Appl. 1996 79:273–283.

    Google Scholar 

  • Stout, M.J., A. L. Fidantsef, S. S. Duffey, and R. M. Bostock. 1999. Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopsericon esculentum. Physiol. Mol. Plant Pathol. 54:115–130.

    Article  CAS  Google Scholar 

  • Tada, T. 1999. PCR-amplified resistance gene analogs link to resistance loci in rice. Breed. Sci. 49:267–273.

    CAS  Google Scholar 

  • Thaler, J. S. 1999. Induced resistance in agricultural crops: Effects of jasmonic acid on herbivory and yield in tomato plants. Environ. Entomol. 328:30–37.

    Google Scholar 

  • Thaler, J. S., A. L. Fidantsef, S. S. Duffey, and R. M. Bostock. 1999. Trade-offs in plant defense against patogens and herbivores: A field demonstration of chemical elicitors of induced resistance. J. Chem. Ecol. 25:1597–1609.

    Article  CAS  Google Scholar 

  • Thaler, J. S., M. J. Stout, R. Karban, and S. S. Duffey. 1996. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 22:1767–1781.

    Article  CAS  Google Scholar 

  • Thaler, J. S., M. J. Stout, R. Karban, and S. S. Duffey. 2001. Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecol. Entomol. 26:312–324.

    Article  Google Scholar 

  • Thielges, B. A. 1968. Altered polyphenol metabolism in the foliage of Pinus sylvestris associated with European pine sawfly attack. Can. J. Bot. 46: 724–725.

    CAS  Google Scholar 

  • Tjia, B., and D. B. Houston. 1975. Phenolic constituents of Norway spruce resistant or susceptible to the eastern spruce gall aphid. For. Sci. 211: 180–184.

    Google Scholar 

  • Turlings, T. C. J., P. J. McCall, H. T. Alborn, and J. H. Tumlinson. 1993. An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J. Chem. Ecol. 19:411–425.

    Article  CAS  Google Scholar 

  • Turlings, T. C. J., J. H. Tumlinson, F. J. Eller, and W. J. Lewis. 1991a. Larval-damaged plants: source of volatile synomones that guide the parasitoid Cotesia marginiventris to the micro-habitat of its host. Entomol. Exp. Appl. 58:75–82.

    Article  Google Scholar 

  • Turlings, T. C. J., J. H. Tumlinson, R. R Heath, A. T. Proveaux, and R. E. Doolittle. 1991b. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J. Chem. Ecol. 17:2235–2251.

    Article  CAS  Google Scholar 

  • Turner, J. G., C. Ellis, and A. Devoto. 2002. The jasmonate signal pathway. Plant Cell. 14:153–164.

    Google Scholar 

  • Underwood, N., W. Morris, K. Gross, and J. R. Lockwood. 2000. Induced resistance to Mexican bean beetles in soybean: variation among genotypes and lack of correlation with constitutive resistance. Oecologia. 122:83–89.

    Google Scholar 

  • Urbanska, A., T. C. J., Turlings, W. F. Tjallingii, A. F. G. Dixon, and B. Leszczynski. 1998. Phenol oxidizing enzymes in the grain aphid’s saliva. Entomol. Exp. Appl. 86:197–203.

    Article  CAS  Google Scholar 

  • van der Westhuizen, A. J., and F. C. Botha. 1993. Effect of the Russian wheat aphid on the composition and synthesis of water soluble proteins in resistant and susceptible wheat. J. Agron. Crop Sci. 170:322–326.

    Google Scholar 

  • van der Westhuizen, A. J., and Z. Pretorius. 1995. Biochemical and physiological responses of resistant and susceptible wheat to Russian wheat aphid infestation. Cereal Res. Comm. 23:305–313.

    Google Scholar 

  • van der Westhuizen, A. J., and Z. Pretorius. 1996. Protein composition of wheat apoplastic fluid and resistance to the Russian wheat aphid. Aust. J. Plant Physiol. 23:645–648.

