Skip to main content

Isolation of Viable Haloarchaea from Ancient Salt Deposits and Application of Fluorescent Stains for in Situ Detection of Halophiles in Hypersaline Environmental Samples and Model Fluid Inclusions

  • Conference paper
Book cover Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amann, R.I., Ludwig, W. and Schleifer, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 321–346.

    Google Scholar 

  • Antón, J., Llobet-Brossa, F.E., Rodríguez-Valera, F. and Amann, R. (1999) Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ. Microbiol. 1, 517–523.

    PubMed  Google Scholar 

  • Boulos, L., Prevost, M., Barbeau, B., Coallier, J. and Desjardins, R. (1999) LIVE/DEAD BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J. Microbiol. Meth. 37, 77–86.

    Article  CAS  Google Scholar 

  • Bunthof, C.J., van Schalkwijk, S., Meijer, W., Abee, T. and Hugenholtz, J. (2001) Fluorescent method for monitoring cheese starter permeabilization and lysis. Appl. Environ. Microbiol. 67, 4264–4271.

    PubMed  CAS  Google Scholar 

  • Denner, E.B.M., McGenity, T.J., Busse, H.-J., Wanner, G., Grant, W.D. and Stan-Lotter, H. (1994) Halococcus salifodinae sp.nov., an archaeal isolate from an Austrian salt mine. Int. J. Syst. Bacteriol. 44, 774–780.

    Article  Google Scholar 

  • Foing, B. (2002) Space activities in exo/astrobiology, In: G. Horneck and C. Baumstark-Khan (eds.), Astrobiology. The Quest for the Conditions of Life. Springer-Verlag, Berlin, pp. 389–398.

    Google Scholar 

  • Gasol, J.M., Zweifel, U.L., Peters, F., Fuhrman, J.A. and Hagstrom, A. (1999) Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl. Environ. Microbiol. 65, 4475–4483.

    PubMed  CAS  Google Scholar 

  • Gooding, J.L. (1992) Soil mineralogy and chemistry on Mars: possible clues from salts and clays in SNC meteorites. Icarus 99, 28–41.

    Article  CAS  Google Scholar 

  • Grant, W.D., Gemmell, R.T. and McGenity, T.J. (1998) Halobacteria: the evidence for longevity. Extremophiles 2, 279–287.

    Article  PubMed  CAS  Google Scholar 

  • Grant, W. D., Kamekura, M., McGenity, T.J. and Ventosa, A. (2001) Class III. Halobacteria class. nov., In: D.R. Boone, R.W. Castenholz and G.M. Garrity (eds.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., Vol. I. Springer Verlag, New York, pp. 294–301.

    Google Scholar 

  • Gruber, C., Legat, A., Pfaffenhuemer, M., Radax, C., Weidler, G., Busse, H.-J. and Stan-Lotter, H. (2004) Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permo-Triassic salt deposit, classification of Halobacterium sp. NRC-1 as a strain of Halobacterium salinarum and emended description of Halobacterium salinarum. Extremophiles 8, 431–439.

    Article  PubMed  CAS  Google Scholar 

  • Haugland, R.P. (2002) LIVE/DEAD BacLight bacterial viability kits, In: J. Gregory (ed.), Handbook of Fluorescent Probes and Research Products, 9th ed. Molecular Probes, Eugene, Oregon, pp. 626–628.

    Google Scholar 

  • Hobbie, J.E., Daley, R.H. and Jasper, S. (1977) Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225–1228.

    PubMed  CAS  Google Scholar 

  • Janssen, P.H., Yates, P.S., Grinton, B.E., Taylor, P.M. and Sait, M. (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68, 2391–2396.

    Article  PubMed  CAS  Google Scholar 

  • Joux, F. and Lebaron, P. (2000) Use of fluorescent probes to assess physiological functions of bacteria at single-cell level. Microbes Infect. 2, 1523–1535.

