Skip to main content

HISTORY OF DELAY EQUATIONS

  • Conference paper

Part of the book series: NATO Science Series ((NAII,volume 205))

Abstract

Delay differential equations, differential integral equations and functional differential equations have been studied for at least 200 years (see E. Schmitt (1911) for references and some properties of linear equations). Some of the early work originated from problems in geometry and number theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bellman, R. and J.M. Danskin, Jr. (1954) A Sruvey of the Mathematical Theory Time-Lag, Retarded Control and Hereditary Processes. Report R-256. RAND Corp. Santa Monica CA.

    Google Scholar 

  • Bellman, R. and K.L. Cooke (1963) Differential Difference Equations. Acad. Press.

    Google Scholar 

  • Bellman, R. and K.L. Cooke (1959) Asymptotic behavior of solutions of differential difference equations. Mem. Am. Math. Soc. 35.

    Google Scholar 

  • Billotti, J.E. and J.P. LaSalle (1971) Periodic dissipative processes. Bull. Amer. Math. Soc. 6, 1082–1089.

    MathSciNet  Google Scholar 

  • Browder, F. (1959) On a generalization of the Schauder fixed point theorem. Duke Math. J. 26, 291–303.

    Article  MathSciNet  MATH  Google Scholar 

  • Browder, F. (1965) A further generalization of the Schauder fixed point theorem. Duke Math. J. 32, 575–578.

    Article  MathSciNet  MATH  Google Scholar 

  • Cholewa, J.W. and J.K. Hale (2000) Some counterexamples in dissipative systems. Dynamics of Continuous, Discrete and Impulsive Systems 7, 159–176.

    MathSciNet  MATH  Google Scholar 

  • Cruz, M.A. and J.K. Hale (1971) Exponential estimates and the saddle point property for neutral functional differential equations. J. Math. Anal. Appl. 34, 267–288.

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann, O., van Gils, S.A., Lunel, S. and H.O. Walther (1991) Delay Equations, Functional-, Complex-, and Nonlinear Analysis. Appl. Math. Sci. 110, Springer.

    Google Scholar 

  • Grafton, R. (1969) A periodicity theorem for autonomous functional differential equations. J. Differential Eqns. 6, 87–109.

    Article  MathSciNet  MATH  Google Scholar 

  • Halanay, A. (1966) Differential Equations, Stability, Oscillations, Time Lags. Academic Press.

    Google Scholar 

  • Hale, J.K. (1963) Linear functional differential equations with constant coefficients. Contributions to Differential Equations 2, 291–319.

    MathSciNet  Google Scholar 

  • Hale, J.K. (1963) A stability theorem for functional differential equations. Proc, Nat. Acad. Sci. 50, 942–946.

    Article  MathSciNet  MATH  Google Scholar 

  • Hale, J.K. (1965) Sufficient conditions for stability and instability of autonomous functional differential equations. J. Differential Eqns. 1, 452–482.

    Article  MathSciNet  MATH  Google Scholar 

  • Hale, J.K. (1966) Linearly asymptotically autonomous functional differential equations. Rend. Circ. Palermo (2) 15, 331–351.

    MathSciNet  MATH  Google Scholar 

  • Hale, J.K. (1977) Theory of Functional Differential Equations. Appl. Math. Sci. 3 (revision and expansion of 1971 Edition), Springer.

    Google Scholar 

  • Hale, J.K. (1970) A class of neutral equations with the fixed point property. Proc. Nat. Acad. Sci. 67, 136–137.

    Article  MathSciNet  MATH  Google Scholar 

  • Hale, J.K. and S. Lunel (1993) Introduction to Functional Differential Equations. Appl. Math. Sci. 99, Springer.

    Google Scholar 

  • Hale, J.K. and K.R. Meyer (1967) A class of functional differential equations of neutral type. Mem. Am. Math. Soc. 76.

    Google Scholar 

  • Hale, J.K., LaSalle, J.P. and M. Slemrod (1973) Theory of a general class of dissipative processes. J. Math. Anal. Appl. 39, 177–191.

    Article  MathSciNet  Google Scholar 

  • Hale, J.K. and O. Lopes (1973) Fixed point theorems and dissipative processes. J. Differential Eqns. 13 391–402.

    Article  MathSciNet  MATH  Google Scholar 

  • Hale, J.K., Magalhães, L. and W. Oliva (2002) Dynamics in Infinite Dimensions. Appl. Math. Sci. 47, Second Edition, Springer.

    Google Scholar 

  • Hale, J.K. and C. Perelló (1964) The neighborhood of a singular point for functional differential equations. Contributions to Differential Equations 3, 351–375.

    MathSciNet  Google Scholar 

  • Henry, D. (1974) Linear autonomous neutral functional differential equations. J. Differential Eqns. 15, 106–128.

    Article  MathSciNet  MATH  Google Scholar 

  • Henry, D. (1987) Topics in analysis. Pub. Math. Univ. Aut. Barcelona 39, 29–84.

    MathSciNet  Google Scholar 

  • Hino, Y., Murakami, S. and T. Naito (1991) Functional Differential Equations with Ininite Delay. Lect. Notes Math. 1473 Springer-Verlag.

