Skip to main content

Rheology of Wormlike Micelles: Equilibrium Properties and Shear Banding Transitions

  • Chapter
Molecular Gels

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cates, M.E.; Candau, S.J. “Statics and dynamics of wormlike surfactant micelles”, J. Phys.: Condens. Matter, 1990, 2, 6869–6892.

    Article  ADS  Google Scholar 

  2. Hofmann, S.; Rauscher, A.; Hoffmann, H. “Shear induced micellar structures”, Ber. Bunsenges. Phys. Chem., 1991, 95, 153–164.

    Google Scholar 

  3. Rehage, H.; Hoffmann, H. “Viscoelastic surfactant solutions: model systems for rheological research”, Mol. Phys., 1991, 74, 933–973.

    Article  ADS  Google Scholar 

  4. Gelbart, W.M.; Ben-Shaul, A.; Roux, D. Micelles, Membranes, Microemulsions and Monolayers. New York: Springer, 1994.

    Google Scholar 

  5. Lequeux, F.; Candau, S.J. In Structure and Flow in Surfactant Solutions (ACS Symposium Series 578), C.A. Herb and R.K. Prud’homme, Eds., Washington D.C.: American Chemical Society, 1994.

    Google Scholar 

  6. Candau, S.J.; Oda, R. “Linear viscoelasticity of salt-free wormlike micellar solutions”, Colloids Surfaces A, 2001, 183–185, 5–14.

    Article  Google Scholar 

  7. Walker, L.M. “Rheology and structure of wormlike micelles”, Curr. Opin. Colloid Interface Sci., 2001, 6, 451–456.

    Article  Google Scholar 

  8. Yang, J. “Viscoelastic wormlike micelles and their applications”, Curr. Opin. Colloid Interface Sci., 2002, 7, 276–281.

    Article  Google Scholar 

  9. Larson, R.G. The Structure and Rheology of Complex Fluids. New York: Oxford University Press, 1999.

    Google Scholar 

  10. Zanten, J.H.v.; Rufener, K.P. “Brownian motion in a single relaxation time maxwell fluid”, Phys. Rev. E, 2000, 62, 5389–5396.

    Article  ADS  Google Scholar 

  11. Bellour, M.; Skouri, M.; Munch, J.-P.; Hébraud, P. “Brownian motion of particles embedded in a solution of giant micelles”, Eur. Phys. J. E, 2002, 8, 431–436.

    Google Scholar 

  12. Cardinaux, F.; Cipelletti, L.; Scheffold, F.; Schutenberger, P. “Microrheology of giant-micelle solutions”, Europhys. Lett., 2002, 57, 738–744.

    Article  ADS  Google Scholar 

  13. Belmonte, A. “Self-oscillations of a cusped bubble rising through a micellar solution”, Rheol. Acta, 2000, 39, 554–559.

    Article  Google Scholar 

  14. Makhloufi, R.; Decruppe, J.-P.; Aït-Ali, A.; Cressely, R. “Rheo-optical study of wormlike micelles undergoing a shear banding flow”, Europhys. Lett., 1995, 32, 253–258.

    ADS  Google Scholar 

  15. Callaghan, P.T.; Cates, M.E.; Rofe, C.J.; Smeulders, J.B.A.F. “A study of the’ spurt effect’ in wormlike micelles using nuclear magnetic resonance microscopy”, J. Phys. II France, 1996, 6.

    Google Scholar 

  16. Mair, R.W.; Callaghan, P.T. “Observation of shear banding in wormlike micelles by NMR velocity imaging”, Europhys. Lett., 1996, 36, 719–724.

    Article  ADS  Google Scholar 

  17. Rosen, M.J.; Dahanayake, M. Industrial Utilization of Surfactants: Principle and Practice. Champaign: Illinois, AOCS Press, 2000.

    Google Scholar 

  18. Aniansson, E.A.G.; Wall, S.N.; Almgren, M.; Hoffmann, H.; Kielmann, I.; Ulbricht, W.; Zana, R.; Lang, J.; Tondre, C. “Theory of the kinetics of micellar equilibria and quantitative interpretation of the chemical relaxation studies of micellar solutions of ionic surfactant”, J. Phys. Chem., 1976, 80, 905–922.

    Article  Google Scholar 

  19. Zana, R. Surfactant Solutions: New Methods of Investigation. New York: Marcel Dekker, Inc., 1987.

    Google Scholar 

  20. Candau, S.J.; Hirsch, E.; Zana, R.; Adam, M. “Network properties of semi-dilute KBr solutions of cetyltrimetylammonium bromide”, J. Colloid Interface Sci., 1988, 122, 430–440.

    Article  Google Scholar 

  21. Tandford, C. The Hydrophobic Effect: Formation of Micelles and Biological Membranes. New York: Wiley & Sons, 1980.

    Google Scholar 

  22. Israelachvili, J.N. Intermolecular and Surface Forces. London: Academic Press, 1992.

    Google Scholar 

  23. Cates, M.E. “Dynamics of living polymers and flexible surfactant micelles: scaling laws for dilution”, J. Phys. France, 1988, 49, 1593–1600.

    Google Scholar 

  24. Candau, S.J.; Merikhi, F.; Waton, G.; Lemaréchal, P. “Temperature-jump study of elongated micelles of cetyltrimethylammonium bromide”, J. Phys. France, 1990, 51, 977–989.

    Google Scholar 

  25. Safran, S.A.; Pincus, P.A.; Cates, M.E.; MacKintosh, F.C. “Growth of charged micelles”, J. Phys. France, 1990, 51, 503–510.

    Google Scholar 

  26. MacKintosh, F.C.; Safran, S.A.; Pincus, P.A. “Self-assembly of linear aggregates: the effect on electrostatics on growth”, Europhys. Lett., 1990, 12, 697–702.

    ADS  Google Scholar 

  27. Arleth, L.; Bergström, M.; Pedersen, J.S. “Small-angle neutron scattering study of the growth behavior, flexibility, and intermicellar interactions of wormlike SDS micelles in NaBr solutions”, Langmuir, 2002, 18, 5343–5353.

    Article  Google Scholar 

  28. Reiss-Husson, F.; Luzzati, V. “The structure of micellar solutions of some amphiphilic compounds in pure water as determined by absolute small-angle X-ray scattering experiments”, J. Phys. Chem., 1964, 68, 3504–3511.

    Google Scholar 

  29. Ekwall, P.; Mandell, L.; Solyom, P. “The aqueous cetyl trimethylammonium bromide solutions”, J. Colloid Interface Sci., 1971, 35, 519–527.

    Article  Google Scholar 

  30. Fontell, K.; Khan, A.; Lindström, B.; Maciejewska, D.; Puang-Ngern, S. “Phase equilibria and structures in ternary systems of a cationic surfactant (C16TABr or (C16TA)2SO4), alcohol and water”, Colloid Polym. Sci., 1991, 269, 727–742.

    Article  Google Scholar 

  31. Porte, G.; Poggi, Y.; Appell, J.; Maret, G. “Large micelles in concentrated solutions. The second critical micellar concentration”, J. Phys. Chem., 1984, 88, 5713–5720.

    Article  Google Scholar 

  32. Debye, P.; Anacker, E.W. “Micelle shape from dissymmetry measurements”, J. Phys. Chem., 1950, 55, 644–655.

    Article  Google Scholar 

  33. Quirion, F.; Magid, L.J. “Growth and counterion binding of cetyltrimethylammonium bromide aggregates at 25° C: a neutron scattering study”, J. Phys. Chem., 1986, 90, 5435–5441.

