Skip to main content

Gel Formation: Phase Diagrams Using Tabletop Rheology and Calorimetry

  • Chapter
Molecular Gels

4. Conclusions and Perspectives

In this chapter, we have described how the phase diagram for molecular gelators can be obtained using simple, straightforward techniques. The phase diagram is a plot of temperature vs. gelator concentration showing the location of sol-gel boundari(es) as well as any multi-phase or lyotropic regions. The first set of techniques involve application of rheological principles to detect gelation. These include: (a) tube inversion; (b) falling sphere; and (c) rising bubbles. Calorimetry studies are also useful in directly measuring the enthalpy of gelation (melting). The latter quantity can also be obtained by analyzing an Arrhenius plot of the gelator concentration as a function of the gelation temperature.

Among the rheology-based methods, tube inversion is by far the most popular and convenient, and arguably also the least ambiguous. As a starting point for studying gels, it is preferable to use tube inversion over falling ball or other alternatives. If falling ball must be used, it is important to use a heavy ball and a sufficiently large vessel in order to obtain a clean measurement. Finally, where possible, the simple “tabletop” rheological methods should be benchmarked using data from conventional rheometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Terech, P.; Weiss, R.G. Chem. Rev., 1997, 97, 3133–3159.

    Article  Google Scholar 

  2. Winter, H.H. “Gels”, In Encyclopedia of Polymer Science and Engineering, H.H. Mark, Ed., New York: Wiley, 1985, pp. 343.

    Google Scholar 

  3. Macosko, C.W. Rheology: Principles, Measurements and Applications, New York: VCH Publishers, 1994.

    Google Scholar 

  4. Dimonte, G.; Nelson, D.; Weaver, S.; Schneider, M.; Flower-Maudlin, E.; Gore, R.; Baumgardner, J.R.; Sahota, M.S. J. Rheol., 1998, 42, 727–742.

    Article  ADS  Google Scholar 

  5. Li, H.; Yu, G.E.; Price, C.; Booth, C.; Hecht, E.; Hoffmann, H. Macromolecules, 1997, 30, 1347–1354.

    Article  ADS  Google Scholar 

  6. Kelarakis, A.; Mingvanish, W.; Daniel, C.; Li, H.; Havredaki, V.; Booth, C.; Hamley, I.W.; Ryan, A. J. Phys. Chem. Chem. Phys., 2000, 2, 2755–2763.

    Article  Google Scholar 

  7. Beris, A.N.; Tsamopoulos, J.A.; Armstrong, R.C.; Brown, R. A. J. Fluid Mech., 1985, 158, 219–244.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Noveon, Inc. http://www.pharma.noveoninc.com/literature/bulletin/epb12.pdf “Bulletin 12: Flow and suspension properties”, 2000.

    Google Scholar 

  9. Gheissary, G.; van den Brule, B.J. Non-Newtonian. Fluid Mech., 1996, 67, 1–18.

    Article  Google Scholar 

  10. van Esch, J.; Schoonbeek, F.; de Loos, M.; Kooijman, H.; Spek, A.L.; Kellogg, R.M.; Feringa, B.L. Chem.-Eur. J., 1999, 5, 937–950.

    Article  Google Scholar 

  11. Stein, S.; Buggisch, H.Z. Angew. Math. Mech., 2000, 80, 827–834.

    Article  MATH  Google Scholar 

  12. Coussot, P.; Boyer, S. Rheol. Acta, 1995, 34, 534–543.

    Article  Google Scholar 

  13. Pashias, N.; Boger, D.V.; Summers, J.; Glenister, D.J. J. Rheol., 1996, 40, 1179–1189.

    Article  ADS  Google Scholar 

  14. Atkins, P.W. Physical Chemistry, 5th edition, New York: W.H. Freeman & Co., 1994.

    Google Scholar 

  15. Guenet, J.-M., Ed., Thermoreversible Gelation of Polymers and Biopolymers, London: Academic Press, 1992.

    Google Scholar 

  16. Watase, M.; Nakatani, Y.; Itagaki, H. J. Phys. Chem. B, 1999, 103, 2366–2373.

    Article  Google Scholar 

  17. Menger, F.M.; Caran, K.L. J. Am. Chem. Soc., 2000, 122, 11679–11691.

    Article  Google Scholar 

  18. Terech, P.; Rossat, C.; Volino, F. J. Colloid Interface Sci., 2000, 227, 363–370.

    Article  Google Scholar 

  19. Amanokura, N.; Yoza, K.; Shinmori, H.; Shinkai, S.; Reinhoudt, D.N. J. Chem. Soc. Perkin Trans., 1998, 2, 2585–2591.

    Google Scholar 

  20. Eldridge, J.E.; Ferry, J.D. J. Phys. Chem., 1954, 58, 992–995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Raghavan, S.R., Cipriano, B.H. (2006). Gel Formation: Phase Diagrams Using Tabletop Rheology and Calorimetry. In: Weiss, R.G., Terech, P. (eds) Molecular Gels. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3689-2_9

Download citation

Publish with us

Policies and ethics