Skip to main content

Optical Spectroscopic Methods as Tools to Investigate Gel Structures

  • Chapter
Molecular Gels

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lehn, J.-M. Supramolecular Chemistry, Concepts and Perspectives, Weinheim: VCH, 1995.

    Google Scholar 

  2. Hoffmann, H.; Ebert, G. Angew. Chem. Int. Ed. Engl., 1988, 27, 902.

    Article  Google Scholar 

  3. Guenet, J.-M. Thermoreversible Gelation of Polymers and Biopolymers, London: Acad. Press, 1992.

    Google Scholar 

  4. Daniel, C.; Dammer, C.; Guenet, J.-M. Polymer, 1994, 35, 4243.

    Article  Google Scholar 

  5. a) Terech, P.; Weiss, R.G. Chem. Rev., 1997, 97, 3133; b) Terech, P. Ber. Bunsenges. Phys. Chem., 1998, 102, 1630.

    Article  Google Scholar 

  6. Jaffé, H.H.; Orchin, M. Theory and Applications of Ultraviolet Spectroscopy, New York: J.Wiley, 1965.

    Google Scholar 

  7. Williams, D.H.; Fleming, I. Spectroscopic Methods in Organic Chemistry, London: McGraw-Hill, 1966, Chap 2.

    Google Scholar 

  8. Stern, E.S.; Timmons, C.J. Introduction to Electronic Absorption Spectroscopy in Organic Chemistry, London: Edward Arnold Ltd, 1970.

    Google Scholar 

  9. Barrow, G.M. Molecular Spectroscopy, New York: McGraw Hill, 1962, Chaps. 10 and 11.

    Google Scholar 

  10. Gilbert, A.; Baggott, J. Essentials of Molecular Photochemistry, Oxford: Blackwell Scientific Publications, 1991.

    Google Scholar 

  11. Mataga, N.; Kubota, T. Molecular Interactions and Electronic States, New York: M. Dekker Inc., 1970, Chaps. 2 and 3.

    Google Scholar 

  12. Valeur, B. Molecular Fluorescence, Principles and Applications, Weinheim: Wiley-VCH, 2002, Chap. 2 (Absorption of UV-visible light).

    Google Scholar 

  13. a) Davydov, A.S. Theory of Molecular Excitons, M. Kasha, M. Oppenheimer Jr. translators, New York: McGraw Hill, 1962. b) Kauzman, W.J.; Walter, J.E.; Eyring, H. Chem. Rev., 1940, 26, 339.

    Google Scholar 

  14. a) Ihara, H.; Yoshitake, M.; Takafuji, M.; Yamada, T.; Sagawa, T.; Hirayama, C.; Hachisado, H. Liq. Cryst., 1999, 26, 1021. b) Sagawa, T.; Fukugawa, S.; Yamada, T.; Ihara, H. Langmuir, 2002, 18, 7223.

    Article  Google Scholar 

  15. a) McRae, E.G.; Kasha, M. “H-aggregates”, J. Chem. Phys., 1958, 28, 721. b) Kasha, M.; Rawls, H.R.; El Bayoumi, M.A.E. “H-aggregates”, Pure Appl. Chem., 1965, 11, 371. c) Kunisawa, T.; Sato, T.; Yonezawa, Y.; Popova, G.V. “H-aggregates”, Thin Solid Films, 1997, 311, 267. d) Kobayashi, T. Ed., J-aggregates: Singapore: World Scientific, 1996.

    Article  ADS  Google Scholar 

  16. Lin, Y.C.; Kachar, B.; Weiss, R.G. J. Am. Chem. Soc., 1989, 111, 5542.

    Article  Google Scholar 

  17. Saeva, F.D.; Wysocki, J.-J. J. Am. Chem. Soc., 1971, 93, 5928.

    Article  Google Scholar 

  18. Yamamoto, S. Kogyo Kagaku Zasshi, 1942, 45, 695.

    Google Scholar 

  19. Yamasaki, S.; Tsutsumi, H. Bull. Chem. Soc. Jpn, 1994, 67, 2053 and 1996, 69, 561.

    Article  Google Scholar 

  20. Hanabusa, K.; Yamada, M.; Kimura, M.; Shirai, H. Angew. Chem. Int. Ed. Engl., 1996, 35, 1949.

    Article  Google Scholar 

  21. Bühler, G.; Feiters, M.C.; Nolte, R.J.M.; Dötz, K.H. Angew. Chem. Int. Ed., 2003, 42, 2494.

    Article  Google Scholar 

  22. Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komori, T.; Ohseto, F.; Veda, K.; Shinkai, S. J. Am. Chem. Soc., 1994, 116, 6664.

