Skip to main content

Texaphyrin Conjugates. Progress Towards Second Generation Diagnostic and Therapeutic Agents

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. American Cancer Society (2004) Cancer Facts and Figures-2004, American Cancer Society, Atlanta.

    Google Scholar 

  2. Bonnett, R. (2000) Chemical aspects of photodynamic therapy, Gordon and Breach Science Publishers, Amsterdam.

    Google Scholar 

  3. Sternberg, E.D. and Dolphin, D. (1998) Porphyrin-based Photosensitizers for Use in Photodynamic Therapy, Tetrahedron 54, 4151–4202.

    Article  Google Scholar 

  4. Leunig, M. et al. (1993) Tumour localisation kinetics of photofrin and three synthetic porphyrinoids in an amelanotic melanoma of the hamster, Br. J. Cancer 68, 225–234.

    PubMed  Google Scholar 

  5. Paquette, B. and Van Lier, J.E. (1992) Phthalocyanines and related compounds: Structure-activity relationships, Photodyn. Ther. 145–156.

    Google Scholar 

  6. Sessler, J.L. et al. (1988) An "expanded porphyrin": the synthesis and structure of a new aromatic pentadentate ligand, J. Am. Chem. Soc. 110, 5586–5588.

    Article  Google Scholar 

  7. Sessler, J.L. et al. (1993) Synthesis and structural characterization of lanthanide(III) texaphyrins, Inorg. Chem. 32, 3175–3187.

    Article  Google Scholar 

  8. Sessler, J.L. et al. (1996) New texaphyrin-type expanded porphyrins, Pure Appl. Chem. 68, 1291–1295.

    Google Scholar 

  9. Young, S.W. et al. (1996) Gadolinium(III) texaphyrin: a tumor selective radiation sensitizer that is detectable by MRI, Proc. Nat. Acad. Sci. U S A 93, 6610–6615.

    Article  Google Scholar 

  10. Miller, R.A. et al. (1999) In vivo animal studies with gadolinium(III) texaphyrin as a radiation enhancer, Int. J. Radiat. Oncol., Biol., Phys. 45, 981–989.

    Google Scholar 

  11. Sessler, J.L. and Miller, R.A. (2000) Texaphyrins: new drugs with diverse clinical applications in radiation and photodynamic therapy, Biochem. Pharmacol. 59, 733–739.

    Article  PubMed  Google Scholar 

  12. Rosenthal, D.I. et al. (1999) A phase I single-dose trial of gadolinium texaphyrin (Gd-Tex), a tumor selective radiation sensitizer detectable by magnetic resonance imaging, Clin. Cancer Res. 5, 739–745.

    PubMed  Google Scholar 

  13. Carde, P. et al. (2001) Multicenter phase Ib/II trial of the radiation enhancer motexafin gadolinium in patients with brain metastases, J. Clin. Oncol. 19, 2074–2083.

    PubMed  Google Scholar 

  14. Mehta, M.P. et al. (2002) Lead-in phase to randomized trial of motexafin gadolinium and whole-brain radiation for patients with brain metastases: centralized assessment of magnetic resonance imaging, neurocognitive, and neurologic end points, J. Clin. Oncol. 20, 3445–3453.

    Article  PubMed  Google Scholar 

  15. Mehta, M.P. et al. (2003) Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases, J. Clin. Oncol. 21, 2529–2536.

    Article  PubMed  Google Scholar 

  16. Sessler, J.L. et al. (1993) Gadolinium(III) texaphyrin: a novel MRI contrast agent, J. Am. Chem. Soc. 115, 10368–10369.

    Article  Google Scholar 

  17. Young, S.W. et al. (1994) Preclinical evaluation of gadolinium(III) texaphyrin complex. A new paramagnetic contrast agent for magnetic resonance imaging, Invest Radiol. 29, 330–338.

    PubMed  Google Scholar 

  18. Mody, T.D. and Sessler, J.L. (2001) Texaphyrins: a new approach to drug development, Journal of Porphyrins and Phthalocyanines 5, 134–142.

