Skip to main content

Electron Conducting and Magneto-Sensitive Gels

  • Chapter
Molecular Gels

4. Conclusions and Perspectives for the Future

Clearly, many applications of molecular gels from low molecular-mass organic gelators as electronic or magnetosensitive materials can be envisioned. Yet, their potential has not been exploited thus far; the few examples are described in this chapter. Given the recent advances in the systematic synthesis of organogelators, and relying on the creative imagination of chemists, it seems highly probable that the future will witness a large number of new, gel-based materials with exciting applications. Their ability to be cycled reversibly between free-flowing liquids and non-flowing materials is one of the most important of the many exciting attributes of these molecular gels. In this regard, there is a need for viscosity control in inkjet printing processes for the deposition of electronic materials on flexible substrates.

Also, we have mentioned the incorporation of spherical metal nanoparticles into molecular gels. There have been no investigations of the incorporation of particles with high aspect ratios, such as metal or semiconducting nanorods. Such doped gels may open additional fascinating opportunities to assemble nanoscale objects into functional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (a) Daum, P.; Lenhard, J.R.; Rolison, D.; Murray, R.W. “Diffusional charge transport through ultrathin films of radiofrequency plasma polymerized vinylferrocene at low temperature”, J. Am. Chem. Soc., 1980, 102, 4649–4653. (b) Pickup, P.G.; Kutner, W.; Leidner, C.R.; Murray, R.W. “Redox conduction in single and bilayers films of redox polymer”, J. Am. Chem. Soc. 1984, 106, 1991–1998.

    Article  Google Scholar 

  2. Willner, I.; Katz, E. “Integration of layered redox proteins and conductive supports for bioelectronic applications”, Angew. Chem. Int. Ed., 2000, 39, 1180–1218.

    Article  Google Scholar 

  3. Handbook of Organic Conductive Molecules and Polymers, H.S. Nalwa, Ed., Chichester: John Wiley, 1997, 1–4.

    Google Scholar 

  4. Baumgarten, M.; Müllen, K. “Radical ions: where organic chemistry meets materials sciences”, Topics in Current Chem., 1994, 169, 1–103, and references therein.

    Google Scholar 

  5. Holdcroft, S. “Patterning of π-conjugated polymers”, Adv. Mater., 2001, 13, 1753–1765.

    Article  Google Scholar 

  6. Electronic Materials: the Oligomer Approach, K. Müllen and G. Wegner, Eds., Weinheim: Wiley-VCH, 1998.

    Google Scholar 

  7. Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene (CH)x”, J. Chem. Soc. Chem. Commun., 1977, 578–580.

    Google Scholar 

  8. Roncali, J. “Conjugated poly(thiophene)s: synthesis, functionalization, and applications”, Chem. Rev., 1992, 92, 711–738.

    Article  Google Scholar 

  9. Garnier, F. “Functionalized conducting polymers — towards intelligent materials”, Angew. Chem. Int. Ed. Engl., 1989, 28, 513–517.

    Article  Google Scholar 

  10. Handbook of Oligo-and Polythiophenes, D. Fichou, Ed., Weinheim: Wiley-VCH, 1999.

    Google Scholar 

  11. Fachetti, A.; Yoon, M.H.; Stern, C.L.; Katz, H.E.; Marks, T.J. “Building blocks for n-type organic electronics: regiochemically modulated inversion of majority carrier sign in perfluoroarene-modified polythiophene semiconductors”, Angew. Chem. Int. Ed., 2003, 42, 3900–3903.

    Article  Google Scholar 

  12. McCullough, R.P.; Williams, S.P.; Tristram-Nagle, S.; Jayaraman, M.; Ewbank, P.C.; Miller, L. “The first synthesis and new properties of regioregular, head-to-tail coupled polythiophenes”, Synth. Met., 1995, 69, 279–282.

    Article  Google Scholar 

  13. Roncali, J. “Synthetic principles for bandgap control in linearπ-conjugated systems”, Chem. Rev., 1997, 97, 173–205.

    Article  Google Scholar 

  14. Fichou, D.; Ziegler, C. “Structure and properties of oligothiophenes in the solid state: single crystals and thin films” in Ref. [10], pp. 183–282.

    Google Scholar 

  15. de Gennes P.-G. “Solutions de polymères conducteurs. Lois d’échelles. (Scaling laws for solutions of conducting polymers)”, C. R. Acad. Sc. Paris, Série II, 1986, 302, 1–5.

