Skip to main content

Halophilic Archaea and Bacteria as a Source of Extracellular Hydrolytic Enzymes

  • Conference paper
Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amann, R.I., Ludwig, W. and Schleifer, K.H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169.

    PubMed  CAS  Google Scholar 

  • Amoozegar, M.A., Malekzadeh, F. and Malik K.A. (2003a) Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2. J. Microbiol. Meth. 52, 353–359.

    Article  CAS  Google Scholar 

  • Amoozegar, M.A., Malekzadeh, F., Malik K.A., Schumann, P. and Spröer, C. (2003b) Halobacillus karajensis sp. nov., a novel moderate halophile. Int. J. Syst. Evol. Microbiol. 53, 1059–1063.

    Article  PubMed  CAS  Google Scholar 

  • Antón, J., Oren, A., Benlloch, S., Rodríguez-Valera, F., Amann, R.I. and Rosselló-Mora, R. (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 52, 485–491.

    PubMed  Google Scholar 

  • Béjà, O., Suzuki, M.T., Koonin, E.V., Aravind, L., Hadd, A., Nguyen, L.P., Villacorta, R., Amjadi, M., Garrigues, C., Jovanovich, S.B., Feldman, R.A. and Delong, E.F. (2000) Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol. 2, 516–529.

    PubMed  Google Scholar 

  • Bieger, B., Essen, L.O. and Oesterhelt, D. (2003) Crystal structure of halophilic dodecin: a novel, dodecameric flavin binding protein from Halobacterium salinarum. Structure 11, 375–385.

    Article  PubMed  CAS  Google Scholar 

  • Chaga, G. and Porath, J. (1993) Isolation and purification of amyloglucosidase from Halobacterium sodomense. Biomed. Chromat. 7, 256–261.

    CAS  Google Scholar 

  • Christian, J.H.B. and Waltho, J.A. (1962) Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim. Biophys. Acta 65, 506–508.

    Article  PubMed  CAS  Google Scholar 

  • Coronado, M., Vargas, C., Hofemeister, J., Ventosa, A. and Nieto, J.J. (2000a) Production and biochemical characterization of an α-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol. Lett. 183, 67–71.

    Article  PubMed  CAS  Google Scholar 

  • Coronado, M.J., Vargas, C., Mellado, E., Tegos, G., Drainas, C., Nieto, J.J. and Ventosa, A. (2000b) The α-amylase gene amyH of the moderate halophile Halomonas meridiana: cloning and molecular characterization. Microbiology 146, 861–868.

    PubMed  CAS  Google Scholar 

  • Danson, M.J. and Hough, D.W. (1997) The structural basis of protein halophilicity. Comp. Biochem. Physiol. 117A, 307–312.

    CAS  Google Scholar 

  • Dym, O., Mevarech, M. and Sussman, J.L. (1995) Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science 267, 1344–1346.

    CAS  PubMed  Google Scholar 

  • Frillingos, S., Linden, A., Niehaus, F., Vargas, C., Nieto, J.J., Ventosa, A., Antranikian, G. and Drainas, C. (2000) Cloning and expression of α-amylase from the hyperthermophilic archaeon Pyrococcus woesei in the moderately halophilic bacteria Halomonas elongata. J. Appl. Microbiol. 88, 495–503.

    Article  PubMed  CAS  Google Scholar 

  • Frolow, F., Harel, M., Sussman, J.L., Mevarech, M. and Shoham, M. (1996) Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe-2S ferredoxin. Nature Struct. Biol. 3, 452–458.

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi, S., Yoshimune, K., Wakayama, M., Moriguchi, M. and Nishikawa, K. (2003) Unique amino acid composition of proteins in halophilic bacteria. J. Mol. Biol. 327, 347–357.

    Article  PubMed  CAS  Google Scholar 

  • Giménez, M.I., Studdert, C.A., Sánchez, J.J. and De Castro, R.E. (2000) Extracellular protease of Natrialba magadii: purification and biochemical characterization. Extremophiles 4, 181–188.