    Article  Google Scholar 

  19. Chou, T.M. et al. (2002) Photodynamic therapy: applications in atherosclerotic vascular disease with motexafin lutetium, Catheterization and cardiovascular interventions: official journal of the Society for Cardiac Angiography & Interventions 57, 387–394.

    Google Scholar 

  20. Kereiakes, D.J. et al. (2003) Phase I drug and light dose-escalation trial of motexafin lutetium and far red light activation (phototherapy) in subjects with coronary artery disease undergoing percutaneous coronary intervention and stent deployment: procedural and long-term results, Circulation 108, 1310–1315.

    Article  PubMed  Google Scholar 

  21. Yeung, P.K.F. (2001) Motexafin lutetium (Pharmacyclics), IDrugs 4, 351–359.

    PubMed  Google Scholar 

  22. Sessler, J.L. et al. (2001) Probing the reactivity of the radiation sensitizer motexafin gadolinium (Xcytrin) and a series of lanthanide(III) analogues in the presence of both hydroxyl radicals and aqueous electrons, J. Porphyrins Phthalocyanines 5, 593–599.

    Article  Google Scholar 

  23. Magda, D.J. et al. (2004) Synthesis of texaphyrin conjugates, Pure Appl. Chem. 76, 365–374.

    Google Scholar 

  24. Sessler, J.L. et al. (1987) Synthesis and crystal structure of a novel tripyrrane-containing porphyrinogen-like macrocycle, J. Org. Chem. 52, 4394–4397.

    Article  Google Scholar 

  25. Hannah, S. et al. (2001) Synthesis of a Metal-Free Texaphyrin, Org. Lett. 3, 3911–3914.

    Article  PubMed  Google Scholar 

  26. Sessler, J.L. et al. (1994) Texaphyrins: Synthesis and Applications, Acc. Chem. Res. 27, 43–50.

    Article  Google Scholar 

  27. Sessler, J.L. et al. (1988) The coordination chemistry of planar pentadentate "porphyrin-like" ligands, Comments Inorg. Chem. 7, 333–350.

    Google Scholar 

  28. Mody, T.D. et al. (2001) Texaphyrins: synthesis and development of a novel class of therapeutic agents, Prog. Inorg. Chem. 49, 551–598.

    Google Scholar 

  29. Harriman, A. et al. (1989) Metallotexaphyrins: a new family of photosensitisers for efficient generation of singlet oxygen, Chem. Commun. 314–316.

    Google Scholar 

  30. Sessler, J.L. et al. (1991) Tripyrroledimethine-derived ("texaphyrin"-type) macrocycles: potential photosensitizers which absorb in the far-red spectral region, Proc. SPIE-The International Society for Optical Engineering 1426, 318–329.

    Google Scholar 

  31. Ehrenberg, B. et al. (1992) Spectroscopy, photokinetics and cellular effect of far-red and near infrared absorbing photosensitizers, Proc. SPIE-The International Society for Optical Engineering 1645, 259–263.

    Google Scholar 

  32. Shimanovich, R. et al. (2001) Mn(II)-Texaphyrin as a Catalyst for the Decomposition of Peroxynitrite, J. Amer. Chem. Soc. 123, 3613–3614.

    Article  Google Scholar 

  33. Crow, J. (in press) in: Medicinal Inorganic Chemistry, ACS Symposium Series, (Sessler, J.L. et al., Eds.).

    Google Scholar 

  34. Hannah, S. et al. (2002) Late First-Row Transition-Metal Complexes of Texaphyrin, J. Am. Chem. Soc. 124, 8416–8427.

    Article  PubMed  Google Scholar 

  35. Young, S.W. et al. (1996) Lutetium texaphyrin (PCI-0123): a near-infrared, water-soluble photosensitizer, Photochem. Photobiol. 63, 892–897.

    PubMed  Google Scholar 

  36. Geraldes, C.F. et al. (1995) Nuclear magnetic relaxation dispersion studies of water-soluble gadolinium(III)-texaphyrin complexes, J. Magn. Reson. Imag. 5, 725–729.