    Google Scholar 

  16. Yoshino, K. “Novel functional gel characteristics of conducting polymer”, In Conjugated Polymers and Related Materials: The Interconnection of Chemical and Electronic Structure, Proceedings of the Eighty-first Nobel symposium, W. R. Salaneck, I. Lundström and B. Ranby, Eds., Oxford: Oxford University Press, 1993, 121–138.

    Google Scholar 

  17. Pépin-Donat, B.; Van-Quynh, A.; Viallat, A. “Mechanisms of deformation in fully conjugated conducting gels. Stretching and swelling”, Macromolecules, 2000, 33, 5912–5917.

    Article  ADS  Google Scholar 

  18. Sixou, B.; Pépin-Donat, B.; Nechtschein, M. “The routes towards three-dimensional conducting polymers: 2. Transport properties of fully conjugated gels of poly(3-n-octylthiophene)”, Polymer, 1997, 38, 1581–1587.

    Article  Google Scholar 

  19. Chen, L.; Kim, B.; Nishino, M.; Ping Gong, J.; Osada, Y. “Environmental responses of polythiophene hydrogels”, Macromolecules, 2000, 33, 1232–1236.

    Article  ADS  Google Scholar 

  20. Äsberg, D.P.; Inganäs, O. “PEDOT/PSS hydrogel networks as 3-D enzyme electrodes”, Synth. Met., 2003, 137, 1403–1404.

    Article  Google Scholar 

  21. Fujii, M.; Ihori, H.; Arii, K.; Onoda, M. “Control of weight of network path of neuron-like conducting polymer”, Synth. Met., 2001, 119, 483–484.

    Article  Google Scholar 

  22. Mao, F.; Mano, N.; Heller, A. “Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme ‘wiring’ hydrogels”, J. Am. Chem. Soc., 2003, 125, 4951–4957.

    Article  Google Scholar 

  23. Mano, N.; Mao, F.; Shin, W.; Chen, T.; Heller, A. “A Miniature biofuel cell operating at 0.78 V”, Chem. Commun., 2003, 518–519.

    Google Scholar 

  24. Sallacan, N.; Zayats, M.; Bourenko, T.; Kharitonov, A.B.; Willner, I. “Imprinting of nucleotide and monosaccharide recognition sites in acrylamidephenylboronic acid-acrylamide copolymer membranes associated with electronic transducers”, Anal. Chem. 2002, 74, 702–712.

    Article  Google Scholar 

  25. van Hest, J.C.M.; Tirrell, D.A. “Protein-based materials, toward a new level of structural control”, Chem. Commun., 2001, 1897–1904.

    Google Scholar 

  26. Aggeli, A.; Bell, M.; Boden, N.; Keen, J.N.; McLeish, T.C.B.; Nyrkova, I.; Radford, S.E.; Semenov, A. “Engineering of peptide β-sheet nanotapes”, J. Mater. Chem., 1997, 7, 1135–1145.

    Article  Google Scholar 

  27. Aggeli, A.; Bell, M.; Boden, N.; Keen, J.N.; Knowles, P.F.; McLeish, T.C.B.; Pitkeathly, M.; Radford, S.E. “Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes”, Nature, 1997, 386, 259–262.

    Article  ADS  Google Scholar 

  28. Kothakota, S.; Mason, T.L.; Tirrell, D.A.; Fournier, M.J. “Biosynthesis of a periodic protein containing 3-thienylalanine: a step toward genetically engineered conducting polymers”, J. Am. Chem. Soc., 1995, 117, 536–537.

    Article  Google Scholar 

  29. El-Ghayoury, A.; Schenning, A.P.H.J.; van Hal, P.A.; van Duren, J.K.J.; Janssen, R.A.J.; Meijer, E.W. “Supramolecular hydrogen-bonded oligo(p-phenylene vinylene) polymers”, Angew. Chem. Int. Ed., 2001, 40, 3660–3663.

    Article  Google Scholar 

  30. Schoonbeek, F.S.; van Esch, J.H.; Wegewijs, B.; Rep, D.B.A.; de Haas, M.P.; Klapwijk, T.M.; Kellog, R.M.; Feringa, B.L. “Efficient intermolecular charge transport in self-assembled fibers of mono-and bithiophene bisurea compounds”, Angew. Chem. Int. Ed., 1999, 38, 1393–1397.

    Article  Google Scholar 

  31. Liu, P.; Shirota, Y.; Osada, Y. “A novel class of low-molecular-weight organic gels based on terthiophene”, Polym. Adv. Technol., 2000, 512–517.