    Article  Google Scholar 

  34. Candau, S.J.; Hirsch, E.; Zana, R. “New aspects of the behaviour of alkyltrimethylammonium bromide micelles: light scattering and viscometric studies”, J. Physique, 1984, 45, 1263–1270.

    Google Scholar 

  35. Candau, S.J.; Hirsch, E.; Zana, R. “Light scattering investigations of the behavior of semi-dilute aqueous micellar solutions of cetyltrimethylammonium bromide: analogy with semi-dilute polymer solutions”, J. Colloid Interface Sci., 1985, 105, 521–528.

    Article  Google Scholar 

  36. Emerson, M.F.; Holtzer, A. “On the ionic strength dependence of micelle number”, J. Phys. Chem., 1967, 71, 1898–1907.

    Article  Google Scholar 

  37. Mazer, N.A.; Benedeck, G.B.; Carrey, M.C. “An investigation of the micellar phase of sodium dodecylsulfate in aqueous sodium chloride solutions using quasielastic light scattering spectroscopy”, J. Phys. Chem., 1976, 80, 1075–1085.

    Article  Google Scholar 

  38. Young, C.Y.; Missel, P.J.; Mazer, N.A.; Benedeck, G.B.; Carrey, M.C. “Deduction of micellar shape from angular dissymetry measurements of light scattered from aqueous sodium dodecylsulfate solutions at high sodium chloride concentrations”, J. Phys. Chem., 1978, 82, 1375–1378.

    Article  Google Scholar 

  39. Missel, P.J.; Mazer, N.A.; Benedeck, G.B.; Young, C.Y.; Carrey, M.C. “Thermodynamic analysis of the growth of sodium dodecyl sulfate micelles”, J. Phys. Chem., 1980, 84, 1044–1057.

    Article  Google Scholar 

  40. Missel, P.J.; Mazer, N.A.; Benedeck, G.B.; Carrey, M.C. “Influence of chain length on the sphere-to-rod transition in alkyl sulfate micelles”, J. Phys. Chem., 1983, 87, 1264–1277.

    Article  Google Scholar 

  41. Magid, L.J.; Li, Z.; Butler, P.D. “Flexibility of elongated sodium dodecyl sulfate micelles in aqueous sodium chloride: a small-angle neutron scattering study”, Langmuir, 2000, 16, 100280-10036.

    Google Scholar 

  42. Mu, J.-H.; Li, G.-Z.; Jia, X.-L.; Wang, H.-X.; Zhang, G.-Y. “Rheological properties and microstructures of anionic micellar solutions in the presence of different inorganic salts”, J. Phys. Chem. B, 2002, 106, 11685–11693.

    Article  Google Scholar 

  43. Mu, J-H.; Li, G.-Z.; Wang, H.-X. “Effect of surfactant concentration on the formation and viscoelasticity of anionic wormlike micelle by the methods of rheology and freeze-fracture TEM”, Rheol. Acta, 2002, 41, 493–499.

    Article  Google Scholar 

  44. Lawson, K.D.; Flautt, T.J. “Magnetically oriented lyotropic liquid crystalline phase”, J. Am. Chem. Soc., 1967, 89, 5489–5491.

    Article  Google Scholar 

  45. Yu, L.J.; Saupe, A. “Observation of a biaxial nematic phase in potassium laurate-1-decanol mixtures”, Phys. Rev. Lett., 1980, 45, 1000–1003.

    Article  ADS  Google Scholar 

  46. Hendrikx, Y.; Charvolin, J. “Structural relations between lyotropic phases in the vicinity of the nematic phases”, J. Physique, 1981, 42, 1427–1440.

    Google Scholar 

  47. Hendrikx, Y.; Charvolin, J.; Rawiso, M.; Liébert, L.; Holmes, M.C. “Anisotropic aggregates of amphiphilic molecules in lyotropic nematic phases”, J. Phys. Chem., 1983, 87, 3991–3999.

    Article  Google Scholar 

  48. Amaral, L.Q.; Helene, M.E.M. “Nematic domain in the sodium lauryl sulfate/water/decanol system”, J. Phys. Chem., 1988, 92, 6094–6098.

    Article  Google Scholar 

  49. Quist, P.O.; Halle, B.; Furo, I. “Micelle size and order in lyotropic nematic phases from nuclear spin relaxation”, J. Chem. Phys., 1992, 96, 3875–3891.

    Article  ADS  Google Scholar 

  50. Thiele, T.; Berret, J.-F.; Muller, S.; Schmidt, C. “Rheology and NMR measurements under shear of sodium dodecyl sulfate/decanol/water nematics”, J. Rheol., 2001, 45, 29–48.

    Article  ADS  Google Scholar 

  51. Porte, G.; Gomati, R.; Haitamy, O.E.; Appell, J.; Marignan, J. “Morphological transformations of the primary surfactant structures in brine-rich mixtures of ternary systems (surfactant/alcohol/brine)”, J. Phys. Chem., 1986, 90, 5746–5751.

    Article  Google Scholar 

  52. Gomati, R.; Appell, J.; Bassereau, P.; Marignan, J.; Porte, G. “Influence of the nature of the counterion and of hexanol on the phase behavior of the dilute ternary systems: cetylpyridinium bromide or chloride-hexanol-brine”, J. Phys. Chem., 1987, 91, 6203–6210.

    Article  Google Scholar 

  53. Porte, G.; Marignan, J.; Bassereau, P.; May, R. “Shape transformation of the aggregates in dilute surfactant solutions: a small-angle neutron scattering study”, J. Phys. France, 1988, 49, 511–519.

    Google Scholar 

  54. Marignan, J.; Appell, J.; Bassereau, P.; Porte, G.; May, R. “Local structures of the surfactant aggregates in dilute solutions deduced from small angle neutron scattering patterns”, J. Phys. France, 1989, 50, 3553–3566.

    Google Scholar 

  55. Nastishin, Y.A. “Brine-rich corner of the phase diagram of the ternary system cetylpyridinium chloride-hexanol-brine”, Langmuir, 1996, 11, 5011–5015.

    Article  Google Scholar 

  56. Nash, T. “The interaction of some naphtalene derivatives with a cationic soap below the critical micelle concentration”, J. Colloid Sci., 1958, 13, 134–139.

    Article  Google Scholar 

  57. Larsen, J.W.; Magid, L.J.; Payton, V. “A highly specific effect of organic solutes at low concentrations on the structure of CTAB micelles”, Tetrahedron Lett., 1973, 29, 2663–2666.

    Article  Google Scholar 

  58. Hyde, A.J.; Johnstone, D.W.M. “The effect of anorganic additives on paraffin chain electrolyte solutions”, J. Colloid Interface Sci., 1975, 53, 349–357.

    Article  Google Scholar 

  59. Ulmius, J.; Wennerström, H.; Johansson, L.B.-Å.; Lindblom, G.; Gravsholt, S. “Viscoelasticity in surfactant solutions. Characteristics of the micellar aggregates and the formation of periodic structures”, J. Phys. Chem., 1979, 83, 2232–2236.

    Article  Google Scholar 

  60. Hoffmann, H.; Platz, G.; Rehage, H.; Schorr, W.; Ulbricht, W. “Viskoelastische Tensidlösungen”, Ber. Bunsenges. Phys. Chem., 1981, 85, 255–266.