    Google Scholar 

  37. Sessler, J.L. et al. (1996) Water soluble texaphyrin metal complex preparation, US Pat. 5,569,759.

    Google Scholar 

  38. Meyers, C.A. et al. (2004) Neurocognitive function and progression in patients with brain metastases treated with whole-brain radiation and motexafin gadolinium: results of a randomized phase III trial, J. Clin. Oncol. 22, 157–165.

    Article  PubMed  Google Scholar 

  39. Anonymous (2004) Motexafin gadolinium: gadolinium (III) texaphyrin, gadolinium texaphyrin, Gd-Tex, GdT2B2, PCI 0120, Drugs in R&D 5, 52–57.

    Google Scholar 

  40. Rosenthal, D.I. et al. (2000) Reversible renal toxicity resulting from high single doses of the new radiosensitizer gadolinium texaphyrin, Department of Radiation Oncology, University of Pennsylvania Medical Center, Philadelphia 19104-4283, USA, 593–598.

    Google Scholar 

  41. Dimofte, A. et al. (2002) In vivo light dosimetry for motexafin lutetium-mediated PDT of recurrent breast cancer, Lasers Surg. Med. 31, 305–312.

    Article  PubMed  Google Scholar 

  42. Renschler, M.F. et al. (1998) Photodynamic therapy trials with lutetium texaphyrin (Lu-Tex) in patients with locally recurrent breast cancer, Proceedings of SPIE-The International Society for Optical Engineering 3247, 35–39.

    Google Scholar 

  43. Woodburn, K.W. et al. (2002) Photodynamic therapy for choroidal neovascularization: a review, Retina 22, 391–405.

    Article  PubMed  Google Scholar 

  44. Rockson, S.G. et al. (2000) Photoangioplasty for human peripheral atherosclerosis: Results of a phase I trial of photodynamic therapy with motexafin lutetium (antrin), Circulation 102, 2322–2324.

    PubMed  Google Scholar 

  45. Yeung, A. (2004) Vulnerable Plaque: Pathophysiology, Detection and Therapeutic Intervention, Cardiovascular Research Foundation 16th Annual Scientific Meeting of Transcatheter Cardiovascular Therapeutics (TCT), Washington, DC.

    Google Scholar 

  46. Griffin, G.M. et al. (2001) Preclinical evaluation of motexafin lutetium-mediated intraperitoneal photodynamic therapy in a canine model, Clin. Cancer Res. 7, 374–81.

    PubMed  Google Scholar 

  47. Hsi, R.A. et al. (2001) Photodynamic therapy in the canine prostate using motexafin lutetium, Clin. Cancer Res. 7, 651–660.

    PubMed  Google Scholar 

  48. Viala, J. et al. (1999) Phases IB and II multidose trial of gadolinium texaphyrin, a radiation sensitizer detectable at MR imaging: preliminary results in brain metastases, Radiology 212, 755–759.

    PubMed  Google Scholar 

  49. Kessel, D. et al. (2003) Localization and photodynamic efficacy of two cationic porphyrins varying in charge distribution, Photochem. Photobiol. 78, 431–435.

    Article  PubMed  Google Scholar 

  50. Kessel, D. (2002) Relocalization of cationic porphyrins during photodynamic therapy, Photochem. Photobiol. Sci. 1, 837–840.

    Article  PubMed  Google Scholar 

  51. Jori, G. et al. (1984) In Vitro and In Vivo Studies on the Interaction of Hematoporphyrin and its Dimethyl Ester with Normal and Malignant Cells in: Porphyrin Localization and Treatment of Tumors, Progress in Clinical and Biological Research, Vol. 170, pp. 471–482 (Doiron, D.R. and Gomer, C.J., Eds.) Liss, NY.

    Google Scholar 

  52. El-Far, M. and Pimstone, N. (1984) Porphyrin: Protoporphyrin: Plasma Protein Interaction-The Metabolic Basis for Tumor Localization of Hematoporphyrin Derivative-A Preliminary Report in: Porphyrin Localization and Treatment of Tumors, Progress in Clinical and Biological Research, Vol. 170, pp. 657–660 (Doiron, D.R. and Gomer, C.J., Eds.) Liss, NY.