    Google Scholar 

  • Hino, Y., Naito, T., Minh, N.V. and J.S. Shin (2002) Almost Periodic Solutions of Differential Equations in Banach Spaces. Taylor and Francis, London.

    MATH  Google Scholar 

  • Jones, G.S. (1962) The existence of periodic solutions of f′(x) = -αf(x- 1)[1 + f(x)]. J. Math. Anal. Appl. 5, 435–450.

    Article  MathSciNet  Google Scholar 

  • Kolmanovski, V. and A. Myshkis (1999) Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Acad. Publ.

    Google Scholar 

  • Krasovskii, N. (1956) Theory of A.M. Lyapunov’s second method for investigating stability. Mat. Sbornik 40.

    Google Scholar 

  • Krasovskii, N. (1959) Stability of Motion. Stanford Univ. Press, 1963). Translation with additions of the 1959 Russian edition.

    Google Scholar 

  • Levinson, N. (1944) Transformation theory of nonlinear differential equations of second order. Annals of Math. 45, 724–737.

    Article  MathSciNet  Google Scholar 

  • Lyapunov, A. M. (1891) Problème général de la stabilité du mouvement. Annales Math. Studies 17(1947). Originally published in 1891.

    Google Scholar 

  • Mallet-Paret, J. (1976) Negatively invariant sets of compact maps and an extension of a theorem of Cartwright. J. Differential Eqns 22, 331–348.

    Article  MathSciNet  MATH  Google Scholar 

  • Mané, R. (1981) On the dimension of the compact invariant sets of certain nonlinear maps. In Lecture Notes in Math. 898, 230–242.

    Article  Google Scholar 

  • Massatt, P. (1983) Attractivity properties of α-contractions. J. Differential Eqns 48, 326–333.

    Article  MathSciNet  MATH  Google Scholar 

  • Massera, J.L. (1950) The existence of periodic solutions of systems of differential equations. Duke Math. J. 17 457–475.

    Article  MathSciNet  MATH  Google Scholar 

  • Minorsky, N. (1941) Control problems. J. Franklin Institute 232:6, 519–551.

    Article  MathSciNet  Google Scholar 

  • Minorsky, N. (1962) Nonlinear Oscillations. D. Van Nostrand Co., Inc., Princeton.

    MATH  Google Scholar 

  • Myshkis, A. D. (1951) Lineare Differentialgleichungen mit nacheilenden Argumentom. Deutscher Verlag. Wiss. Berlin, 1955. Translation of the 1951 Russian edition.

    Google Scholar 

  • Nussbaum, R. (1972) Some asymptotic fixed point theorems. Trans. Am. Math. Soc. 171, 349–375.

    Article  MathSciNet  MATH  Google Scholar 

  • Nussbaum, R. (1974) Periodic solutions of some nonlinear autonomous functional differential equations. Ann. Math. Pura Appl. 10, 263–306.

    Article  MathSciNet  Google Scholar 

  • Picard, Ë (1908) La mathematique dans ses rapports avec la physique. Actes du IVe congrès international des Mathématiciens, Rome.

    Google Scholar 

  • Pliss, V.A. (1966) Nonlocal problems in the theory of nonlinear osciallations. Academic Press. Translation of the 1964 Russian text.

    Google Scholar 

  • Razumikhin, B.S. (1956) On the stability of systems with a delay. [Russian] Prikl. Mat. Meh. 20, 500–512.

    MathSciNet  Google Scholar 

  • Schmitt, E. (1911) Über eine Klasse linearer funktionaler Differential. gleichungen. Math. Ann. 70, 499–524.

    Article  MathSciNet  Google Scholar 

  • Shimanov, S.N. (1959) On the stability in the critical case of a zero root with time lag. Prikl. Mat. Meh. 23, 836–844.

    Google Scholar 

  • Shimanov, S.N. (1965) On the theory of linear differential equations with retardations. [Russian] Differentialniye Uravnenija 1, 102–116.

    MATH  Google Scholar 

  • Volterra, V. (1909) Sulle equazioni integrodifferenziali della teorie dell’elasticita. Atti Reale Accad. Lincei 18, 295.

    Google Scholar 

  • Volterra, V. (1928) Sur la théorie mathématique des phénomènes héréditaires. J. Math. Pures Appl. 7, 249–298.

    Google Scholar 

  • Volterra, V. (1931) Théorie Mathématique de la Lutte pour la Vie. Gauthier-Villars, Paris.

    Google Scholar 

  • Wu, J. Theory and Application of Partial Functional Differential Equations Appl. Math. Sci. 119, Springer.

    Google Scholar 

  • Wright, E.M. (1955) A nonlinear differential-difference equation. J. Reine Angew. Math. 194, 66–87.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Hale, J. (2006). HISTORY OF DELAY EQUATIONS. In: Arino, O., Hbid, M., Dads, E.A. (eds) Delay Differential Equations and Applications. NATO Science Series, vol 205. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3647-7_1

Download citation

Publish with us

Policies and ethics