    Article  Google Scholar 

  23. de Loos, M.; Van Esch, J.; Kellogg, R.M.; Feringa, B.L. Angew. Chem. Int. Ed., 2001, 40, 613.

    Article  Google Scholar 

  24. Maitra, U.; Potluri, V.K.; Sangeetha, N.M.; Babu, P.; Raju, A.R. Tetrahedron Asymmetry, 2001, 12, 477.

    Article  Google Scholar 

  25. Xing, B.; Yu, C.W.; Chow, K.H.; Ho, P.L.; Fu, D.; Xu, B. J. Am. Chem. Soc., 2002, 124, 14846.

    Article  Google Scholar 

  26. Brotin, T.; Utermöhlen, R.; Fages, F.; Bouas-Laurent, H.; Desvergne, J.-P. J. Chem. Soc. Chem. Commun., 1991, 416.

    Google Scholar 

  27. Brotin, T. Thèse, Université Bordeaux I, Talence, France, 1990.

    Google Scholar 

  28. Terech, P.; Meerschaut, D.; Desvergne, J.-P.; Colomes, M.; Bouas-Laurent, H. J. Colloid Interf. Sci., 2003, 261, 441.

    Article  Google Scholar 

  29. Desvergne, J.-P.; Brotin, T.; Meerschaut, D.; Clavier, G.; Placin, F.; Pozzo, J.-L.; Bouas-Laurent, H. New J. Chem., 2004, in press.

    Google Scholar 

  30. Lin, Y.C.; Weiss, R.G. Macromolecules, 1987, 20, 414.

    Article  ADS  Google Scholar 

  31. van der Auweraer, M.; Biesmans, G.; de Schryver, F.C. Chem. Phys., 1988, 119, 355.

    Article  Google Scholar 

  32. Furman, I.; Weiss, R.G. Langmuir, 1993, 9, 2084.

    Article  Google Scholar 

  33. Yoza, K.; Amanokura, N.; Ono, Y.; Akao, T.; Shinmori, H.; Takenchi, M.; Shinkai, S.; Reinhoudt, D.N. Chem. Eur. J., 1999, 5, 2722.

    Article  Google Scholar 

  34. Gronwald, O.; Snip, E.; Shinkai, S. Current Opinion in Colloid and Interface Science, 2002, 7, 148.

    Article  Google Scholar 

  35. Kobayashi, H.; Friggeri, A.; Koumoto, K.; Amaikee, M.; Shinkai, S.; Reinhoudt, D.N. Org. Lett., 2002, 4, 1423.

    Article  Google Scholar 

  36. Tamaru, S.; Nakamura, M.; Takeuchi, M.; Shinkai, S. Org. Lett., 2001, 3, 3631.

    Article  Google Scholar 

  37. Tamaru, S.; Uchino, S.; Takeuchi, M.; Ikeder, M.; Hatano, T.; Shinkai, S. Tetrahedron Lett., 2002, 43, 3751.

    Article  Google Scholar 

  38. Jorgensen, M.; Bechgaard, K. J. Org. Chem., 1994, 59, 5877.

    Article  Google Scholar 

  39. Jaffé, H.H.; Orchin, M. Theory and Applications of Ultraviolet Spectroscopy, New York: J.Wiley and Sons, 1965, pp. 270–273.

    Google Scholar 

  40. Murrel, J.N.; Kettle, S.F.A.; Tedder, J.M. Valence Theory, London: J.Wiley and Sons, 1965, Chap. 18.

    Google Scholar 

  41. Mataga, N.; Kubota, T. Molecular Interactions and Electronic Spectra, New York: M. Dekker, 1970, Chap. 6, pp. 201–291.