    Google Scholar 

  61. Hoffmann, H.; Platz, G.; Rehage, H.; Schorr, W. “The influence of counter-Ion concentration on the aggregation behaviour of viscoelastic detergents”, Ber. Bunsenges. Phys. Chem., 1981, 85, 877–882.

    Google Scholar 

  62. Underwood, A.L.; Anacker, E.W. “Organic counterions and micellar parameters: methyl-, chloro-, and phenyl-substituted acetates”, J. Colloid Interface Sci., 1984, 100, 128–135.

    Article  Google Scholar 

  63. Shikata, T.; Hirata, K.; Kotaka, T. “Micelle formation of detergent molecules in aqueous media: viscoelastic properties of aqueous cetyltrimethylammonium bromide solutions”, Langmuir, 1987, 3, 1081–1086.

    Article  Google Scholar 

  64. Shikata, T.; Hirata, K.; Takatori, E.; Osaki, K. “Nonlinear viscoelastic behavior of aqueous detergent solutions”, J. Non-Newtonian Fluid Mech., 1988, 28, 171–182.

    Article  Google Scholar 

  65. Makhloufi, R.; Hirsch, E.; Candau, S.J.; Binana-Limbele, W.; Zana, R. “Fluorescence quenching and elastic and quasi-elastic light scattering studies of elongatged micelles in solutions of cetyltrimethylammonium chloride in the presence of sodium salicylate”, J. Phys. Chem., 1989, 93, 8095–8101.

    Article  Google Scholar 

  66. Imae, T. “Light scattering of spinnable, viscoelastic solutions of hexadecyltrimethylammonium salicylate”, J. Phys. Chem., 1990, 94, 5953–5959.

    Article  Google Scholar 

  67. Clausen, T.M.; Vinson, P.K.; Minter, J.R.; Davis, H.T.; Talmon, Y.; Miller, W.G. “Viscoelastic micellar solutions: microscopy and rheology”, J. Phys. Chem., 1992, 96, 474–484.

    Article  Google Scholar 

  68. Bijma, K.; Engberts, J.B.F.N. “Effect of counterions and headgroup hydrophobicity on properties of micelles formed by alkylpyridinium surfactants. 1. Conductometry and 1H-NMR chemical shifts”, Langmuir, 1997, 13, 4843–4849.

    Article  Google Scholar 

  69. Bijma, K.; Bandamer, M.J.; Engberts, J.B.F.N. “Effect of counterions and headgroup hydrophobicity on properties of micelles formed by alkylpyridinium surfactants. 2. microcalorimetry”, Langmuir, 1998, 14, 79–83.

    Article  Google Scholar 

  70. Harwigsson, I.; Söderman, O.; Regev, O. “Diffusion and cryo-transmission electron microscopy studies in bicontinuous micellar solutions”, Langmuir, 1994, 10, 4731–4734.

    Article  Google Scholar 

  71. Göbel, S.; Hiltrop, K. “Influence of organic counterions on the structure of lyotropic mesophases”, Progr. Colloid Polym. Sci., 1991, 84, 241–242.

    Google Scholar 

  72. Fischer, P.; Rehage, H.; Grüning, B. “Rheological properties of dimeric acid betaine solutions”, Tenside Surf. Det., 1994, 31, 99–108.

    Google Scholar 

  73. Fischer, P.; Rehage, H.; Grüning, B. “Linear flow properties of dimer acid betaine solutions with and without changed ionic strength”, J. Phys. Chem. B, 2002, 106, 11041–11046.

    Article  Google Scholar 

  74. In, M. In Reactions and Synthesis in Surfactant Systems, J. Texter, Ed., New York: Marcel Dekker Inc., 2001.

    Google Scholar 

  75. Buhler, E.; Mendes, E.; Boltenhagen, P.; Munch, J.-P.; Zana, R.; Candau, S.J. “Phase behavior of aqueous solutions of a dimeric surfactant”, Langmuir, 1997, 13, 3096–3102.

    Article  Google Scholar 

  76. Oda, R.; Panizzza, P.; Schmutz, M.; Lequeux, F. “Direct evidence of the shear-induced structure of wormlike micelles: Gemini 12-2-12”, Langmuir, 1997, 13, 6407–6412.

    Article  Google Scholar 

  77. Oda, R.; Huc, I.; Homo, J.-C.; Heinrich, B.; Schmutz, M.; Candeau, S. “Elongated aggregates formed by cationic gemini surfactants”, Langmuir, 1999, 15, 2383–2390.

    Article  Google Scholar 

  78. In, M.; Warr, G.G.; Zana, R. “Dynamics of branched threadlike micelles”, Phys. Rev. Lett., 2001, 83, 2278–2281.

    Article  ADS  Google Scholar 

  79. Oelschlaeger, C.; Buhler, E.; Waton, G.; Candau, S.J. “Synergistic effects in mixed wormlike micelles of dimeric and single-chain cationic surfactants at high ionic strength”, Eur. Phys. J. E, 2003, 11, 7–20.

    Article  Google Scholar 

  80. In, M.; Aguerre-Chariol, O.; Zana, R. “Closed-looped micelles in surfactant tetramer solutions”, J. Phys. Chem. B, 1999, 103, 7747–7750.

    Article  Google Scholar 

  81. Bergström, M.; Pedersen, J.S. “Formation of tablet-shaped and ribbonlike micelles in mixtures of an anionic and a cationic surfactant”, Langmuir, 1999, 15, 2250–2253.

    Article  Google Scholar 

  82. Yin, H.; Mao, M.; Huang, J.; Fu, H. “Two-phase region in the DTAB/SL mixed surfactant system”, Langmuir, 2002, 18, 9198–9203.

    Article  Google Scholar 

  83. Kaler, E.W.; Herrington, K.L.; Murthy, A.K.; Zasadzinski, J.A.N. “Phase behavior and structures of mixtures in anionic and cationic surfactants”, J. Phys. Chem., 1992, 96, 6698–6707.

    Article  Google Scholar 

  84. Koehler, R.D.; Raghavan, S.R.; Kaler, E.W. “Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants”, J. Phys. Chem. B, 2000, 104, 11035–11044.

    Article  Google Scholar 

  85. Schurtenberger, P.; Scartazzini, R.; Luisi, P.L. “Viscoelastic properties of polymerlike reverse micelles”, Rheol. Acta, 1989, 28, 372–381.

    Article  Google Scholar 

  86. Schurtenberger, P.; Scartazzini, R.; Magid, L.J.; Leser, M.E.; Luisi, P.L. “Structure and dynamic properties of polymer-like reverse micelles”, J. Phys. Chem., 1990, 94, 3695–3701.

    Article  Google Scholar 

  87. Shchipunov, Y.A.; Hoffmann, H. “Growth, branching, and local ordering of lecithin polymer-like micelles”, Langmuir, 1998, 14, 6350–6360.

    Article  Google Scholar 

  88. Shchipunov, Y.A.; Hoffmann, H. “Thinning and thickening effects induced by shearing in lecithin solutions of polymer-like micelles”, Rheol. Acta, 2000, 39, 542–553.

    Article  Google Scholar 

  89. Terech, P.; Maldivi, P.; Dammer, C. “Living polymers in organic solvents: stress relaxation in bicopper tetracarboxylate/tert-butyl cyclohexane solutions”, J. Phys. II France, 1994, 4, 1799–1811.