    PubMed  Google Scholar 

  • Ginzburg, M., Sachs, L. and Ginzburg, B.Z. (1970) Ion metabolim in a halobacterium. I. Influence of age of culture on intracellular concentrations. J. Gen. Physiol. 55, 187–207.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, C. and Gutierrez, C. (1970) Presence of lipase among species of extremely halophilic bacteria. Can. J. Microbiol. 16, 1165–1166.

    Article  PubMed  CAS  Google Scholar 

  • Good, W.A. and Hartman, P.A. (1970) Properties of the amylase from Halobacterium halobium. J. Bacteriol. 104, 601–603.

    PubMed  CAS  Google Scholar 

  • Grant, W.D., Kamekura, M., McGenity, T.J. and Ventosa, A. (2001) Class III. Halobacteria class. nov, In: D.R. Boone, R.W. Castenholz and G.M. Garrity (eds.), Bergey’s Manual of Systematic Bacteriology, 2nd ed. Springer-Verlag, New York, pp. 294–299.

    Google Scholar 

  • Grant, S., Sorokin, D.Y., Grant W.D., Jones, B.E. and Heaphy, S. (2004) A phylogenetic analysis of Wadi el Natrum soda lake cellulase enrichment cultures and identification of cellulase genes from these cultures. Extremophiles 8, 421–429.

    Article  PubMed  CAS  Google Scholar 

  • Healy, F.G., Ray, R.M., Aldrich, H.C., Wilkie, A.C., Ingram, L.O. and Shanmugam K.T. (1995) Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose. Appl. Microbiol. Biotechnol. 43, 667–674.

    PubMed  CAS  Google Scholar 

  • Henne, A., Schmitz, R.A., Bömeke, M., Gottschalk, G. and Daniel, R. (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl. Environ. Microbiol. 66, 3113–3116.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, M.L., Scopes, R.K., Moritz, R.L., Simpson, R.J., Englert, C., Pfeifer, F. and Dyall-Smith, M.L.(1997) Purification and analysis of an extremely halophilic β-galactosidase from Haloferax alicantei. Biochim. Biophys. Acta 1337, 276–286.

    PubMed  CAS  Google Scholar 

  • Horikoshi, K. and Grant, W.D. (eds.) (1998) Extremophiles: Microbial Life in Extreme Environments. John Wiley & Sons, New York.

    Google Scholar 

  • Izotova, L.S., Strongin, A.Y., Chekulaeva, L.N., Ostoslavskaya, V.I., Lyublinskaya, L.A., Timokhina, E.A. and Stepanov, V.M. (1983) Purification and properties of serine protease from Halobacterium halobium. J. Bacteriol. 155, 826–830.

    PubMed  CAS  Google Scholar 

  • Kamekura, M. (1986) Production and function of enzymes of eubacterial halophiles. FEMS Microbiol. Rev. 39, 145–150.

    CAS  Google Scholar 

  • Kamekura, M. (1995) Halophilic proteases from halophilic archaea, In: F.T. Robb and A.R. Place (eds.), Archaea. A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, pp. 89–93.

    Google Scholar 

  • Kamekura, M. (1998) Diversity of extremely halophilic bacteria. Extremophiles 2, 289–295.

    PubMed  CAS  Google Scholar 

  • Kamekura, M. and Onishi, H. (1974a) Halophilic nuclease from a moderately halophilic Micrococcus varians. J. Bacteriol. 119, 339–344.

    PubMed  CAS  Google Scholar 

  • Kamekura, M. and Onishi, H. (1974b) Protease formation by a moderately halophilic Bacillus strain. Appl. Microbiol. 27, 809–810.

    PubMed  CAS  Google Scholar 

  • Kamekura, M. and Onishi, H. (1976) Effect of magnesium and some nutrients on the growth and nuclease formation of a moderate halophile, Micrococcus varians var. halophilus. Can. J. Microbiol. 22, 1567–1576.