    Google Scholar 

  32. (a) Schenning, A.P.H.J.; Kilbinger, A.F.M.; Biscarini, F.; Cavallini, M.; Cooper, H.J.; Derrick, P.J.; Feast, W.J.; Lazzaroni, R.; Leclère, P.; McDonell, L.A.; Meijer, E.W.; Meskers, S.C.J. “Supramolecular organization of α, α′-disubstituted sexithiophenes”, J. Am. Chem. Soc., 2002, 124, 1269–1275. (b) Sandberg, H.; Henze, O.; Kilbinger, A.F.M.; Sirringhaus, H.; Feast, W.J.; Friend, R.H. “Oligoethyleneoxide sexithiophene organic field effect transistors”, Synth. Metals, 2003, 137, 885–886.

    Article  Google Scholar 

  33. Ajayaghosh, A.; George, S.J. “First phenylenevinylene based organogels: self-assembled nanostructures via cooperative hydrogen bonding and π-stacking”, J. Am. Chem. Soc., 2001, 123, 5148–5149.

    Article  Google Scholar 

  34. For a recent TTF review, see: Segura, J.L.; Martin, N. “New concepts in tetrathiafulvalene chemistry”, Angew. Chem. Int. Ed., 2001, 40, 1372–1409.

    Article  Google Scholar 

  35. Jørgensen, M.; Bechgaard, K.; Bjørnholm, T.; Sommer-Larsen, P.; Hansen, L.G.; Schaumburg, K. “Synthesis and structural characterization of a bis-arborol tetrathiafulvalene gel: toward a self-assembling ‘molecular’ wire”, J. Org. Chem., 1994, 59, 5877–5882.

    Article  Google Scholar 

  36. (a) Tian, H.J.; Inoue, K.; Ishi-I, T.; Shinkai, S. “New organic gelators bearing a porphyrin group: a new strategy to create ordered porphyrin assemblies”, Chem. Lett., 1998, 871–872. (b) Terech, P.; Gebel, G.; Ramasseul, R. “Molecular rods in a zinc(II) porphyrin/cyclohexane physical gel: neutron and X-ray scattering characterizations”, Langmuir, 1996, 12, 4321–4323.

    Google Scholar 

  37. van Norstrum, C.F.; Picken, S.J.; Schouten, A.J.; Nolte, R.J.M. “Synthesis and supramolecular chemistry of novel liquid crystalline crown ether-substituted phthalocyanines: toward molecular wires and molecular electronics”, J. Am. Chem. Soc., 1995, 117, 9957–9965.

    Article  Google Scholar 

  38. Kimura, M.; Muto, T.; Takimoto, H.; Wada, K.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. “Fibrous assemblies made of amphiphilic metallophthalocyanines”, Langmuir, 2000, 16, 2078–2082.

    Article  Google Scholar 

  39. Sariciftici, N.S.; Smilowitz, L.; Heeger, A.J.; Wudl, F. “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene”, Science, 1992, 258, 1474–1476.

    Article  ADS  Google Scholar 

  40. Cassell, A.M.; Asplund, C.L.; Tour, J.M. “Self-assembling supramolecular nanostructures from a C60 derivative: nanorods and vesicles”, Angew. Chem. Int. Ed., 1999, 38, 2403–2405.

    Article  Google Scholar 

  41. Ishi-I, T.; Iguchi, R.; Snip, E.; Ikeda, M.; Shinkai, S. “[60]Fullerene can reinforce the organogel structure of porphyrin-appended cholesterol derivatives: novel odd-even effect of the (CH2)n spacer on the organogel stability”, Langmuir, 2001, 17, 5825–5833.

    Article  Google Scholar 

  42. Shirakawa, M.; Fujita, N.; Shinkai, S. “[60]Fullerene-motivated organogel formation in a porphyrin derivative bearing programmed hydrogen-bonding sites”, J. Am. Chem. Soc., 2003, 125, 9902–9903.

    Article  Google Scholar 

  43. Ferraris, J.; Cowan, D.O.; Walatka, V.V.; Perlstein, J.H. “Electron transfer in a new highly conducting donor-acceptor complex”, J. Am. Chem. Soc., 1973, 95, 948–949.

    Article  Google Scholar 

  44. Maitra, U.; Kumar, P.V.; Chandra, N.; D’Souza, L.J.; Prasanna, M.D.; Raju, A.R. “First donor-acceptor interaction promoted gelation of organic fluids”, Chem. Commun., 1999, 595–596.

    Google Scholar 

  45. Friggeri, A.; Gronwald, O.; van Bommel, K.J.C.; Shinkai, S.; Reinhoudt, D.N. “Charge-transfer phenomena in novel, dual-component, sugar-based organogels”, J. Am. Chem. Soc., 2002, 124, 10754–10758.