    Article  Google Scholar 

  90. Terech, P.; Weiss, R.G. “Low molecular mass gelators of organic liquids and the properties of their gels”, Chem. Rev., 1997, 97, 3133–3159.

    Article  Google Scholar 

  91. Terech, P.; Coutin, A. “Structure of a transient network made up of entangled monomolecular organometallic wires in organic liquids. Effects of an endcapping molecule”, Langmuir, 1999, 15, 5513–5525.

    Article  Google Scholar 

  92. Won, Y.-Y.; Davis, H.T.; Bates, F.S. “Giant wormlike rubber micelles”, Science, 1999, 283, 960–963.

    Article  ADS  Google Scholar 

  93. Won, Y.-Y.; Paso, K.; Davis, H.T.; Bates, F.S. “Comparison of original and cross-linked wormlike micelles of poly(ethylene oxide-b-butadiene) in water: rheological properties and effects of poly(ethylene oxide) addition”, J. Phys. Chem. B, 2001, 105, 8302–8311.

    Article  Google Scholar 

  94. Hamley, I.W.; Pedersen, J.S.; Booth, C.; Nace, V.M. “A small-angle neutron scattering study of spherical and wormlike micelles formed by poly(oxyethylene)-based diblocks copolymers”, Langmuir, 17, 6386–6388.

    Google Scholar 

  95. May, S.; Bohbot, Y.; Ben-Shaul, A. “Molecular theory of bending elasticity and branching of cylindrical micelles”, J. Phys. Chem. B, 1997, 101, 8648–8657.

    Article  Google Scholar 

  96. Porte, G.; Appell, J.; Poggi, Y. “Experimental investigations on the flexibility of elongated cetylpyridinium bromide micelles”, J. Phys. Chem., 1980, 84, 3105–3110.

    Article  Google Scholar 

  97. Porte, G.; Appell, J. “Growth and size distributions of cetylpyridinium bromide micelles in high ionic strength aqueous solutions”, J. Phys. Chem., 1981, 85, 2511–2519.

    Article  Google Scholar 

  98. Appell, J.; Bassereau, P.; Marignan, J.; Porte, G. “Polymorphism in dilute surfactant solutions: a neutron scattering study”, Prog. Colloid Polym. Sci., 1990, 81, 13–18.

    Article  Google Scholar 

  99. Appell, J.; Marignan, J. “Structure of giant micelles: a small-angle neutron scattering study”, J. Phys. II France, 1991, 1, 1447–1454.

    Article  Google Scholar 

  100. Butler, P.D.; Magid, L.J.; Hayter, J.B. In Structure and Flow in Surfactant Solutions (ACS Symposium Series 578), C.A. Herb and R.K. Prud’homme, Eds., Washington: D.C., 1994.

    Google Scholar 

  101. Sharp, P.; Bloomfield, V.A. “Light scattering from wormlike chains with excluded volume effects”, Biopolym., 1968, 6, 1201–1211.

    Article  Google Scholar 

  102. Gamez-Corrales, R.; Berret, J.-F.; Walker, L.M.; Oberdisse, J. “Shear-thickening dilute surfactant solutions: the equilibrium structure as studied by small-angle neutron scattering”, Langmuir, 1999, 15, 6755–6763.

    Article  Google Scholar 

  103. Magid, L.J.; Han, Z.; Li, Z.; Butler, P.D. “Tuning of microstructure of cationic micelles on multiple length scales: The role of electrostatics and specific ion binding”, Langmuir, 2000, 16, 149–156.

    Article  Google Scholar 

  104. Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics. Oxford: Clarendon Press, 1986.

    Google Scholar 

  105. Brûlet, A.; Boué, F.; Cotton, J.P. “About the experimental determination of the persistence length of wormlike chains of polystyrene”, J. Phys. II France, 1996, 6, 885–891.

    Article  Google Scholar 

  106. Pedersen, J.S.; Schurtenberger, P. “Scattering functions of semiflexible polymers with and without excluded volume effects”, Macromolecules, 1996, 29, 7602–7612.

    Article  ADS  Google Scholar 

  107. Magid, L.J. “The surfactant-polyelectrolyte analogy”, J. Phys. Chem. B, 1998, 102, 4064–4074.

    Article  Google Scholar 

  108. Sommer, C.; Pedersen, J.S.; Egelhaaf, S.; Cannavacciuolo, L.; Kohlbrecher, J.; Schurtenberger, P. “Wormlike micelles as “equilibrium polyelectrolytes”: light and neutron scattering experiments”, Langmuir, 2002, 18, 2495–2505.

    Article  Google Scholar 

  109. Cannavacciuolo, L.; Pedersen, J.S; Schurtenberger, P. “Monte carlo simulations study of concentration effects and scattering functions for polyelectrolyte wormlike micelles”, Langmuir, 2002, 18, 2922–2932.

    Article  Google Scholar 

  110. Gittes, F.; Mickey, B.; Nettleton, J.; Howard, J. “Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape”, J. Cell Biol., 1993, 120, 923–934.

    Article  Google Scholar 

  111. Smith, S.B.; Cui, Y.; Bustamante, C. “Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules”, Science, 1996, 271, 795–799.

    ADS  Google Scholar 

  112. Khokhlov, A.R.; Semenov, A.N. “Liquid-crystalline ordering in the solution of long persistent chains”, Physica A, 1981, 108, 546–556.

    Article  ADS  Google Scholar 

  113. Khokhlov, A.R.; Semenov, A.N. “Liquid-crystalline ordering in the solution of partially flexible macromolecules”, Physica A, 1982, 112, 605–614.

    Article  ADS  Google Scholar 

  114. Semenov, A.N.; Khokhlov, A.R. “Statistical physics of liquid-crystalline polymers”, Sov. Phys. Usp., 1988, 31, 988–1014.

    Article  ADS  Google Scholar 

  115. Onsager, L. “The effects of shape on the interaction of colloidal particles”, Ann. N.Y. Acad. Sci., 1949, 51, 627–649.

    ADS  Google Scholar 

  116. Schmitt, V.; Lequeux, F.; Pousse, A.; Roux, D. “Flow behavior and shear induced transition near an isotropic/nematic transition in equilibrium polymers”, Langmuir, 1994, 10, 955–961.

    Article  Google Scholar 

  117. Cappelaere, E.; Cressely, R.; Decruppe, J.P. “Linear and non-linear rheological behaviour of salt-free aqueous CTAB solutions”, Colloids Surfaces A, 1995, 104, 353–374.

    Article  Google Scholar 

  118. Berret, J.-F.; Roux, D.C.; Porte, G.; Lindner, P. “Tumbling behavior of nematic wormlike micelles under shear Flow”, Europhys. Lett., 1995, 32, 137–142.

    ADS  Google Scholar 

  119. Berret, J.-F.; Roux, D.C. “Rheology of nematic wormlike micelles”, J. Rheol., 1995, 39, 725–741.

    Article  ADS  Google Scholar 

  120. Furo, I.; Halle, B. “Micelle size and orientational order across the nematic-isotropic transition: a field-dependent nuclear spin relaxation study”, Phys. Rev. E, 1995, 51, 466–477.

    Article  ADS  Google Scholar 

  121. Berret, J.-F.; Roux, D.C.; Porte, G.; Lindner, P. “Shear-induced isotropic-to-nematic phase transition in equilibrium polymers”, Europhys. Lett., 1994, 25, 521–526.