    PubMed  CAS  Google Scholar 

  • Kamekura, M. and Onishi, H. (1978a) Propierties of the halophilic nuclease of a moderate halophile, Micrococcus varians subsp. halophilus. J. Bacteriol. 133, 59–65.

    PubMed  CAS  Google Scholar 

  • Kamekura, M. and Onishi, H. (1978b) Flocculation and adsorption of enzymes during growth of a moderate halophile, Micrococcus varians var. halophilus. Can. J. Microbiol. 24, 703–709.

    PubMed  CAS  Google Scholar 

  • Kamekura, M. and Onishi, H. (1979) A medium for commercial production of the halophilic Micrococcus nuclease. Can. J. Microbiol. 25, 1113–1116.

    PubMed  CAS  Google Scholar 

  • Kamekura, M. and Onishi, H. (1983) Inactivation of nuclease H of the moderate halophile Micrococcus varians ssp. halophilus during cultivation in the presence of salting-in-type salts. Can. J. Microbiol. 29, 46–51.

    CAS  Google Scholar 

  • Kamekura, M. and Seno, Y. (1990) A halophilic extracellular protease from a halophilic archaebacterium strain 172 P1. Biochem. Cell. Biol. 68, 352–359.

    Article  PubMed  CAS  Google Scholar 

  • Kamekura, M., Hamakawa, T. and Onishi, H. (1982) Application of halophilic nuclease H of Micrococcus varians subsp. halophilus to commercial production of flavoring agent 5′-GMP. Appl. Environ. Microbiol. 44, 994–995.

    PubMed  CAS  Google Scholar 

  • Kamekura, M., Seno, Y., Holmes, M.L. and Dyall-Smith, M. (1992) Molecular cloning and sequencing of the gene for a halophilic alkaline serine protease (halolysin) from an unidentified halophilic archaea strain (172P1) and expression of the gene in Haloferax volcanii. J. Bacteriol. 174, 736–742.

    PubMed  CAS  Google Scholar 

  • Kamekura, M., Seno, Y. and Dyall-Smith, M. (1996) Halolysin R4, a serine proteinase from the halophilic archaeon Haloferax mediterranei; gene cloning, expression and estructural studies. Biochim. Biophys. Acta 1294, 159–167.

    PubMed  Google Scholar 

  • Khire, J.M. (1994) Production of moderately halophilic amylase by newly isolated Micrococcus sp. 4 from a salt pan. Lett. Appl. Microbiol. 19, 210–212.

    CAS  Google Scholar 

  • Knietsch, A., Waschkowitz, T., Bowien, S., Henne, A. and Daniel, R. (2003) Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli. Appl. Environ. Microbiol. 69, 1408–1416.

    PubMed  CAS  Google Scholar 

  • Kobayashi, T., Kamekura, M., Kanlayakrit, W. and Onishi, H. (1986) Production, purification, and characterization of an amylase from the moderate halophile, Micrococcus varians subspecies halophilus. Microbios 46, 165–177.

    CAS  Google Scholar 

  • Kobayashi, T., Kanai, H., Hayashi, T., Akiba, T., Akaboshi, R. and Horikoshi, K. (1992) Haloalkaliphilic maltotriose-forming α-amylase from the archaebacterium Natronococcus sp. strain Ah-36. J. Bacteriol. 174, 3439–3444.

    PubMed  CAS  Google Scholar 

  • Kobayashi, T., Kanai, H., Aono, R., Horikoshi, K. and Kudo, T. (1994) Cloning, expression, and nucleotide sequence of the α-amylase gene from the haloalkaliphilic archaeon Natronococcus sp. strain Ah-36. J. Bacteriol. 176, 5131–5134.

    PubMed  CAS  Google Scholar 

  • Kushner, D.J. (1968) Halophilic bacteria. Adv. Appl. Microbiol. 10, 73–99.