    Google Scholar 

  53. Ruck, A. and Diddens, H. (1996) Upake and Subcellular Distribution of Photosensitizing Drugs in Malignant Cells in: The Fundamental Basis of Phototherapy (Honigsman, H.J., G.; Young, A., Ed.) OEMF, Milano.

    Google Scholar 

  54. Vorndran, C. et al. (1995) New fluorescent calcium indicators designed for cytosolic retention or measuring calcium near membranes, Biophys. J. 69, 2112–2124.

    PubMed  Google Scholar 

  55. Peng, Q. et al. (1996) Correlation of subcellular and intratumoral photosensitizer localization with ultrastructural features after photodynamic therapy, Ultrastruct. Path. 20, 109–129.

    Google Scholar 

  56. Synytsya, A. et al. (2003) In vitro interaction of macrocyclic photosensitizers with intact mitochondria: a spectroscopic study, Biochim. Biophys. Acta 1620, 85–96.

    PubMed  Google Scholar 

  57. Synytsya, A. et al. (2004) Biodistribution assessment of a lutetium(III) texaphyrin analogue in tumor-bearing mice using NIR Fourier-transform Raman spectroscopy, Photochem. Photobiol. 79, 453–460.

    Article  PubMed  Google Scholar 

  58. Woodburn, K.W. et al. (1997) Localization and efficacy analysis of the phototherapeutic lutetium texaphyrin (PCI-0123) in the murine EMT6 sarcoma model, Photochem. Photobiol. 65, 410–415.

    PubMed  Google Scholar 

  59. Woodburn, K.W. (2001) Intracellular localization of the radiation enhancer motexafin gadolinium using interferometric Fourier fluorescence microscopy, J. Pharm. Exper. Ther. 297, 888–894.

    Google Scholar 

  60. Zellweger, M. et al. (2000) Fluorescence pharmacokinetics of Lutetium Texaphyrin (PCI-0123, Lu-Tex) in the skin and in healthy and tumoral hamster cheek-pouch mucosa, J. Photochem. Photobiol., B 55, 56–62.

    Google Scholar 

  61. Hayase, M. et al. (2001) Photoangioplasty with local motexafin lutetium delivery reduces macrophages in a rabbit post-balloon injury model, Cardiovascular Research 49, 449–455.

    Article  PubMed  Google Scholar 

  62. Woodburn, K.W. et al. (1996) Phototherapy of cancer and atheromatous plaque with texaphyrins, Journal of clinical laser medicine & surgery 14, 343–8.

    Google Scholar 

  63. Woodburn, K.W. et al. (1996) Selective uptake of texaphyrins by atheromatous plaque, Proceedings of SPIE-The International Society for Optical Engineering 2671, 62–71.

    Google Scholar 

  64. Woodburn, K.W. et al. (1997) Photoeradication and imaging of atheromatous plaque with texaphyrins, Proc. SPIE-The International Society for Optical Engineering 2970, 44–50.

    Google Scholar 

  65. Sessler, J.L. et al. (1997) Biomedical applications of lanthanide(III) texaphyrins. Lutetium(III) texaphyrins as potential photodynamic therapy photosensitizers, J. Alloys Compd. 249, 146–152.

    Article  Google Scholar 

  66. Magda, D. et al. (2001) Redox cycling by motexafin gadolinium enhances cellular response to ionizing radiation by forming reactive oxygen species, Int. J. Radiat. Oncol. Biol. 51, 1025–1036.

    Article  Google Scholar 

  67. Sessler, J.L. et al. (1999) One-Electron Reduction and Oxidation Studies of the Radiation Sensitizer Gadolinium(III) Texaphyrin (PCI-0120) and Other Water Soluble Metallotexaphyrins, J. Phys. Chem. A 103, 787–794.

    Google Scholar 

  68. Sessler, J.L. et al. (2001) Pulse Radiolytic Studies of Metallotexaphyrins in the Presence of Oxygen: Relevance of the Equilibrium with Superoxide Anion to the Mechanism of Action of the Radiation Sensitizer Motexafin Gadolinium (Gd-Tex2+, Xcytrin), J. Phys. Chem. B 105, 1452–1457.