    ADS  Google Scholar 

  122. Berret, J.-F.; Roux, D.C.; Porte, G. “Isotropic-to-nematic transition in wormlike micelles under shear”, J. Phys. II France, 1994, 4, 1261–1279.

    Article  Google Scholar 

  123. Berret, J.-F.; Porte, G.; Decruppe, J.-P. “Inhomogeneus shear flows of wormlike micelles: A master dynamic phase diagram”, Phys. Rev. E, 1997, 55, 1668–1675.

    Article  ADS  Google Scholar 

  124. Cappelaere, E.; Berret, J.-F.; Decruppe, J.P.; Cressely, R.; Lindner, P. “Rheology, birefringence, and small-angle neutron scattering in a charged micellar system: evidence of a shear-induced phase transition”, Phys. Rev. E, 1997, 56, 1869–1878.

    Article  ADS  Google Scholar 

  125. Gravsholt, S. “Viscoelasticity in highly dilute aqueous solutions of pure cationic detergents”, J. Colloid Interface Sci., 1979, 57, 575–577.

    Article  Google Scholar 

  126. Hoffmann, H.; Löbl, H.; Rehage, H.; Wunderlich, I. “Rheology of surfactant solutions”, Tenside Detergents, 1985, 22, 290–298.

    Google Scholar 

  127. Rehage, H.; Hoffmann, H. “Rheological properties of viscoelastic surfactant systems”, J. Phys. Chem., 1988, 92, 4712–4719.

    Article  Google Scholar 

  128. Shikata, T.; Hirata, K.; Kotaka, T. “Micelle formation of detergent molecules in aqueous media. 2. Role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions”, Langmuir, 1988, 4, 354–359.

    Article  Google Scholar 

  129. Shikata, T.; Hirata, K.; Kotaka, T. “Micelle formation of detergent molecules in aqueous media. 3. Viscoelastic properties of aqueous cetyltrimethylammonium bromidesalicylic acid solutions”, Langmuir, 1989, 5, 398–405.

    Article  Google Scholar 

  130. Shikata, T.; Hirata, K.; Kotaka, T. “Micelle formation of detergent molecules in aqueous media. 4. Electrostatic features and phase behavior of cetyltrimethylammonium bromide: salicylic acid micellar solutions”, J. Phys. Chem., 1990, 94, 3702–3706.

    Article  Google Scholar 

  131. Kern, F.; Zana, R.; Candau, S.J. “Rheological properties of semi-dilute and concentrated aqueous solutions of cetyltrimethylammonium chloride in the presence of sodium salicylate and sodium chloride”, Langmuir, 1991, 7, 1344–1351.

    Article  Google Scholar 

  132. Khatory, A.; Lequeux, F.; Kern, F.; Candau, S.J. “Linear and nonlinear viscoelasticity of semi-dilute solutions of wormlike micelles at high salt content”, Langmuir, 1993, 9, 1456–1464.

    Article  Google Scholar 

  133. Hartmann, V.; Cressely, R. “Occurence of shear-thickening in aqueous micellar solutions of CTAB with some added organic counterions”, Colloid Polym. Sci., 1998, 276, 169–175.

    Article  Google Scholar 

  134. Raghavan, S.R.; Kaler, E.W. “Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated chains”, Langmuir, 2001, 17, 300–306.

    Article  Google Scholar 

  135. Croce, V.; Cosgrove, T.; Maitland, G.; Hughes, T.; Karlsson, G. “Rheology, cryogenic transmission electron spectroscopy, and small-angle neutron scattering of highly viscoelastic wormlike micellar solutions”, Langmuir, 2003, 19, 8536–8541.

    Article  Google Scholar 

  136. Cates, M.E. “Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions”, Macromolecules, 1987, 20, 2289–2296.

    Article  ADS  Google Scholar 

  137. Drye, T.J.; Cates, M.E. “Living networks: the role of cross-links in entangled surfactant solutions”, J. Chem. Phys., 1992, 96, 1367–1375.

    Article  ADS  Google Scholar 

  138. Graneck, R.; Cates, M.E. “Stress relaxation in living polymers: results from a poisson renewal model”, J. Chem. Phys., 1992, 96, 4758–4767.

    Article  ADS  Google Scholar 

  139. Turner, M.S.; Cates, M.E. “Linear viscoelasticity of wormlike micelles: a comparison of micellar reaction kinetics”, J. Phys. II France, 1992, 2, 503–519.

    Article  Google Scholar 

  140. Messager, R.; Ott, A.; Chatenay, D.; Urbach, W.; Langevin, D. “Are giant micelles living polymers”, Phys. Rev. Lett., 1988, 60, 1410–1413.

    Article  ADS  Google Scholar 

  141. Porte, G.; Appell, J. “Polymerlike behaviour of giant micelles”, Europhys. Lett., 1990, 12, 185–190.

    ADS  Google Scholar 

  142. Turner, M.S.; Cates, M.E. “Linear viscoelasticity of living polymers: a quantitative probe of chemical relaxation times”, Langmuir, 1991, 7, 1590–1594.

    Article  Google Scholar 

  143. Berret, J.-F.; Appell, J.; Porte, G. “Linear rheology of entangled wormlike micelles”, Langmuir, 1993, 9, 2851–2854.

    Article  Google Scholar 

  144. Khatory, A.; Kern, F.; Lequeux, F.; Appell, J.; Porte, G.; Morie, N.; Ott, A.; Urbach, W. “Entangled versus multiconnected network of wormlike micelles”, Langmuir, 1993, 9, 933–939.

    Article  Google Scholar 

  145. Schmitt, V.; Lequeux, F. “Surfactant self-diffusion in wormlike micelles”, Langmuir, 1998, 14, 283–287.

    Article  Google Scholar 

  146. Soltero, J.F.A.; Puig, J.E.; Manero, O. “Rheology of the cetyltrimethylammonium tosilate water system. 2. Linear viscoelastic regime”, Langmuir, 1996, 12, 2654–2662.

    Article  Google Scholar 

  147. Hoffmann, H. In Organized Solutions, Surfactant in Science and Technology, S.E. Friberg and B. Lindmann, Eds., New York: Marcel Dekker Inc., 1992.

    Google Scholar 

  148. Berret, J.-F.; Roux, D.C.; Porte, G. “Dynamics of the isotropic-to-nematic phase transition induced by shear in equilibrium polymers”, In Fourth European Rheology Conference, Spain: Sevilla, 1994.

    Google Scholar 

  149. Massiera, G.; Ramos, L.; Ligoure, C. “Role of the size distribution in the elasticity of entangled living polymer solutions”, Europhys. Lett., 2002, 57, 127–133.

    Article  ADS  Google Scholar 

  150. Buhler, E.; Munch, J.-P.; Candau, S.J. “Dynamic light scattering study of abnormally fluid semi-dilute solutions of wormlike micelles”, Europhys. Lett., 1996, 34, 251–255.

    Article  ADS  Google Scholar 

  151. Ott, A.; Urbach, W.; Langevin, D.; Schurtenberger, P.; Scartazzini, R.; Luisi, P.L. “A self-diffusion study of polymer-like micelles”, J. Phys.: Condens. Matter, 1990, 2, 5907–5912.