    Google Scholar 

  42. Davis, K.M.C. Molecular Association, R. Foster, Ed., London: Academic Press, 1975, 1, Chap. 3, pp. 151–213.

    Google Scholar 

  43. Barltrop, J.A.; Coyle, J.D. Excited States in Organic Chemistry, London: J. Wiley, 1975.

    Google Scholar 

  44. Soos, Z.G.; Klein, D.J. Charge-Transfer in Solid-State Complexes in Molecular Association, R. Foster, Ed., London: Academic Press, 1975, 1, Chap. 1, pp. 2–109.

    Google Scholar 

  45. Astruc, D. Chimie Organométallique, Les Ulis: EDP Sciences, 2000.

    Google Scholar 

  46. Maitra, U.; Vijaykumar, P.; Chandra, N.; D’Souza, L.J.; Prasanna, M.D.; Raju, A.R. Chem. Commun., 1999, 595–596.

    Google Scholar 

  47. Babu, P.; Sangeetha, N.M.; Vijaykumar, P.; Maitra, U.; Rissanen, K.; Raju, A.R. Chem. Eur. J., 2003, 9, 1922.

    Article  Google Scholar 

  48. Friggeri, A.; Gronwald, O.; van Bommel, K.J.C.; Shinkai, S.; Reinhoudt, D.N. J. Am. Chem. Soc., 2002, 124, 10754.

    Article  Google Scholar 

  49. Gilbert, A.; Baggott, J. Essentials of Molecular Photochemistry, Oxford: Blackwell Scientific Publication, 1991, Chap. 5, pp. 168–181.

    Google Scholar 

  50. Förster, Th.; Kasper, K.Z. Phys. Chem. N. F., 1954, 1, 275; Z. Electrochem., 1955, 59, 976.

    Google Scholar 

  51. Birks, J.B. Photophysics of Aromatic Molecules, New York: J.Wiley, 1970.

    Google Scholar 

  52. Mataga, N.; Kubota, T. Molecular Interactions and Electronic Spectra, New York: M. Dekker Inc., 1970, Chap. 9, pp. 411–484.

    Google Scholar 

  53. Bouas-Laurent, H.; Lapouyade, R.; Castellan, R.; Nourmamode, A.; Chandross, E.A. Z. Phys. Chem. N. F., 1976, 101, 39.

    Google Scholar 

  54. Stevens, B.; Hutton, E. Nature, 1960, 186, 1045.

    Article  ADS  Google Scholar 

  55. Winnik, F.M. Chem. Rev., 1993, 93, 587.

    Article  Google Scholar 

  56. Staab, H.A.; Sauer, M. Liebigs Ann. Chem., 1984, 742 and references therein.

    Google Scholar 

  57. a) Desvergne, J.-P.; Fages, F.; Bouas-Laurent, H.; Marsau, P. Pure Appl. Chem., 1992, 64, 1231. b) Marsau, P.; Bouas-Laurent, H.; Desvergne, J.-P.; Fages, F.; Lamotte, M.; Hinschberger, J. Mol. Cryst. Liq. Cryst. Nonlin. Opt., 1988, 156, 383. c) Bouas-Laurent, H.; Castellan, A.; Daney, M.; Desvergne, J.-P.; Guinand, G.; Marsau, P.; Riffaud, M.H. J. Am. Chem. Soc., 1986, 108, 315.

    Article  Google Scholar 

  58. a) Ferguson, J.; Morita, H.; Puza, M. Chem. Phys. Lett., 1976, 42, 288. b) Ferguson, J. Chem. Rev., 1986, 86, 957.

    Article  ADS  Google Scholar 

  59. Jover, A.; Meijide, F.; Rodriguez Núnez, E.; Vázquez Tato, J.; Mosquera, M.; Rodriguez Prieto, F. Langmuir, 1996, 12, 1789.