    Article  PubMed  CAS  Google Scholar 

  • Kandler, O. and H. König. 1993. Cell envelopes of Archaea: structure and chemistry, In: M. Kates, D.J. Kushner and A.T. Matheson (eds.), The biochemistry of the Archaea. Elsevier Science Publishers, Amsterdam, pp. 223–259.

    Google Scholar 

  • Kepner, R.I. Jr., and Pratt, J.R. (1994) Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol. Rev. 58, 603–615.

    PubMed  CAS  Google Scholar 

  • Lanoil, B.D., Sassen, R., La Duc, M.T., Sweet, S.T. and Nealson, K.H. (2001) Bacteria and Archaea physically associated with Gulf of Mexico gas hydrates. Appl. Environ. Microbiol. 67, 5143–5153.

    Article  PubMed  CAS  Google Scholar 

  • Leuko, S., Legat, A., Fendrihan, S. and Stan-Lotter, H. (2004) Evaluation of the LIVE/DEAD BacLight kit for extremophilic archaea and environmental hypersaline samples. Appl. Environ. Microbiol. 70, 6884–6886.

    Article  PubMed  CAS  Google Scholar 

  • McGenity, T.J., Gemmell, R.T., Grant, W.D. and Stan-Lotter, H. (2000) Origins of halophilic microorganisms in ancient salt deposits (MiniReview). Environ. Microbiol. 2, 243–250.

    Article  PubMed  CAS  Google Scholar 

  • Ng, W.V., Kennedy, S.P., Mahairas, G.G., Berquist, B., Pan, M., Shukla, H.D., Lasky, S.R., Baliga, N.S., Thorsson, V., Sbrogna, J., Swartzell, S., Weir, D., Hall, J., Dahl, T.A., Welti, R., Goo, Y.A., Leithauser, B., Keller, K., Cruz, R., Danson, M.J., Hough, D.W., Maddocks, D.G., Jablonski, P.E., Krebs, M.P., Angevine, C.M., Dale, H., Isenbarger, T.A., Peck, R.F., Pohlschröder, M., Spudich, J.L., Jung, K.W., Alam, M., Freitas, T., Hou, S., Daniels, C.J., Dennis, P.P., Omer, A.D., Ebhardt, H., Lowe, T. M., Liang, P., Riley, M., Hood, L. and DasSarma, S. (2000) Genome sequence of Halobacterium species NRC-1. Proc. Natl. Acad. Sci. USA 97, 12176–12181.

    PubMed  CAS  Google Scholar 

  • Nisbet, E.G. and Sleep, N.H. (2001) The habitat and nature of early life. Nature 409, 1083–1091.

    Article  PubMed  CAS  Google Scholar 

  • Niemetz, R., Karcher, U., Kandler, O., Tindall, B.J. and König, H. (1997) The cell wall polymer of the extremely halophilic archaeon Natronococcus occultus. Eur. J. Biochem. 249, 905–911.

    Article  PubMed  CAS  Google Scholar 

  • Norton, C.F. and Grant, W.D. (1988) Survival of halobacteria within fluid inclusions in salt crystals. J. Gen. Microbiol. 134, 1365–1373.

    Google Scholar 

  • Oren, A., Ventosa, A. and Grant, W.D. (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int. J. Syst. Bacteriol. 47, 233–238.

    Google Scholar 

  • Porter, K.G. and Feig, Y.S. (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943–948.

    Article  Google Scholar 

  • Radax, C., Gruber, C. and Stan-Lotter, H. (2001) Novel haloarchaeal 16S rRNA gene sequences from alpine Permo-Triassic rock salt. Extremophiles 5, 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Ramalho, R., J., Cunha, J., Teixeira, P. and Gibbs, P. A. (2001) Improved methods for the enumeration of heterotrophic bacteria in bottled mineral waters. J. Microbiol. Meth. 44, 97–103.

