Skip to main content

Inside the Small Length and Energy Scales of the World of the Individual Biological Molecule

  • Conference paper
From Cells to Proteins: Imaging Nature across Dimensions

Part of the book series: NATO Security through Science Series ((NASTB))

  • 854 Accesses

Abstract

Atomic force microscopy (AFM) has proved to be an essential tool of structural biology, being able not only to image but also to manipulate single biological molecules. These techniques make it possible to investigate the nanometer scale structure of single biological macromolecules and to study how an external force drives single biological molecules towards nonequilibrium conformations, by stretching and breaking bonds and interactions. This chapter focuses on the capabilities of the AFM-based single molecule methodologies to bring us into the nanometer-scale world of the single DNA molecules and into the pico-Newton force-scales of the interactions that sustain the protein folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. Binnig G., et al. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 1982; 49: 57–61.

    Article  Google Scholar 

  2. Fritz J., et al. Probing single biomolecules with atomic force microscopy. J Struct Biol 1997; 119(2): 165–71.

    Article  PubMed  CAS  Google Scholar 

  3. Samori B. and Zuccheri G. DNA Codes for Nanoscience. Angew Chem Int Ed Engl, 2004.

    Google Scholar 

  4. Pearson H. DNA: Beyond the double helix. Nature 2003; 421(6921): 310–2.

    Article  PubMed  CAS  Google Scholar 

  5. Schellman J.A. and Harvey S.C. Static contributions to the persistence length of DNA and dynamic contributions to DNA curvature. Biophysical Chemistry 1995; 55(1–2): 95–114.

    Article  PubMed  CAS  Google Scholar 

  6. Bednar J., et al. Determination of DNA persistence length by cryo-electron microscopy. Separation of the static and dynamic contributions to the apparent persistence length of DNA. Journal of Molecular Biology 1995; 254(4): 579–94.

    Article  PubMed  CAS  Google Scholar 

  7. Calladine C.R. and Drew H.R. A useful role for “static” models in elucidating the behaviour of DNA in solution. Journal of Molecular Biology 1996; 257(3): 479–85.

    Article  PubMed  CAS  Google Scholar 

  8. Crothers D.M., DNA curvature and deformation in protein-DNA complexes: a step in the right direction. Proc. Natl. Acad. Sci. USA 1998; 95(26): 15163–5.

    Article  PubMed  CAS  Google Scholar 

  9. El Hassan M.A. and Calladine C.R. Conformational Characteristics of DNA-Empirical Classifications and a Hypothesis for the Conformational Behavior of Dinucleotide Steps. Philosophical transactions-Royal Society of London. Physical sciences and engineering 1997; 355: 43–100.

    Google Scholar 

  10. Griffith J., et al. Visualization of the bent helix in kinetoplast DNA by electron microscopy. Cell, 1986; 46(5): 717–24.

    Article  PubMed  CAS  Google Scholar 

  11. Dickerson R.E., Goodsell D. and Kopka M.L MPD and DNA bending in crystals and in solution. J Mol Biol 1996; 256(1): 108–25.

    Article  PubMed  CAS  Google Scholar 

  12. Hardwidge P.R., et al. Relating independent measures of DNA curvature: electrophoretic anomaly and cyclization efficiency. J Biomol Struct Dyn 2000; 18(2): 219–30.

    PubMed  CAS  Google Scholar 

  13. Kahn J.D., E. Yun and Crothers D.M. Detection of localized DNA flexibility. Nature 1994; 368(6467): 163–6.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang Y. and Crothers D.M. High-throughput approach for detection of DNA bending and flexibility based on cyclization. Proc. Natl. Acad. Sci. USA 2003; 100(6): 3161–6.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang Y. and Crothers D.M. Statistical mechanics of sequence-dependent circular DNA and its application for DNA cyclization. Biophys. J. 2003; 84(1): 136–53.

    PubMed  CAS  Google Scholar 

  16. De Santis P., et al. Sequence dependent circularization of DNAs-a physical model to predict the DNA sequence dependent propensity to circularization and its changes In the presence of protein-induced bending. J. Phys. Chem. 1996; 100(23): 9968–9976.

    Article  Google Scholar 

  17. Cognet J.A., et al. Static curvature and flexibility measurements of DNA with microscopy. A simple renormalization method, its assessment by experiment and simulation. J Mol Biol 1999; 285(3): 997–1009.