    Article  Google Scholar 

  46. Kölbel, M.; Menger, F.M. “Molecular recognition among structurally similar component of a self-assembling soft material”, Langmuir, 2001, 17, 4490–4492.

    Article  Google Scholar 

  47. Pieterse, K.; van Hal, P.A.; Kleppinger, R.; Vekemans, J.A.J.M.; Janssen, R.A.J.; Meijer, E.W. “An electron-deficient discotic liquid-crystalline material”, Chem. Mater., 2001, 13, 2675–2679.

    Article  Google Scholar 

  48. Dimitrakopoulos, C.D.; Malenfant, P.R.L. “Organic thin transistors for large area electronics”, Adv. Mater., 2002, 14, 99–117.

    Article  Google Scholar 

  49. Lescanne, M.; Colin, A.; Mondain-Monval, O.; Heuzé, K.; Fages, F.; Pozzo, J.L. “Flow-induced alignment of fiberlike supramolecular self-assemblies during organogel formation with various molecular mass organogelator-solvent systems”, Langmuir, 2002, 18, 7151–7153.

    Article  Google Scholar 

  50. Kubo, W.; Kitamura, T.; Hanabusa, K.; Wada, Y.; Yanagida, S. “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator”, Chem. Commun., 2002, 374–375.

    Google Scholar 

  51. Wang, P.; Zakeeruddin, S.M.; Exnar, I.; Grätzel, M. “High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte”, Chem. Commun., 2002, 2972–2973.

    Google Scholar 

  52. de Loos, M.; van Esch, J.; Stokroos, I.; Kellog, R.M.; Feringa, B.L. “Remarkable stabilization of self-assembled organogels by polymerization”, J. Am. Chem. Soc., 1997, 119, 12675–12676.

    Article  Google Scholar 

  53. Wang, C.; Hamilton, A.D. “Synthesis and self-assembly properties of polymerizable organogelators”, Chem. Eur. J., 2002, 8, 1954–1961.

    Article  Google Scholar 

  54. George, M.; Weiss, R.G. “Low molecular-mass gelators with diyne functional groups and their unpolymerized and polymerized gel assemblies”, Chem. Mater., 2003, 15, 2879–2888, and references therein.

    Article  Google Scholar 

  55. van Bommel, K.J.C.; Friggeri, A.; Shinkai, S. “Organic templates for the generation of inorganic materials”, Angew. Chem. Int. Ed., 2003, 42, 980–999.

    Article  Google Scholar 

  56. Kobayashi, S.; Hamasaki, N.; Suzuki, M.; Kimura, M.; Shirai, H.; Hanabusa, K. “Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents”, J. Am. Chem. Soc., 2002, 124, 6550–6551.

    Article  Google Scholar 

  57. Sone, E.D.; Zubarev, E.R.; Stupp, S.I. “Semiconductors nanohelices templated by supramolecular ribbons”, Angew. Chem. Int. Ed., 2002, 41, 1706–1709.

    Article  Google Scholar 

  58. (a) Matsui, H.; Pan, S.; Gologan, B.; Jonas, S.H. “Bolaamphiphile nanotubetemplated metallized wires”, J. Phys. Chem. B, 2000, 104, 9576–9579. (b) Matsui, H.; Gologan, B.; Pan, S.; Douberly, Jr., G.E. “Controlled immobilization of peptide nanotube-templated metallic wires on Au surfaces”, Eur. Phys. J. D, 2001, 16, 403–406.

    Article  Google Scholar 

  59. Kimura, M.; Wada, K.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. “Organicinorganic composites comprised of ordered stacks of amphiphile molecular disks”, J. Am. Chem. Soc., 2001, 123, 2438–2439.

    Article  Google Scholar 

  60. Dautel, O.J.; Lère-Porte, J.P.; Moreau, J.J.E.; Wong Chi Man, M. “Vapour diffusion hydrolysis of a self-assembled silylated organogel, the OG-HG transcription process: a new way to cast and handle fluorescent silsesquioxane”, Chem. Commun., 2003, 2662–2663.

    Google Scholar 

  61. Shipway, A.N.; Willner, I. “Electronic transduced molecular mechanical and information functions on surfaces”, Acc. Chem. Res., 2001, 34, 421–432.

    Article  Google Scholar 

  62. Davis, S.E.; Breulmann, M.; Rhodes, K.H.; Zhang, B.; Mann, S. “Template-directed assembly using nanoparticle building-blocks: a nanotechtonic approach to organized materials”, Chem. Mater., 2001, 13, 3218–3226.