    Google Scholar 

  • van der Westhuizen, A.J., X.-M. Qian, and A.-M. Botha. 1998a. β-1,3-glucanases in wheat and resistance to the Russian wheat aphid. Physiol. Plant. 103:125–131.

    Google Scholar 

  • van der Westhuizen, A.J., X.-M. Qian, and A.-M. Botha. 1998b. Differential induction of apoplastic peroxidase and chitinase activities in susceptible and resistant wheat cultivars by Russian wheat aphid infestation. Plant Cell Reports. 18:132–137.

    Google Scholar 

  • van de Ven, W. T. G., C. S. LeVesque, T. M. Perring, and L. L. Walling. 2000. Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding. Plant Cell. 12:1409–1424.

    PubMed  Google Scholar 

  • Van Deynze, A. E., J. C. Nelson, E. S. Yglesias, S. E. Harrington, D. P. Braga, S. R. McCouch, and M. E Sorrells. 1995a. Comparative mapping in grasses. Wheat relationships. Mol. Gen. Genet. 248:744–754.

    Article  PubMed  Google Scholar 

  • Van Deynze, A. E., J. C. Nelson, L. S. O’Donoughue, S. N. Ahn, W. Siripoonwiwat, S. E. Harrington, E. S. Yeglesias., D. P Braga, S. R. McCouch, and M. E Sorrells. 1995b. Comparative mapping in grasses. Oat relationships. Mol. Gen. Genet. 249: 349–356.

    Article  PubMed  Google Scholar 

  • Vancanneyt, G., C. Sanz, T. Farmaki, M. Paneque, F. Ortego, P. Castañera, and J. Sánchez-Serrano. 2001. Hydroperoxyde lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc. Natl. Acad. Sci. USA. 98:8139–8144.

    Article  CAS  PubMed  Google Scholar 

  • van Poecke, R. M. P., and M. Dicke. 2002. Induced parasitoid attraction by Arabidopsis thaliana: involvement of the octadecanoid and the salicylic acid pathway. J. Exp. Bot. 53:1793–1799.

    PubMed  Google Scholar 

  • Vos, P., G. Simons, T. Jesse, J. Wijbrandi, L. Heinen, R. Hogers, A. Frijters, J. Groenendijk, P. Diergaarde, M. Reijans, J. Fierens-Onstenk, M. de Both, J. Peleman, T. Liharska, J. Hontelez, and M. Zabeau. 1998. The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat. Biotechnol. 16:1315–1316.

    Google Scholar 

  • Wackers, F. L., and R. Wunderlin. 1999. Induction of cotton extrafloral nectar production in response to herbivory does not require a herbivore-specific elicitor. Entomol. Exp. Appl. 91:149–154.

    Article  Google Scholar 

  • Walling, L. L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19:195–216.

    CAS  PubMed  Google Scholar 

  • Wallner, W. E., and G. S. Walton. 1979. Host defoliation: A possible determination of gypsy moth population quality. Ann. Entomol. Soc. Am. 72:62–67.

    Google Scholar 

  • Wang, Y. H., D. F. Garvin, and L.V. Kochian. 2001. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol. 127:345–359.

    CAS  PubMed  Google Scholar 

  • Watt, A. D., S. R. Leather, and G. I. Forrest. 1991. The effect of previous defoliation of pole-stage lodgpole pine on plant chemistry, and on the growth and survival of pine beauty moth (Panolis flammea) larvae. Oecologia. 86:31–35.

    Article  Google Scholar 

  • Weng, Y., and M. D. Lazar. 2002. Amplified fragment length polymorphism-and simple sequence repeat-based molecular tagging and mapping of greenbug resistance gene Gb3 in wheat. Plant Breed. 121:218–223.

    Article  CAS  Google Scholar 

  • Werner, R. A. 1979. Influence of host foliage on development, survival, fecundity, and oviposition of the spear-marked black moth, Rheumaptera hastata (Lepidoptera: Geometridae). Can. Entomol. 111:317–322.