    Article  PubMed  CAS  Google Scholar 

  18. Muzard G., Theveny B. and Revet B. Electron microscopy mapping of pBR322 DNA curvature. Comparison with theoretical models. Embo Journal 1990; 9(4): 1289–98.

    PubMed  CAS  Google Scholar 

  19. Zuccheri G., et al. Mapping the intrinsic curvature and flexibility along the DNA chain. Proc. Natl. Acad. Sci. U S A 2001; 98(6): 3074–3079.

    Article  PubMed  CAS  Google Scholar 

  20. Rivetti C., Walker C. and Bustamante C. Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. J. Mol. Biol. 1998; 280(1): 41–59.

    Article  PubMed  CAS  Google Scholar 

  21. Olson W.K. and Zhurkin V.B. Modeling DNA deformations. Curr. Opin. Struct. Biol. 2000; 10(3): 286–97.

    Article  PubMed  CAS  Google Scholar 

  22. Le Cam E., et al. Conformational analysis of a 139 base-pair DNA fragment containing a single-stranded break and its interaction with human poly(ADP-ribose) polymerase. Journal of Molecular Biology 1994; 235(3): 1062–71.

    Article  PubMed  Google Scholar 

  23. Akiyama T. and Hogan M.E. Structural analysis of DNA bending induced by tethered triple helix forming oligonucleotides. Biochemistry 1997; 36(8): 2307–15.

    Article  PubMed  CAS  Google Scholar 

  24. Rivetti C. and Codeluppi S. Accurate length determination of DNA molecules visualized by atomic force microscopy: evidence for a partial B-to A-form transition on mica. Ultramicroscopy 2001; 87(1–2): 55–66.

    PubMed  CAS  Google Scholar 

  25. Sanchez-Sevilla A., et al. Accuracy of AFM measurements of the contour length of DNA fragments adsorbed on mica in air and in aqueous buffer. Ultramicroscopy 2002; 92(3–4): 151–8.

    Article  PubMed  CAS  Google Scholar 

  26. Marek J., et al. Interactive measurement and characterization of DNA molecules by analysis of AFM images. Cytometry A 2005.

    Google Scholar 

  27. Ficarra E., et al. Automated DNA Fragments Recognition and Sizing through AFM Image Processing. IEEE Transactions on Medical Imaging, in publication.

    Google Scholar 

  28. Joanicot M. and Revet B. DNA conformational studies from electron microscopy. I. Excluded volume effect and structure dimensionality. Biopolymers 1987; 26(2): 315–26.

    Article  PubMed  CAS  Google Scholar 

  29. Haran T.E., Kahn J.D. and Crothers D.M. Sequence elements responsible for DNA curvature. Journal of Molecular Biology 1994; 244(2): 135–43.

    Article  PubMed  CAS  Google Scholar 

  30. Barbic A., Zimmer D.P. and Crothers D.M. Structural origins of adenine-tract bending. Proc Natl Acad Sci U S A 2003; 100(5): 2369–73.

    Article  PubMed  CAS  Google Scholar 

  31. Strahs D. and Schlick T. A-Tract bending: insights into experimental structures by computational models. J Mol Biol 2000; 301(3): 643–63.

    Article  PubMed  CAS  Google Scholar 

  32. Bolshoy A., et al. Curved DNA without A-A: experimental estimation of all 16 DNA wedge angles. Proc Natl Acad Sci U S A 1991; 88(6): 2312–6.

    Article  PubMed  CAS  Google Scholar 

  33. De Santis P., et al. Validity of the nearest-neighbor approximation in the evaluation of the electrophoretic manifestations of DNA curvature. Biochemistry 1990; 29(39): 9269–73.

    Article  PubMed  Google Scholar 

  34. Gorin A.A., Zhurkin V.B. and Olson W.K. B-DNA twisting correlates with base-pair morphology. J. Mol. Biol. 1995; 247(1): 34–48.

    Article  PubMed  CAS  Google Scholar 

  35. Calladine C.R., Mechanics of sequence-dependent stacking of bases in B-DNA. J Mol Biol 1982; 161(2): 343–52.

    Article  PubMed  CAS  Google Scholar 

  36. Yanagi K., Prive G.G. and Dickerson R.E. Analysis of local helix geometry in three BDNA decamers and eight dodecamers. J Mol Biol 1991; 217(1): 201–14.

    Article  PubMed  CAS  Google Scholar 

  37. Hunter C.A., Sequence-dependent DNA structure. The role of base stacking interactions. J Mol Biol 1993; 230(3): 1025–54.