    Article  CAS  Google Scholar 

  • Rummel, J.D. (2001) Planetary exploration in the time of astrobiology: protecting against biological contamination. Proc. Natl. Acad. Sci. USA 98, 2128–2131.

    Article  PubMed  CAS  Google Scholar 

  • Schidlowski, M. (1988) A 3,800 million-year old record of life from carbon in sedimentary rocks. Nature 333, 313–318.

    Article  CAS  Google Scholar 

  • Schidlowski, M. (2002) Search for morphologigal and biochemical vestiges of fossil life in extraterrestrial settings: utility of terrestrial evidence, In: G. Horneck and C. Baumstark-Khan (eds.), Astrobiology. The Quest for the Conditions of Life. Springer-Verlag, Berlin, pp. 373–386.

    Google Scholar 

  • Stackebrandt, E. and Goebel, B.M. (1994) Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849.

    CAS  Google Scholar 

  • Staley, J.T. and Konopka, A. (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321–346.

    Article  PubMed  CAS  Google Scholar 

  • Stan-Lotter, H., McGenity, T.J., Legat, A., Denner, E.B.M., Glaser, K., Stetter, K.O. and Wanner, G. (1999) Very similar strains of Halococcus salifodinae are found in geographically separated Permo-Triassic salt deposits. Microbiology 145, 3565–3574.

    PubMed  CAS  Google Scholar 

  • Stan-Lotter, H., Radax, C., Gruber, C., McGenity, T.J., Legat, A., Wanner, G. and Denner, E.B.M. (2000) The distribution of viable microorganisms in Permo-Triassic rock salt, In: R.M. Geertman (ed.), SALT 2000. 8th World Salt Symposium, Vol. 2. Elsevier Science B.V., Amsterdam, pp. 921–926.

    Google Scholar 

  • Stan-Lotter, H., Pfaffenhuemer, M., Legat, A., Busse, H.-J., Radax, C. and Gruber, C. (2002) Halococcus dombrowskii sp. nov., an archaeal isolate from a Permo-Triassic alpine salt deposit. Int. J. Syst. Evol. Microbiol. 52, 1807–1814.

    Article  PubMed  CAS  Google Scholar 

  • Stan-Lotter, H., Radax, C., Gruber, C., Legat, A., Pfaffenhuemer, M., Wieland, H., Leuko, S., Weidler, G., Kömle, N. and Kargl, G. (2003) Astrobiology with haloarchaea from Permo-Triassic rock salt. Int. J. Astrobiol. 1, 271–284.

    Google Scholar 

  • Steber, J. and Schleifer, K.H. (1975) Halococcus morrhuae: a sulfated heteropolysaccharide as the structural component of the bacterial cell wall. Arch. Microbiol. 105, 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Strathmann, M., Griebe, T. and Flemming, H.C. (2000) Artificial biofilm model-a useful tool for biofilm research. Appl. Microbiol. Biotechnol. 54, 231–237.

    Article  PubMed  CAS  Google Scholar 

  • Treiman, A.H., Gleason, J.D. and Bogard, D.D. (2000) The SNC meteorites are from Mars. Planet Space Sci. 48, 1213–1230.

    Article  CAS  Google Scholar 

  • Vreeland, R.H., Straight, S., Krammes, J., Dougherty, K., Rosenzweig, W.D. and Kamekura, M. (2002) Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6, 445–452.

    Article  PubMed  CAS  Google Scholar 

  • Zolensky, M.E., Bodnar, R.J., Gibson, E.K., Nyquist, L.E., Reese, Y., Shih, C.Y. and Wiesman, H. (1999) Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998). Science 285, 1377–1379.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Leuko, S. et al. (2005). Isolation of Viable Haloarchaea from Ancient Salt Deposits and Application of Fluorescent Stains for in Situ Detection of Halophiles in Hypersaline Environmental Samples and Model Fluid Inclusions. In: Gunde-Cimerman, N., Oren, A., Plemenitaš, A. (eds) Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3633-7_7

Download citation

Publish with us

Policies and ethics