    Article  ADS  Google Scholar 

  152. Morié, N.; Urbach, W.; Langevin, D. “Self-diffusion in networks of CPClO3 wormlike micelles”, Phys. Rev. E, 1995, 51, 2150–2156.

    Article  ADS  Google Scholar 

  153. Kröger, M.; Makhloufi, R. “Wormlike micelles under shear flow: a microscopic model studied by nonequilibrium-molecular-dynamics computer simulations”, Phys. Rev. E, 1996, 53, 2531–2536.

    Article  ADS  Google Scholar 

  154. Carl, W.; Kröger, M.; Makhloufi, R. “On the shape and rheology of linear micelles in dilute solutions”, J. Phys. II France, 1997, 7, 931–946.

    Article  Google Scholar 

  155. Eiser, E.; Molino, F.; Porte, G.; Diat, O. “Nonhomogeneous textures and banded flow in a soft cubic phase under shear”, Phys. Rev. E, 2000, 61, 6759–6764.

    Article  ADS  Google Scholar 

  156. Volkova, O.; Cutillas, S.; Bossis, G. “Shear banded flows and nematic-to-isotropic transition in ER and MR fluids”, Phys. Rev. Lett., 1999, 82, 233–236.

    Article  ADS  Google Scholar 

  157. Berret, J.-F.; Séréro, Y. “Evidence of shear-induced fluid fracture in telechelic polymer networks”, Phys. Rev. Lett., 2001, 87, 0483031–0483034.

    Article  Google Scholar 

  158. Coussot, P.; Raynaud, J.S.; Bertrand, F.; Moucheront, P.; Guilbaud, J.P.; Huynh, H.T.; Jarny, S.; Lesueur, D. “Coexistence of liquid and solid phases in flowing soft-galssy materials”, Phys. Rev. Lett., 2002, 88, 2183011–2183014.

    Google Scholar 

  159. Berret, J.-F.; Roux, D.C.; Lindner, P. “Structure and rheology of concentrated wormlike micelles at the shear-induced isotropic-to-nematic transition”, Eur. Phys. J. B, 1998, 5, 67–77.

    Article  ADS  Google Scholar 

  160. Fisher, E.; Callaghan, P.T. “Shear banding and the isotropic-to-nematic transition in wormlike micelles”, Phys. Rev. E, 2001, 64, 0115011–0115014.

    Article  Google Scholar 

  161. Decruppe, J.P.; Cappelaere, E.; Cressely, R. “Optical and rheological properties of a semi-diluted equimolar solution of cetyltrimethylammonium bromide and potassium bromide”, J. Phys. II France, 1997, 7, 1–8.

    Article  Google Scholar 

  162. Soltero, J.F.A.; Bautista, F.; Puig, J.E.; Manero, O. “Rheology of cetyltrimethylammonium p-toluenesulfonate-water system. 3. Nonlinear viscoelasticity”, Langmuir, 1999, 15, 1604–1612.

    Article  Google Scholar 

  163. Berret, J.-F. “Transient rheology of wormlike micelles”, Langmuir, 1997, 13, 2227–2234.

    Article  Google Scholar 

  164. Berret, J.-F.; Porte, G. “Metastable versus instable transients at the onset of a shear-induced phase transition”, Phys. Rev. E, 1999, 60, 4268–4271.

    Article  ADS  Google Scholar 

  165. Cappelaere, E.; Cressely, R. “Shear banding structure in viscoelastic micellar solutions”, Colloid Polym. Sci., 1997, 275, 407–418.

    Article  Google Scholar 

  166. Wheeler, E.K.; Fischer, P.; Fuller, G.G. “Time-periodic flow induced structures and instabilities in a viscoelactic surfactant solution”, J. Non-Newtonian Fluid Mech., 1998, 75, 193–208.

    Article  MATH  Google Scholar 

  167. Jerrard, H.G. “Theory of streaming double refraction”, Chem. Rev., 1959, 59.

    Google Scholar 

  168. Fuller, G.G. Optical Rheometry of Complex Fluids. New York: Oxford University Press, 1995.

    Google Scholar 

  169. Wunderlich, I.; Hoffmann, H.; Rehage, H. “Flow birefringence and rheological measurements on shear induced micellar structures”, Rheol. Acta, 1987, 26, 532–542.

    Article  Google Scholar 

  170. Shikata, T.; Dahman, S.J.; Pearson, D.S. “Rheo-optical behavior of wormlike micelles”, Langmuir, 1994, 10, 3470–3476.

    Article  Google Scholar 

  171. Humbert, C.; Decruppe, J.P. “Flow birefringence and stress optical law of viscoelastic solutions of cationic surfactants and sodium salicylate”, Eur. Phys. J. B, 1998, 6, 511–518.

    Article  ADS  Google Scholar 

  172. Decruppe, J.P.; Ponton, A. “Flow birefringence, stress optical rule and rheology of four micellar solutions with the same low shear viscosity”, Eur. Phys. J. E, 2003, 10, 201–207.

    Article  Google Scholar 

  173. Decruppe, J.P.; Cressely, R.; Makhloufi, R.; Cappelaere, E. “Flow birefringence experiments showing a shear-banding structure in a CTAB solution”, Colloid Polym. Sci., 1995, 273, 346–351.

    Article  Google Scholar 

  174. Greco, F.; Ball, R.C. “Shear-band formation in a non-newtonian fluid model with a constituttive instability”, J. Non-Newtonian Fluid Mech., 1997, 69, 195–206.

    Article  Google Scholar 

  175. Olmsted, P.D.; Radulescu, O.; Lu, C.-Y.D. “Johnson-segalman model with a diffusion term in cylindrical couette flow”, J. Rheol., 2000, 44, 257–275.

    Article  ADS  Google Scholar 

  176. Roux, D.C.; Berret, J.-F.; Porte, G.; Peuvrel-Disdier, E.; Lindner, P. “Shear induced orientations and textures of nematic wormlike micelles”, Macromolecules, 1995, 28, 1681–1687.

    Article  ADS  Google Scholar 

  177. Deutsch, M. “Orientational order determination in liquid crystals by X-ray diffraction”, Phys. Rev. A, 1991, 44, 8264–8270.

    Article  MathSciNet  ADS  Google Scholar 

  178. Larson, R.G. “Arrested tumbling in shearing flows of liquid-crystal polymers”, Macromolecules, 1991, 23, 3983–3992.

    Article  ADS  Google Scholar 

  179. Britton, M.M.; Callaghan, P.T. “Two-phase shear band structures at uniform stress”, Phys. Rev. Lett., 1997, 78, 4930–4933.

    Article  ADS  Google Scholar 

  180. Britton, M.M.; Callaghan, P.T. “Nuclear magnetic resonance visualization of anomalous flow in cone-and-plate rheometry”, J. Rheol., 1997, 41, 1365–1386.

    Article  ADS  Google Scholar 

  181. Mair, R.W.; Callaghan, P.T. “Shear flow of wormlike micelles in pipe and cylindrical geometries as studied by nuclear magnetic resonance microscopy”, J. Rheol., 1997, 41, 901–924.

    Article  ADS  Google Scholar 

  182. Britton, M.M.; Callaghan, P.T. “Shear band instability in wormlike micellar solutions”, Eur. Phys. J. B, 1999, 7, 237–249.

    Article  ADS  Google Scholar 

  183. Britton, M.M.; Mair, R.W.; Lambert, R.K.; Callaghan, P.T. “Transition to shear banding in pipe and couette flow of wormlike micellar solutions”, J. Rheol., 1999, 43, 897–909.