    PubMed  CAS  Google Scholar 

  • Li, N., Patel, B.K., Mijts, B.N. and Swaminathan, K. (2002) Crystallization of an alpha-amylase, amyA, from the thermophilic halophile Halothermothrix orenii. Acta Crystallogr. D. Biol. Crystallogr. 58, 2125–2126.

    PubMed  Google Scholar 

  • Madern, D., Ebel, C. and Zaccai, G. (2000) Halophilic adaptation of enzymes. Extremophiles 4, 91–98.

    Article  PubMed  CAS  Google Scholar 

  • Madigan, M.T. and Oren, A. (1999) Thermophilic and halophilic extremophiles. Curr. Opin. Microbiol 2, 265–269.

    Article  PubMed  CAS  Google Scholar 

  • Majernik, A., Gottschalk, G. and Daniel, R. (2001) Screening of environmental DNA libraries for the presence of genes conferring Na+ (Li+)/H+ antiporter activity on Escherichia coli: characterization of the recovered genes and the corresponding gene products. J. Bacteriol. 183, 6645–6653.

    Article  PubMed  CAS  Google Scholar 

  • Martín, S., Márquez, M.C., Sánchez-Porro, C., Mellado, E., Arahal, D.R. and Ventosa, A. (2003) Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int. J. Syst. Evol. Microbiol. 53, 1383–1387.

    PubMed  Google Scholar 

  • Mellado, E. and Ventosa, A. (2003) Biotechnological potential of moderately and extremely halophilic microorganisms, In: J.L. Barredo (ed.), Microorganisms for Health Care, Food and Enzyme Production. Research Signpost, Kerala, pp. 233–256.

    Google Scholar 

  • Mellado, E., Sánchez-Porro, C., Martín, S. and Ventosa, A. (2004) Extracellular hydrolytic enzymes produced by moderately halophilic bacteria, In: A. Ventosa (ed.), Halophilic Microorganisms. Springer-Verlag, Berlin, pp. 285–295.

    Google Scholar 

  • Mevarech, M., Frolow, F. and Gloss, L.M. (2000) Halophilic enzymes: proteins with a grain of salt. Biophys. Chem. 86, 155–164.

    Article  PubMed  CAS  Google Scholar 

  • Mijts, B.N. and Patel, B.K. (2002) Cloning, sequencing and expression of an alpha-amylase gene, amyA, from the thermophilic halophile Halothermothrix orenii and purification and biochemical characterization of the recombinant enzyme. Microbiology 148, 2343–2349.

    PubMed  CAS  Google Scholar 

  • Nieto, J.J. and Vargas, C. (2002) Synthesis of osmoprotectants by moderately halophilic bacteria: Genetic and applied aspects, In: S.G. Pandalai (ed.), Recent Research Developments in Microbiology, Vol. 6. Research Signpost, Trivandrum, pp. 403–418.

    Google Scholar 

  • Norberg, P. and Hofsten, B.V. (1969) Proteolytic enzymes from extremely halophilic bacteria. J. Gen. Microbiol. 55, 251–256.

    PubMed  CAS  Google Scholar 

  • Onishi, H. (1972) Halophilic amylase from a moderately halophilic Micrococcus. J. Bacteriol. 109, 570–574.

    PubMed  CAS  Google Scholar 

  • Onishi, H. and Hidaka, O. (1978) Purification and properties of amylase produced by a moderate halophilic Acinetobacter sp. Can. J. Microbiol. 24, 1017–1023.

    Article  PubMed  CAS  Google Scholar 

  • Onishi, H and Kamekura, M. (1972) Micrococcus halobius sp. n. Int. J. Syst. Bacteriol. 22, 233–236.

    Google Scholar 

  • Onishi, H. and Sonoda, K. (1979) Purification and some properties of an extracellular amylase from a moderate halophile, Micrococcus halobius. Appl. Environ. Microbiol. 38, 616–620.

    PubMed  CAS  Google Scholar 

  • Onishi, H., Mori, T., Takeuchi, S., Tani, K., Kobayashi, T. and Kamekura, M. (1983) Halophilic nuclease of a moderately halophilic Bacillus sp.: production, purification and characterization. Appl. Environ. Microbiol. 45, 24–30.