    Article  Google Scholar 

  63. Simmons, B.; Li, S.; John, V.T.; McPherson, G.L.; Taylor, C.; Schwartz, D.K.; Maskos, K. “Spatial compartmentalization of nanoparticles into strands of a self-assembled organogel”, Nano Lett., 2002, 2, 1037–1042.

    Article  ADS  Google Scholar 

  64. Matsui, H.; Pan, S.; Douberly, G.E., Jr. “Fabrication of nanocrystal tube using peptide tubule as template and its application as signal-enhancing cuvette”, J. Phys. Chem. B, 2001, 105, 1683–1686.

    Article  Google Scholar 

  65. For a recent review: Hyeon, T. “Chemical synthesis of magnetic nanoparticles”, Chem. Commun. 2003, 927–934.

    Google Scholar 

  66. (a) Berkovsky, B. M.; Medvedev, V.F.; Krakov, M.S. Magnetic Fluids: Engineering Applications. Oxford: Oxford University Press, 1993. (b) Weller, D.; Doerner, M.F. “Extremely high-density longitudinal magnetic recording media”, Annu. Rev. Mater. Sci., 2000, 30, 611–644.

    Google Scholar 

  67. Dunlop, E.H.; Feiler, W.A.; Mattione, M.J. “Magnetic separation in biotechnology”, Biotech. Adv., 1984, 2, 63–74.

    Article  Google Scholar 

  68. Hatch, G.P.; Stelter, R.E. “Magnetic design considerations for devices and particles used for biological high-gradient magnetic separation (HGMS)”, J. Magn. Magn. Mater., 2001, 225, 262–276.

    Article  ADS  Google Scholar 

  69. (a) Zrinyi, M.; Szabo, D.; Barsi, L. In Polymer Sensors and Actuators, Y. Osada and D.E. Rossi, Eds.; Berlin: Springer-Verlag, 1999, pp. 385–408. (b) Zrinyi, M.; Szabo, D.; Filipcsei, G.; Feher, J. In Polymer Gels and Networks, Y., Osada and A. Khokhlov, Eds., New york: Marcel Dekker, 2001, pp. 309–355.

    Google Scholar 

  70. Zrinyi, M.; Barsi, L.; Büki, A. “Ferrogel: a new magneto-controlled elastic medium”, Polym. Gels Networks, 1997, 5, 415–427.

    Article  Google Scholar 

  71. Narita, T.; Knaebel, A.; Munch, J.P.; Candau, S.J.; Zrinyi, M. “Diffusing-wave spectroscopy study of the motion of magnetic particles in chemically cross-linked gels under external magnetic fields”, Macromolecules, 2003, 36, 2985–2989.

    Article  ADS  Google Scholar 

  72. Szabo, D.; Czabo-Nagy, I.; Zrinyi, M.; Vértes, A. “Magnetic an mössbauer studies of magnetite-loaded polyvinyl alcohol hydrogels”, J. Colloid Interface Sci., 2000, 221, 166–172.

    Article  Google Scholar 

  73. (a) Xulu, P.M.; Filipcsei, G.; Zrinyi, M. “Preparation and responsive properties of magnetically soft poly(N-isopropylacrylamide) gels”, Macromolecules, 2000, 33, 1716–1719. (b) Mayer, C.R.; Cabuil, V.; Lalot, T.; Thouvenot, R. “Magnetic nanoparticles trapped in pH 7 hydrogels as a tool to characterize the properties of the polymeric network”, Adv. Mater., 2000, 12, 417–420.

    Article  ADS  Google Scholar 

  74. Li, S.; John, V.T.; Irvin, G.C.; Suguna, S.H.; Rachakonda, H.; McPherson, G.L.; O’Connor, C.J. “Synthesis and magnetic properties of a novel ferrite organogel”, J. Appl. Phys., 1999, 85, 5965–5967.

    Article  ADS  Google Scholar 

  75. Babincova, M.; Leszczynska, D.; Sourivong, P.; Cicmanec, P.; Babinec, P. “Superparamagnetic gel as a novel material for electromagnetically induced hyperthermia”, J. Magn. Magn. Mat., 2001, 225, 109–112.

    Article  ADS  Google Scholar 

  76. Lopez, D.; Guenet, J.M. “Encapsulation of self-assembled bicopper complex filaments in thermoreversible gel fibrils: effect of the solvent isomer”, J. Phys. Chem. B, 2002, 106, 2160–2165.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Fages, F. (2006). Electron Conducting and Magneto-Sensitive Gels. In: Weiss, R.G., Terech, P. (eds) Molecular Gels. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3689-2_24

Download citation

Publish with us

Policies and ethics