    Google Scholar 

  69. Magda, D. et al. (2002) Motexafin gadolinium reacts with ascorbate to produce reactive oxygen species, Chem. Commun. 2730–2731.

    Google Scholar 

  70. Chari, R.V.J. (1998) Targeted delivery in chemotherapeutics: tumor activated prodrug therapy, Adv. Drug Delivery Rev. 31, 89–104.

    Article  Google Scholar 

  71. Meister, A. (1995) Mitochondrial changes associated with glutathione deficiency, Biochim. Biophys. Acta 1271, 35–42.

    PubMed  Google Scholar 

  72. Hall, E.J. (1994) Radiobiology for the Radiobiologist, J. B. Lippincott Co., Philadelphia.

    Google Scholar 

  73. Brown, J.M. et al. (1981) SR-2508: a 2-nitroimidazole amide which should be superior to misonidazole as a radiosensitizer for clinical use, Int. J. Radiat. Oncol. Biol. 7, 695–703.

    Google Scholar 

  74. Adams, G.E. et al. (1980) Toxicity of nitro compounds toward hypoxic mammalian cells in vitro: dependence on reduction potential, J. Nat. Cancer Inst. 64, 555–560.

    PubMed  Google Scholar 

  75. Stratford, I.J. et al. (1981) Cytotoxic Properties of 4-Nitroimidazole (NSC 38087): A Radiosensitizer of Hypoxic Cells In Vitro, Br. J. Cancer 44, 109–116.

    PubMed  Google Scholar 

  76. Simpson, J.R. et al. (1982) Large Fraction Radiotherapy Plus Misonidazole for Treatments of Advanced Lung Cancer: Report of a Phase I/II Trial, Int. J. Radiation Oncology Biol. Phys. 8, 303–308.

    Google Scholar 

  77. Berlin, V. and Haseltine, W.A. (1981) Reduction of adriamycin to a semiquinone-free radical by NADPH cytochrome P-450 reductase produces DNA cleavage in a reaction mediated by molecular oxygen, J. Biol. Chem. 256, 4747–4756.

    PubMed  Google Scholar 

  78. Doroshow, J.H. (1983) Effect of anthracycline antibiotics on oxygen radical formation in rat heart, Cancer Res. 43, 460–472.

    PubMed  Google Scholar 

  79. Yeh, G.C. et al. (1987) Adriamycin resistance in human tumor cells associated with marked alterations in the regulation of the hexose monophosphate shunt and its response to oxidant stress, Cancer Res. 47, 5994–5999.

    PubMed  Google Scholar 

  80. Lau, D.H. et al. (1989) Association of DNA cross-linking with potentiation of the morpholino derivative of doxorubicin by human liver microsomes, J. Nat. Cancer Inst. 81, 1034–1038.

    PubMed  Google Scholar 

  81. Rumyantseva, G.V. et al. (1989) Hydroxyl radical generation and DNA strand scission mediated by natural anticancer and synthetic quinones, FEBS letters 242, 397–400.

    Article  PubMed  Google Scholar 

  82. Sinha, B.K. et al. (1989) Adriamycin activation and oxygen free radical formation in human breast tumor cells: protective role of glutathione peroxidase in adriamycin resistance, Cancer Res. 49, 3844–3848.

    PubMed  Google Scholar 

  83. Lewis, A.D. et al. (1992) Role of cytochrome P-450 from the human CYP3A gene family in the potentiation of morpholino doxorubicin by human liver microsomes, Cancer Res. 52, 4379–4384.

    PubMed  Google Scholar 

  84. Feinstein, E. et al. (1993) Dependence of nucleic acid degradation on in situ free-radical production by Adriamycin, Biochemistry 32, 13156–61.

    Article  PubMed  Google Scholar 

  85. Gao, J.-P. et al. (1993) The role of reduced nicotinamide adenine dinucleotide phosphate in glucose-and temperature-dependent doxorubicin cytotoxicity, Cancer Chemother. Pharmacol. 33, 191–196.

    Article  PubMed  Google Scholar 

  86. Minotti, G. et al. (1995) Secondary alcohol metabolites mediate iron delocalization in cytosolic fractions of myocardial biopsies exposed to anticancer anthracyclines: novel linkage between anthracycline metabolism and iron-induced cardiotoxicity, J. Clin. Invest. 95, 1595–605.