    Article  Google Scholar 

  60. Xing, B.; Yu, C.-W.; Chow, K.-H.; Ho, P.-L.; Fu, D.; Xu, B. J. Am. Chem. Soc., 2002, 124, 14846.

    Article  Google Scholar 

  61. Ikeda, M.; Takeuchi, M.; Shinkai, S. Chem. Commun., 2003, 1354.

    Google Scholar 

  62. Mataga, N.; Kubota, T. Molecular Interactions and Electronic Spectra, New York: M. Dekker Inc., 1970, Chap. 5, pp. 171–200.

    Google Scholar 

  63. Turro, N.J. Modern Molecular Photochemistry, CA: Benjamin/Cummins, Menlo Park, 1978.

    Google Scholar 

  64. Nakashima, T.; Kimizuka, N. Adv. Mater., 2002, 14, 1113.

    Article  Google Scholar 

  65. Ajayaghosh, A.; George, S.J.; Praveen, V.K. Angew. Chem. Int. Ed., 2003, 42, 332, see also: J. Am. Chem. Soc., 2001, 123, 5148.

    Article  Google Scholar 

  66. Sugiyasu, K.; Fujita, N.; Takeuchi, M.; Yamada, S.; Shinkai, S. Org. Biomol. Chem., 2003, 1, 895.

    Article  Google Scholar 

  67. Armaroli, N.; de Cola, L.; Balzani, V.; Sauvage, J.P.; Dietrich-Buchecker, C.O.; Kern, J.-M. J. Chem. Soc. Faraday Trans., 1992, 553.

    Google Scholar 

  68. Amaike, M.; Kobayashi, H.; Shinkai, S. Chem. Lett., 2001, 620.

    Google Scholar 

  69. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, Weinheim: VCH, 1990.

    Google Scholar 

  70. van der Laan, S.; Feringa, B.L.; Kellog, R.M.; van Esch, J. Langmuir, 2002, 18, 7136.

    Article  Google Scholar 

  71. Dyer, J.B. Applications of Absorption Spectroscopy of Organic Compounds, NJ: Prentice-Hall Englewood Cliffs, 1965, Chap. 3.

    Google Scholar 

  72. Nakanishi, K. Infrared Absorption Spectroscopy, San Francisco: Practical-Holden-Day, 1964.

    Google Scholar 

  73. Banwell, C.N. Fundamentals of Molecular Spectroscopy, London: McGraw-Hil, 1972.

    Google Scholar 

  74. Bellamy, L.J. The Infrared spectra of Complex Molecules, 3rd ed., Chapman and Hall, 1975.

    Google Scholar 

  75. Smith, A.L. Appl. Spectroscopy, 1987, 41, 1101.

    Article  ADS  Google Scholar 

  76. Handbook of Vibrational Spectroscopy, Vol 1, J.M. Chalmers and P.R. Griffiths, Eds., New York: JohnWiley & Sons Ltd, 2002, pp. 693–740.

    Google Scholar 

  77. Bower, D.J. “Infrared dichroism, polarized fluorescence and Raman spectroscopy”, In Structure and Properties of oriented Polymers, I.M. Ward, Ed., London: Chapman Hall, 1997, Chap. 4, pp. 181–231.

    Google Scholar 

  78. Wilder, E.A.; Hall, C.K.; Khan, S.A.; Spontak, R.J. Recent Res. Develop. Mat. Sci., 2002, 3, 93.

    Google Scholar 

  79. a) Roehl, E.L.; Tan, H.B. US Patent, 1979, 4, 154, 816. b) Fernandez, J.A. US Patent, 1980, 4, 187, 072. c) Nahir, T.M.; Quiu, Y.-J.; Williams, J.L. Electroanalysis, 1994, 6, 972. d) Isogawa, H.; Anraku, H. US Patent, 1996, 5, 510, 237. e) Ishiwatari, T.; Tsushima, K. US Patent, 1996, 5, 554, 649. f) Kasat, R.B.; Lee, W.; McCarthy, D.R.; Telyan, N.G. US Patent, 1996, 5, 490, 979. g) Kato, T.; Kondo, G.; Hanabusa, K.; Kutsuna, T.; Ukon, M. US Patent, 2000, 6, 074, 710.h) Bhatt, D.; Rizvi, R.; Galleguillos, R. US Patent, 2000, 6, 132, 704. i) Acuna, G.; Frater, G.; Gygax, P. US Patent, 2000, 6, 150, 542.