    Article  ADS  Google Scholar 

  184. Fisher, E.; Callaghan, P.T. “Is a birefringence band a shear band?”, Europhys. Lett., 2000, 50, 803–809.

    Article  ADS  Google Scholar 

  185. Bellour, M.; Knaebel, A.; Munch, J.-P.; Candau, S.J. “Scattering properties of salt-free wormlike micellar solutions”, Eur. Phys. J. E, 2000, 3, 111–121.

    Article  Google Scholar 

  186. Berret, J.-F.; Gamez-Corrales, R.; Lerouge, S.; Decruppe, J.P. “Shear-thickening transition in surfactant solutions: new experimental features from rheology and flow birefringence”, Eur. Phys. J. E, 2000, 2, 343–350.

    Article  Google Scholar 

  187. Hoffmann, H.; Kalus, J.; Thurn, H.; Ibel, K. “Small angle neutron scattering studies on viscoelastic detergents”, Ber. Bunsenges. Phys. Chem., 1983, 87, 1120–1129.

    Google Scholar 

  188. Grand, C.; Arrault, J.; Cates, M.E. “Slow transients and metastability in wormlike micelle rheology”, J. Phys. II France, 1996, 7, 1071–1086.

    Article  Google Scholar 

  189. Porte, G.; Berret, J.-F.; Harden, J.L. “Inhomogeneous flows of complex fluids: mechanical instability versus non-equilibrium phase transition”, J. Phys. II France, 1997, 7, 459–472.

    Article  Google Scholar 

  190. Shikata, T.; Pearson, D.S. “Phase transitions in entanglement networks of wormlike micelles”, Langmuir, 1994, 10, 4027–4030.

    Article  Google Scholar 

  191. Humbert, C.; Decruppe, J.P. “Stress optical coefficient of viscoelastic solutions of cetyltrimethylammonium bromide and potassium bromide”, Colloid Polym. Sci., 1998, 276, 160–168.

    Article  Google Scholar 

  192. Radulescu, O.; Olmsted, P.D.; Decruppe, J.P.; Lerouge, S.; Berret, J.-F.; Porte, G. “Time scales in shear banding of wormlike micelles”, Europhys. Lett., 2003, 62, 230–236.

    Article  ADS  Google Scholar 

  193. Salmon, J.B.; Colin, A.; Manneville, S.; Molino, F. “Velocity profiles in shear-banding wormlike micelles”, Phys. Rev. Lett., 2003, 90, 2283031–2283034.

    Article  Google Scholar 

  194. Hassan, P.A.; Valaulikar, B.S.; Manohar, C.; Kern, F.; Bourdieu, L.; Candau, S.J. “Vesicle to micelle transition: rheological investigations”, Langmuir, 1996, 12, 4350–4357.

    Article  Google Scholar 

  195. Oda, R.; Narayanan, J.; Hassan, P.A.; Manohar, C.; Salkar, R.A.; Kern, F.; Candau, S.J. “Effect of the lipophilicity of the counterion on the viscoelasticity of micellar solutions of cationic surfactant”, Langmuir, 1998, 14, 4364–4372.

    Article  Google Scholar 

  196. Cappelaere, E.; Cressely, R. “Rheological behavior of an elongated micellar solution at low and high salt concentrations”, Colloid Polym. Sci., 1998, 276, 1050–1056.

    Article  Google Scholar 

  197. Lerouge, S.; Decruppe, J.P.; Berret, J.-F. “Correlations between rheological and optical properties of a micellar solution under shear banding flow”, Langmuir, 2000, 16, 6464–6474.

    Article  Google Scholar 

  198. Decruppe, J.P.; Lerouge, S.; Berret, J.-F. “Insight in shear banding under transient flow”, Phys. Rev. E, 2001, 63, 0225011–0225014.

    Article  Google Scholar 

  199. Soltero, J.F.A.; Puig, J.E.; Manero, O.; Schulz, P.C. “Rheology of cetyltrimetylammonium tosilate-water system. 1. Relation to phase behavior”, Langmuir, 1995, 11, 3337–3346.

    Article  Google Scholar 

  200. Hernandez-Acosta, S.; Gonzalez-Alvarez, A.; Manero, O.; Mendez-Sanchez, A.F.; Perez-Gonzalez, J.; Vargas, L.d. “Capillary rheometry of micellar aqueous solutions”, J. Non-Newtonian Fluid Mech., 1999, 85, 229–247.

    Article  MATH  Google Scholar 

  201. Bandyopadhyay, R.; Basappa, G.; Sood, A.K. “Observation of chaotic dynamics in dilute sheared aqueous solutions of CTAT”, Phys. Rev. Lett., 2000, 84, 2022–2025.

    Article  ADS  Google Scholar 

  202. Bautista, F.; Soltero, J.F.A.; Macias, E.R.; Puig, J.E.; Manero, O. “Irreversible thermodynamics approach and modelling of shear-banding flow of wormlike micelles”, J. Phys. Chem. B, 2002, 106, 13018–13026.

    Article  Google Scholar 

  203. Bandyopadhyay, R.; Sood, A.K. “Effect of screening of intermicellar interactions on the linear and nonlinear rheology of a viscoelastic gel”, Langmuir, 2003, 19, 3121–3127.

    Article  Google Scholar 

  204. Mendez-Sanchez, A.F.; Lopez-Gonzalez, M.R.; Rolon-Garrido, V.H.; Perez-Gonzalez, J.; Vargas, L.d. “Instabilities of micellar systems under homogeneous and non-homogeneous flow conditions”, Rheol. Acta, 2003, 42, 56–63.

    Article  Google Scholar 

  205. Holmes, W.M.; Lopez-Gonzalez, M.R.; Callaghan, P.T. “Fluctuations in shear-banded flow seen by NMR velocimetry”, Europhys. Lett., 2003, 64, 274–280.

    Article  ADS  Google Scholar 

  206. Fischer, P.; Wheeler, E.K.; Fuller, G.G. “Shear-banding structure orientated in the vorticity direction observed for equimolar micellar solution”, Rheol. Acta, 2002, 41, 35–44.

    Article  Google Scholar 

  207. Wunderlich, A.M.; Brunn, P.O. “The complex rheological behavior of an aqueous cationic surfactant solution investigated in a couette-type viscosimeter”, Colloid Polym. Sci., 1989, 267, 627–636.

    Article  Google Scholar 

  208. Liu, C.-H.; Pine, D.J. “Shear-induced gelation and fracture in micellar solutions”, Phys. Rev. Lett., 1996, 77, 2121–2124.

    Article  ADS  Google Scholar 

  209. Boltenhagen, P.; Hu, Y.; Matthys, E.F.; Pine, D.J. “Observation of bulk phase separation and coexistence in a sheared micellar solution”, Phys. Rev. Lett., 1997, 79, 2359–2362.

    Article  ADS  Google Scholar 

  210. Boltenhagen, P.; Hu, Y.; Matthys, E.F.; Pine, D.J. “Inhomogeneous structure formation and shear-thickening in wormlike micellar solutions”, Europhys. Lett., 1997, 38, 389–394.

    Article  ADS  Google Scholar 

  211. Hu, H.T.; Boltenhagen, P.; Pine, D.J. “Shear thickening in low-concentration solutions of wormlike micelles: I. Direct visualisation of transient behavior and phase transitions”, J. Rheol., 1998, 42, 1185–1208.