    PubMed  CAS  Google Scholar 

  • Onishi, H., Kobayashi, T. and Kamekura, M. (1984) Purification and some properties of an extracellular halophilic 5′-nucleotidase from a moderate halophile, Micrococcus varians subsp. halophilus. FEMS Microbiol. Lett. 24, 303–306.

    Article  CAS  Google Scholar 

  • Onishi, H., Kamekura, M., Yokoi, H. and Kobayashi, T. (1988) Production of 5′ nucleotide by using halophilic nuclease H preferentially adsorbed on flocculated cells of the halophile Micrococcus varians subsp. halophilus. Appl. Environ. Microbiol. 54, 2632–2635.

    PubMed  CAS  Google Scholar 

  • Onishi, H., Yokoi, H. and Kamekura, M. (1991) An application of a bioreactor with flocculated cells of halophilic Micrococcus varians subsp. halophilus which preferentially adsorbed halophilic nuclease H to 5′-nucleotide production, In: F. Rodriguez-Valera (ed.), General and Applied Aspects of Halophilic Microorganisms. Plenum Press, New York, pp. 341–349.

    Google Scholar 

  • Oren, A. (1983) A thermophilic amyloglucosidase from Halobacterium sodomense, a halophilic bacterium from the Dead Sea. Cur. Microbiol. 8, 225–230.

    Article  CAS  Google Scholar 

  • Oren, A. (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28, 56–63.

    Article  PubMed  CAS  Google Scholar 

  • Patenge, N., Haase, A., Bolhuis, H. and Oesterhelt, D. (2000) The gene for a halophilic beta-galactosidase (bgaH) of Haloferax alicantei as a reporter gene for promoter analyses in Halobacterium salinarum. Mol. Microbiol. 36, 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Pomares, F., Bautista, V., Ferrer, J., Pire, C., Marhuenda-Egea, F.C. and Bonete M.J. (2003) α-amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7, 299–306.

    PubMed  Google Scholar 

  • Pieper, U., Kapadia, G., Mevarech, M. and Herzberg, O. (1998) Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii. Structure 15, 75–88.

    Google Scholar 

  • Rees, H.C., Grant, S., Jones, B., Grant, W.D. and Heaphy, S. (2003a) Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles 7, 415–421.

    Article  PubMed  CAS  Google Scholar 

  • Rees, H.C., Jones, B.E., Grant, W.D. and Heaphy, S. (2003b) Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 8, 63–71.

    PubMed  Google Scholar 

  • Richard, S.B., Madern, D., Garcin, E. and Zaccai, G. (2000) Halophilic adaptation: novel solvent protein interactions observed in the 2.9 and 2.6 Å resolution structures of the wild type and a mutant of malate dehydrogenase from Haloarcula marismortui. Biochemistry 39, 992–1000.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, T.H., Tan, X., Frey, G., Callen, W., Cabell, M., Lam, D., Macomber, J., Short, J.M., Robertson, D.E. and Miller, C. (2002) A novel, high performance enzyme for starch liquefaction. Discovery and optimization of a low-pH, termostable alpha-amylase. J. Biol. Chem. 277, 26501–26507

    PubMed  CAS  Google Scholar 

  • Ryu, K., Kim, J. and Dordick, J.S. (1994) Catalytic properties and potential of an extracellular protease from an extreme halophile. Enzyme Microb. Technol. 16, 266–275.

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Porro, C., Martín, S., Mellado, E. and Ventosa, A. (2003a) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J. Appl. Microbiol. 94, 295–300.

    PubMed  Google Scholar 

  • Sánchez-Porro, C., Mellado, E., Bertoldo, C., Antranikian, G. and Ventosa, A. (2003b) Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain CP76. Extremophiles 7, 221–228.