    PubMed  Google Scholar 

  87. Lau, D.H. et al. (1994) Metabolic conversion of methoxymorpholinyl doxorubicin: from a DNA strand breaker to a DNA cross-linker, Br. J. Cancer 70, 79–84.

    PubMed  Google Scholar 

  88. Miller, R.A. et al. (2001) Motexafin gadolinium: A redox active drug that enhances the efficacy of bleomycin and doxorubicin, Clin. Cancer Res. 7, 3215–3221.

    PubMed  Google Scholar 

  89. Lottner, C., Bart, K.-C., Bernhart, G., Brunner, H. (2002) Hematoporphyrin-Derived Soluble Porphyrin-Platinum Conjugates with Combined Cytotoxic and Phototoxic Antitumor Activity, J. Med. Chem. 45, 2064–2078.

    Article  PubMed  Google Scholar 

  90. Zhang, J.-G., Lindup, E. (1994) Cisplatin Nephrotoxicity: Decreases in Mitochondrial Protein Sulphydryl Concentration and Calcium Uptake by Mitochondria from Rat Renal Cells, Biochem. Pharmacol. 47, 1127–1135.

    Article  PubMed  Google Scholar 

  91. Pasini, A. and Zunino, F. (1987) New Cisplatin Analogues-On the Way to Better Antitumor Agents, Angew. Chem. Int. Ed. Engl. 26, 615–625.

    Article  Google Scholar 

  92. Di Francesco, A.M. et al. (2002) Cellular and molecular aspects of drugs of the future: Oxaliplatin, Cell. Molec. Life Sciences 59, 1914–1927.

    Google Scholar 

  93. Ohndorf, U.-M. et al. (1999) Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins, Nature 399, 708–712.

    Article  PubMed  Google Scholar 

  94. Dolling, J.A. et al. (1999) Cisplatin-modification of DNA repair and ionizing radiation lethality in yeast, Saccharomyces cerevisiae, Mutation Res. 433, 127–136.

    PubMed  Google Scholar 

  95. Legendre, F. and Chottard, J.-C. (1999) Kinetics and Selectivity of DNA-Platination in: Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug, pp. 223–245 (Lippert, B., Ed.) Verlag Helvitica Chimica Acta, Zurich.

    Google Scholar 

  96. Messman, R.A. and Allegra, C.J. (2001) Antifolates in Cancer Chemotherapy and Biotherapy in: Cancer chemotherapy and biotherapy: principles and practice, pp. 139 (Chabner, B.A. and Longo, D.L., Eds.) Lippincott Williams & Wilkins, Philadelphia.

    Google Scholar 

  97. Piper, J.R. et al. (1982) Syntheses of alpha-and gamma-substituted amides, peptides, and esters of methotrexate and their evaluation as inhibitors of folate metabolism, J. Med. Chem. 25, 182–187.

    Article  PubMed  Google Scholar 

  98. Wright, J.E. et al. (1993) Methotrexate and gamma-tert-butyl methotrexate transport in CEM and CEM/MTX human leukemic lymphoblasts, Biochem. Pharmacol. 46, 871–6.

    Article  PubMed  Google Scholar 

  99. Endo, N. et al. (1987) Target-selective cytotoxicity of methotrexate conjugated with monoclonal anti-MM46 antibody, Cancer Immunol. Immunother. 25, 1–6.

    Article  PubMed  Google Scholar 

  100. Umemoto, N. et al. (1989) Preparation and in vitro cytotoxicity of a methotrexate-anti-MM46 monoclonal antibody conjugate via an oligopeptide spacer, Int. J. Cancer 43, 677–654.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Wei, WH., Fountain, M.E., Sessler, J.L., Magda, D.J., Wang, Z., Miller, R.A. (2005). Texaphyrin Conjugates. Progress Towards Second Generation Diagnostic and Therapeutic Agents. In: Gloe, K. (eds) Macrocyclic Chemistry. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3687-6_25

Download citation

Publish with us

Policies and ethics