    Google Scholar 

  80. Yamasaki, S.; Ohashi, Y.; Tsutsumi, H.; Tsuju, K. Bull. Chem. Soc. Jpn., 1995, 68, 146.

    Article  Google Scholar 

  81. Garner, C.M.; Terech, P.; Allegrand, J.J.; Mistrot, B.; Nguyen, P.; de Geyer, A.; Riviera, D. J. Chem. Soc. Faraday Trans., 1998, 94, 2173.

    Article  Google Scholar 

  82. Hanabusa, K.; Tange, J.; Taguchi, Y.; Koyama, T.; Shirai, H. J. Chem. Soc. Chem. Commun., 1993, 390.

    Google Scholar 

  83. Hanabusa, K.; Naka, Y.; Koyama, T.; Shirai, H. J. Chem. Soc. Chem. Commun., 1994, 2683.

    Google Scholar 

  84. Luo, X.; Liu, B.; Liang, Y. Chem. Commun., 2001, 1556.

    Google Scholar 

  85. Suzuki, M.; Yumoto, M.; Kimura, M.; Shirai, H.; Hanabusa, K. New J. Chem., 2002, 26, 817.

    Article  Google Scholar 

  86. Malik, S.; Maji, S.K.; Banerjee, A.; Nandi, A.K. J. Chem. Soc. Perkin Trans, 2002, 2, 1177.

    Google Scholar 

  87. Kiyonaka, S.; Shinkai, S.; Hamachi, I. Chem. Eur. J., 2003, 9, 976.

    Article  Google Scholar 

  88. Dukh, M.; Šaman, D.; Kroulík, J.; Cerný, I.; Pouzar, V.; Král, V.; Drašar, P. Tetrahedron, 2003, 59, 4069.

    Article  Google Scholar 

  89. van Esch, J.; Kellogg, R.M.; Feringa, B.L. Tetrahedron Lett., 1997, 38, 281.

    Article  Google Scholar 

  90. van Esch, J.; Schoonbeek, F.; de Loos, M.; Kooijman, H.; Spek, A.L.; Kellogg, R.M.; Feringa, B.L. Chem. Eur. J., 1999, 5, 937.

    Article  Google Scholar 

  91. Schoonbeek, F.; van Esch, J.; Hulst, R.; Kellogg, R.M.; Feringa, B.L. Chem. Eur. J., 2000, 6, 2633.

    Article  Google Scholar 

  92. Kato, T.; Kutsuna, T.; Yabuuchi, K.; Mizoshita, N. Langmuir, 2002, 18, 7086.

    Article  Google Scholar 

  93. Placin, F.; Desvergne, J.-P.; Cansell, F. J. Mater. Chem., 2000, 10, 2147.

    Article  Google Scholar 

  94. Placin, F.; Desvergne, J.-P.; Belin, C.; Buffeteau, T.; Desbat, B.; Ducasse, L.; Lassègues, J.-C. Langmuir, 2003, 19, 4563.

    Article  Google Scholar 

  95. Ricard, L.; Abbate, S.; Zerbi, G. J. Phys. Chem., 1985, 89, 4793.

    Article  Google Scholar 

  96. Pozzo, J.-L.; Desvergne, J.-P.; Clavier, G.M.; Bouas-Laurent, H.; Jones, P.G.; Perlstein, J. J. Chem. Soc. Perkin Trans, 2001, 2, 824.

    Google Scholar 

  97. Itoh, T.; Katsoulis, D.E.; Mita, I. J. Mater. Chem., 1993, 3, 1303. The phosphorescence spectra of poly(dimethylsiloxane) (PDMS) gels of cholesteryl anthraquinone-2-carboxylate (CAQ) were investigated at 77K. This is particularly useful for substrates having a low fluorescence quantum yield.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Bouas-Laurent, H., Desvergne, JP. (2006). Optical Spectroscopic Methods as Tools to Investigate Gel Structures. In: Weiss, R.G., Terech, P. (eds) Molecular Gels. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3689-2_13

Download citation

Publish with us

Policies and ethics