    PubMed  Google Scholar 

  • Sánchez-Porro, C., Martín, S., Mellado, E. and Ventosa, A. (2004) Extracellular enzymes produced by halophilic archaea and bacteria, In: M.M. Watanabe, K. Suzuki and T. Seki (eds.), Innovative Roles of Biological Resource Centers. World Federation for Culture Collections, Tokyo, pp. 123–129.

    Google Scholar 

  • Stackebrandt, E., Koch, C., Gvozdiak, O. and Schumann, P. (1995) Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kitococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int. J. Syst. Bacteriol. 45, 682–692.

    Article  PubMed  CAS  Google Scholar 

  • Stepanov, V.M., Rudenskaya, G.N., Revina, L.P., Gryaznova, Y.B., Lysogorskaya, E.N., Filippova, I.Yu. and Ivanova, I.I. (1992) A serine proteinase of an archaebacterium, Halobacterium mediterranei. A homologue of eubacterial subtilisins. Biochem. J. 285, 281–286.

    PubMed  CAS  Google Scholar 

  • Streit, W.R. and Schmitz, R.A. (2004) Metagenomics-the key to the uncultured microbes. Curr. Opin. Microbiol. 7, 492–498.

    Article  PubMed  CAS  Google Scholar 

  • Studdert, C., De Castro, R.E., Seitz, K.H. and Sánchez, J.J. (1997) Detection and preliminary characterization of extracellular proteolytic activities of the haloalkaliphilic archaeon Natronococcus occultus. Arch. Microbiol. 168, 532–535.

    Article  PubMed  CAS  Google Scholar 

  • Studdert, C.A., Herrera Seitz, M.K., Plasencia Gil, M.I., Sánchez, J.J. and De Castro R.E. (2001) Purification and biochemical characterization of the haloalkaliphilic archaeon Natronoccocus occultus extracellular serine protease. J. Basic Microbiol. 41, 375–383.

    Article  PubMed  CAS  Google Scholar 

  • Tan, T.C., Yien, Y.Y., Patel, B.K., Mijts, B.N. and Swaminathan, K. (2003) Crystallization of a novel alphaamylase, AmyB, from the thermophilic halophile Halothermothrix orenii. Acta. Crystallogr. D. Biol. Crystallogr. 59, 2257–2258.

    Article  PubMed  CAS  Google Scholar 

  • Van Qua, D, Simidu, U. and Taga, N. (1981) Purification and some properties of halophilic protease produced by a moderately halophilic marine Pseudomonas sp. Can. J. Microbiol. 27, 505–510.

    Google Scholar 

  • Ventosa, A., García, M.T., Kamekura, M., Onishi, H. and Ruíz-Berraquero, F. (1989) Bacillus halophilus sp. nov., a moderately halophilic Bacillus species. System. Appl. Microbiol. 12, 162–166.

    Google Scholar 

  • Ventosa, A., Nieto, J.J. and Oren, A. (1998) Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62, 504–544.

    PubMed  CAS  Google Scholar 

  • Wainø, M. and Ingvorsen, K. (2003) Production of β-xylanase and β-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles 7, 87–93.

    PubMed  Google Scholar 

  • Yamada, Y., Fujiwara, T., Sato, T., Igarashi, N. and Tanaka, N. (2002) The 2.0 Å crystal structure of catalaseperoxidase from Haloarcula marismortui. Nat. Struct. Biol. 9, 691–695.

    Article  PubMed  CAS  Google Scholar 

  • Yu, T.X. (1991) Protease of haloalkaliphiles, In: K. Horikoshi and W.D. Grant (eds.) Superbugs. Microorganisms in extreme environments. Springer-Verlag, Tokyo, pp. 76–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Ventosa, A., Sánchez-Porro, C., Martín, S., Mellado, E. (2005). Halophilic Archaea and Bacteria as a Source of Extracellular Hydrolytic Enzymes. In: Gunde-Cimerman, N., Oren, A., Plemenitaš, A. (eds) Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3633-7_23

Download citation

Publish with us

Policies and ethics