    Article  PubMed  CAS  Google Scholar 

  38. Young M.A., et al. Analysis of local helix bending in crystal structures of DNA oligonucleotides and DNA-protein complexes. Biophys J 1995; 68(6): 2454–68.

    PubMed  CAS  Google Scholar 

  39. Hunter C.A., Sequence-dependent DNA structure. Bioessays 1996; 18(2): 157–62.

    Article  PubMed  CAS  Google Scholar 

  40. Gallego J., et al. “Molecular electrostatic potentials of DNA base pairs and drug chromophores in relation to DNA conformation and bisintercalation by quinoxaline antibiotics and ditercalinium.” in QSAR and Molecular Modeling; Concepts, Computational Tools and Applications, Sanz F. Giraldo J. and Manaut F.J.R. Eds. Barcelona, Prous Science Publishers, p. 274–281, 1995.

    Google Scholar 

  41. Travers A.A. The Structural Basis of DNA Flexibility. 2004: In press.

    Google Scholar 

  42. Boffelli D., et al. A theoretical method to predict DNA permutation gel electrophoresis from the sequence. FEBS Lett. 1992; 300(2): 175–8.

    Article  PubMed  CAS  Google Scholar 

  43. De Santis P., et al. Theoretical prediction of the gel electrophoretic retardation changes due to point mutations in a tract of SV40 DNA. Biophys. Chem. 1992; 42(2): 147–52.

    Article  Google Scholar 

  44. Anselmi C., et al. Dual role of DNA intrinsic curvature and flexibility in determining nucleosome stability. J. Mol. Biol. 1999; 286(5): 1293–301.

    Article  PubMed  CAS  Google Scholar 

  45. Anselmi C., et al. From the sequence to the superstructural properties of DNAs. Biophys. Chem. 2002; 95(1): 23–47.

    Article  PubMed  CAS  Google Scholar 

  46. Sobel E.S. and Harpst J.A. Effects of Na+ on the persistence length and excluded volume of T7 bacteriophage DNA. Biopolymers 1991; 31(13): 1559–64.

    Article  PubMed  CAS  Google Scholar 

  47. Hagerman P.J. Flexibility of DNA. Annual Review of Biophysics and Biophysical Chemistry 1988; 17: 265–86.

    Article  PubMed  CAS  Google Scholar 

  48. Shore D. and Baldwin R.L. Energetics of DNA twisting. I. Relation between twist and cyclization probability. Journal of Molecular Biology 1983; 170(4): 957–81.

    Article  PubMed  CAS  Google Scholar 

  49. Taylor W.H. and Hagerman P.J. Application of the method of phage T4 DNA ligasecatalyzed ring-closure to the study of DNA structure. II. NaCl-dependence of DNA flexibility and helical repeat. J Mol Biol 1990; 212(2): 363–76.

    Article  PubMed  CAS  Google Scholar 

  50. Frontali C., et al. An absolute method for the determination of the persistence length of native DNA from electron micrographs. Biopolymers 1979; 18(6): 1353–73.

    Article  PubMed  CAS  Google Scholar 

  51. Berge T., et al. Structural perturbations in DNA caused by bis-intercalation of ditercalinium visualised by atomic force microscopy. Nucleic Acids Res 2002; 30(13): 2980–6.

    Article  PubMed  CAS  Google Scholar 

  52. Scipioni A. et al. Sequence-dependent DNA curvature and flexibility from scanning force microscopy images. Biophys J. 2002; 83(5): 2408–18.

    PubMed  CAS  Google Scholar 

  53. Olson W.K. et al. DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc. Natl. Acad. Sci. USA 1998; 95(19): 11163–8.

    Article  PubMed  CAS  Google Scholar 

  54. Dickerson R.E. DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res., 1998. 26(8): p. 1906–26.

    Article  PubMed  CAS  Google Scholar 

  55. Dickerson R.E. and Chiu T.K. Helix bending as a factor in protein/DNA recognition. Biopolymers 1997; 44(4): 361–403.

    Article  PubMed  CAS  Google Scholar 

  56. Matsumoto A. and Olson W.K. Sequence-dependent motions of DNA: a normal mode analysis at the base-pair level. Biophys. J. 2002; 83(1): 22–41.

    PubMed  Google Scholar 

  57. McConnell K.J. and Beveridge D.L. Molecular dynamics simulations of B’-DNA: sequence effects on A-tract-induced bending and flexibility. J. Mol. Biol. 2001; 314(1): 23–40.