    Article  ADS  Google Scholar 

  212. Hu, Y.T.; Boltenhagen, P.; Matthys, E.; Pine, D.J. “Shear thickening in low-concentration solutions of wormlike micelles. II. Slip, fracture, and stability of the shear-induced phase”, J. Rheol., 1998, 42, 1209–1226.

    Article  ADS  Google Scholar 

  213. Kadoma, I.A.; Egmond, J.W.v. “Tuliplike scattering patterns in wormlike micelles under shear flow”, Phys. Rev. Lett., 1996, 76, 4432–4435.

    Article  ADS  Google Scholar 

  214. Kadoma, I.A.; Egmond, J.W.v. “Shear-enhanced orientation and concentration fluctuations in wormlike micelles: effect of salt”, Langmuir, 1997, 13, 4551–4561.

    Article  Google Scholar 

  215. Kadoma, I.A.; Egmond, J.W.v. “Flow-induced nematic string phase in semi-dilute wormlike micelles”, Phys. Rev. Lett., 1998, 80, 5679–5682.

    Article  ADS  Google Scholar 

  216. Lerouge, S.; Decruppe, J.P.; Humbert, C. “Shear banding in a micellar solution under transient flow”, Phys. Rev. Lett., 1998, 24, 5457–5460.

    Article  ADS  Google Scholar 

  217. McLeish, T.C.B.; Ball, R.C. “A molecular approach of the spurt effect in polymer melt flow”, J. Polym. Sci. Polym. Phys., 1986, 24, 1735–1745.

    Article  ADS  Google Scholar 

  218. Spenley, N.A.; Cates, M.E.; McLeish, T.C.B. “Nonlinear rheology of wormlike micelles”, Phys. Rev. Lett., 1993, 71, 939–942.

    Article  ADS  Google Scholar 

  219. Spenley, N.A.; Yuan, X.F.; Cates, M.E. “Nonmonotonic constitutive laws and the fomation of shear banded flows”, J. Phys. II France, 1996, 6, 551–571.

    Article  Google Scholar 

  220. Hess, S. “Pre-and post-transitional behavior of the flow alignment and flow-induced phase transition in liquid crystals”, Z. Naturforsch., 1976, 31a, 1507.

    ADS  Google Scholar 

  221. Olmsted, P.D.; Goldbart, P.M. “Theory of nonequilibrium phase transition for nematic liquid crystals under shear flow”, Phys. Rev. A, 1990, 41, 4578–4581.

    Article  ADS  Google Scholar 

  222. See, H.; Doi, M.; Larson, R. “The effect of steady flow fields on the isotropicnematic phase transition of rigid rod-like polymers”, J. Chem. Phys., 1990, 92, 792–800.

    Article  MathSciNet  ADS  Google Scholar 

  223. Olmsted, P.D.; Goldbart, P.M. “Isotropic-nematic transition in shear flow: state selection, coexistence, phase transitions, and critical behavior”, Phys. Rev. A, 1992, 46, 4966–4993.

    Article  ADS  Google Scholar 

  224. Dhont, J.K.G. “A constitutive relation describing the shear-banding transition”, Phys. Rev. E, 1999, 60, 4534–4544.

    Article  ADS  Google Scholar 

  225. Lenstra, T.A.J.; Dogic, Z.; Dhont, J.K.G. “Shear-induced displacement of isotropicnematic spinodals”, J. Chem. Phys., 2001, 114, 10151–10162.

    Article  ADS  Google Scholar 

  226. Olmsted, P.D.; Lu, C.-Y.D. “Phase coexistence of complex fluids in shear flow”, Faraday Discuss., 1999, 112, 183–194.

    Article  ADS  Google Scholar 

  227. Olmsted, P.D.; Lu, C.-Y.D. “Phase separation of rigid-rod suspensions in shear flow”, Phys. Rev. E, 1999, 60, 4397–4415.

    Article  ADS  Google Scholar 

  228. Fielding, S.; Olmsted, P.D. “Flow phase diagrams for concentration-coupled shear-banding”, Eur. Phys. J. B, 2003, 11, 65–83.

    Google Scholar 

  229. Schmitt, V.; Marques, C.M.; Lequeux, F. “Shear-induced phase separation of complex fluids: the role of the flow-concentration coupling”, Phys. Rev. E, 1995, 52, 4009–4015.

    Article  ADS  Google Scholar 

  230. Olmsted, P.D. “Two-state shear diagrams for complex fluids in shear flow”, Europhys. Lett., 1999, 48, 339–345.

    Article  ADS  Google Scholar 

  231. Goveas, J.L.; Olmsted, P.D. “A minimal model for vorticity and gradient banding in complex fluids”, Eur. Phys. J. E, 2001, 6, 79–89.

    Article  Google Scholar 

  232. Fielding, S.; Olmsted, P.D. “Early stage in the unified model of shear-induced demixing and mechanical shear banding instabilities”, Phys. Rev. Lett., 2003, 90, 2245011–2245014.

    Article  Google Scholar 

  233. Ajdari, A. “Rheological behavior of a solution of particles aggregating on the containing walls”, Phys. Rev. E, 1998, 58, 6294–6298.

    Article  ADS  Google Scholar 

  234. Yuan, X.-F. “Interfacial dynamics of viscoelastic fluid flows”, Phys. Chem. Chem. Phys., 1999, 1, 2177–2182.

    Article  Google Scholar 

  235. Yuan, X.-F. “Dynamics of a mechanical interface in shear-banded flow”, Europhys. Lett., 1999, 46, 542–548.

    Article  ADS  Google Scholar 

  236. Lu, C.-Y.D.; Olmsted, P.D.; Ball, R.C. “Effects of nonlocal stress on the determination of shear banding flow”, Phys. Rev. Lett., 2000, 84, 642–645.

    Article  ADS  Google Scholar 

  237. Buxbaum, R.E.; Dennerll, T.; Weiss, S.; Heidemann, S.R. “F-actin and microtubule suspensions as intermediate fluids”, Science, 1987, 235, 1511–1514.

    ADS  Google Scholar 

  238. Jary, D.; Sikorav, J.-L.; Lairez, D. “Nonlinear viscoelasticity of entangled DNA molecules”, Europhys. Lett., 1999, 46, 251–255.

    Article  ADS  Google Scholar 

  239. Pujolle-Robic, C.; Noirez, L. “Observation of shear-induced nematic-isotropic transition in side-chain liquid crystal polymers”, Nature, 2001, 409, 167–171.

    Article  ADS  Google Scholar 

  240. Pujolle-Robic, C.; Olmsted, P.D.; Noirez, L. “Transient and stationary flow behaviour of side-chain liquid crystalline polymers: evidence of shear-induced isotropic-tonematic phase transition”, Europhys. Lett., 2002, 59, 364–369.

    Article  ADS  Google Scholar 

  241. Krishnan, K.; Almdal, K.; Burghardt, W.R.; Lodge, T.P.; Bates, F.S. “Shear-induced nano-macro structural transition in a polymeric bicontinuous microemulsion”, Phys. Rev. Lett., 2001, 87, 0983011–0983014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Berret, JF. (2006). Rheology of Wormlike Micelles: Equilibrium Properties and Shear Banding Transitions. In: Weiss, R.G., Terech, P. (eds) Molecular Gels. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3689-2_20

Download citation

Publish with us

Policies and ethics