    Google Scholar 

  • West, C. 1985. Factors underlying the late seasonal appearance of the lepidopterous leaf-mining guild on oak. Ecol. Entomol. 10: 111–120.

    Google Scholar 

  • Westphal, E., R. Bronner, and M. LeRet. 1981. Changes in leaves of susceptible and resistant Solanum dulcamara infested by the gall mite Eriophyes cladophthirus (Acarina, Eriophyoidea). Can. J. Bot. 59:875–882.

    Google Scholar 

  • Westphal, E., F. Dreger, and R. Bronner. 1991. Induced resistance in Solanum dulcamara triggered by the gall mite Aceria cladophthirus (Acari, Eriophyoidea). Exp. Appl. Acarol. 12:111–118.

    Article  Google Scholar 

  • Westphal, E., M. J. Perrot-Minnot, S. Kreiter, and J. Gutierrez. 1992. Hypersensitive reaction of Solanum dulcamara to the gall mite Aceria cladophthirus causes an increased susceptibility to Tetranychus urticae. Exp. Appl. Acarol. 15:15–26.

    Article  Google Scholar 

  • Wheeler, G. S., and F. Slansky. 1991. Effect of constitutive and herbivore-induced extractables from susceptible and resistant soybean foliage on nonpest and pest noctuid caterpillars. J. Econ. Entomol. 84:1068–1079.

    Google Scholar 

  • Whitman, D. W., and F. J. Eller. 1990. Parasitic wasps orient to green leaf volatiles. Chemoecology. 1:69–75.

    Article  CAS  Google Scholar 

  • Winz, R. A., and I. T. Baldwin. 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. IV. Insect-induced ethylene reduces jasmonate-induced nicotine accumulation by regulating N- methyltransferase transcripts. Plant Physiol. 125:2189–2202.

    Article  CAS  PubMed  Google Scholar 

  • Wratten, S. D., P. J. Edwards, and I. Dunn. 1984. Wound-induced changes in the palatability of Betula pubescens and B. pendula. Oecologia 61:372–375.

    Article  Google Scholar 

  • Xu, X. F., H. W. Mei, L. J. Luo, X. M. Cheng, and Z. K. Li. 2002. RFLP-facilitated investigation of the quantitative resistance of rice to brown planthopper (Nilaparvata lugens). Theor. Appl. Genet. 104:248–253.

    Article  CAS  PubMed  Google Scholar 

  • Yanes, J., Jr., and D. J. Boethel. 1983. Effect of a resistant soybean genotype on the development of the soybean looper (Lepidoptera: Noctuidae) and an introduced parasitoid, Microplitis demolitor Wilkinson (Hymenoptera: Braconidae). Environ. Entomol. 12:1270–1274.

    Google Scholar 

  • Zhu, L. C., C. M. Smith, A. Fritz, E. V. Boyko, and M. B. Flinn. 2004. Genetic analysis and molecular mapping of a wheat gene conferring tolerance to the greenbug (Schizaphis graminum Rondani). Theor. Appl. Genet. 109:289–293.

    Article  CAS  PubMed  Google Scholar 

  • Zhu-Salzman, K., R. A. Salzman, J-E. Ahn, and H. Koiwa. 2004. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol. 134:420–431.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler, J., M. Keinanen, and I. T. Baldwin. 2001. Herbivore-induced allene oxide synthase transcripts and jasmonic acid in Nicotiana attenuate. Phytochem. 58:729–738.

    Article  CAS  Google Scholar 

  • Zvereva, E. L., M. V. Kozlov, P. Niemela, and E. Haukioja. 1997. Delayed induced resistance and increase in leaf fluctuating asymmetry as responses of Salix borealis to insect herbivory. Oecologia. 109:368–373.

    Article  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

(2005). Constitutive and Induced Resistance Genes. In: Smith, C.M. (eds) Plant Resistance to Arthropods. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3702-3_9

Download citation

Publish with us

Policies and ethics