    Article  PubMed  CAS  Google Scholar 

  58. Olson W.K. NDB Reference Codes of Structures for Naked B-DNA. 1998.

    Google Scholar 

  59. Okonogi T.M., et al. Sequence-Dependent Dynamics of Duplex DNA: The Applicability of a Dinucleotide Model. Biophys J. 2002; 83(6): 3446–59.

    PubMed  CAS  Google Scholar 

  60. Richmond T.J. and Davey C.A. The structure of DNA in the nucleosome core. Nature 2003; 423(6936): 145–50.

    Article  PubMed  CAS  Google Scholar 

  61. Vogel V., et al. Structural insights into the mechanical regulation of molecular recognition sites. Trends Biotechnol. 2001; 19(10): 416–23.

    Article  PubMed  CAS  Google Scholar 

  62. Leckband D., Nanomechanics of adhesion proteins. Curr Opin Struct Biol 2004; 14(5): 524–30.

    Article  PubMed  CAS  Google Scholar 

  63. Bustamante C., et al. Mechanical processes in biochemistry. Annu Rev Biochem 2004; 73: 705–48.

    Article  PubMed  CAS  Google Scholar 

  64. Bustamante C., et al. Entropic elasticity of lambda-phage DNA. Science 1994; 265(5178): 1599–600.

    PubMed  CAS  Google Scholar 

  65. Oesterhelt F., Rief M. and Gaub H. Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water. New Journal Of Physics 1999; 1(6): 1–11.

    Google Scholar 

  66. Smith S.B., Cui Y. and Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 1996; 271(5250): 795–9.

    PubMed  CAS  Google Scholar 

  67. Grandbois M., et al. How strong is a covalent bond? Science 1999; 283(5408): 1727–30.

    Article  PubMed  CAS  Google Scholar 

  68. Carrion-Vazquez M., et al. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog Biophys Mol Biol 2000; 74(1–2): 63–91.

    Article  PubMed  CAS  Google Scholar 

  69. Rief M., et al. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 1997; 276(5315): 1109–12.

    Article  PubMed  CAS  Google Scholar 

  70. Oberhauser A.F., et al. The molecular elasticity of the extracellular matrix protein tenascin. Nature 1998; 393(6681): 181–5.

    Article  PubMed  CAS  Google Scholar 

  71. Hamill S.J., Meekhof A.E. and Clarke J. The effect of boundary selection on the stability and folding of the third fibronectin type III domain from human tenascin. Biochemistry 1998; 37(22): 8071–9.

    Article  PubMed  CAS  Google Scholar 

  72. Li H., et al. Atomic force microscopy reveals the mechanical design of a modular protein. Proc Natl Acad Sci U S A 2000; 97(12): 6527–31.

    Article  PubMed  CAS  Google Scholar 

  73. Best R.B., et al. Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation. Biophys J. 2001; 81(4): 2344–56.

    Article  PubMed  CAS  Google Scholar 

  74. Li H., et al. Multiple conformations of PEVK proteins detected by single-molecule techniques. Proc Natl Acad Sci U S A 2001; 98(19): 10682–6.

    Article  PubMed  CAS  Google Scholar 

  75. Brockwell D.J., et al. Pulling geometry defines the mechanical resistance of a beta-sheet protein. Nat Struct Biol 2003; 10(9): 731–7.

    Article  PubMed  CAS  Google Scholar 

  76. Carrion-Vazquez M., et al. The mechanical stability of ubiquitin is linkage dependent. Nat Struct Biol 2003; 10(9): 738–43.

    Article  PubMed  CAS  Google Scholar 

  77. Evans E., Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 2001; 30: 105–28.

    Article  PubMed  CAS  Google Scholar 

  78. Dettmann W., et al. Differences in zero-force and force-driven kinetics of ligand dissociation from beta-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy. Arch Biochem Biophys 2000; 383(2): 157–70.

    Article  PubMed  CAS  Google Scholar 

  79. Rief M., Fernandez, J.M. and Gaub H.E. Elastically Coupled Two-Level Systems as a Model for Biopolymer Extensibility. Physical Review Letters 1997; 81(21): 4764–4767.

    Article  Google Scholar 

  80. Makarov D.E., Hansma P.K. and Metiu H. Kinetic Monte Carlo simulation of titin unfolding. Journal of Chemical Physics 2002; 114(21): 9663–9673.

    Article  CAS  Google Scholar 

  81. Bustanji Y. and Samorì B. The mechanical properties of human angiostatin can be modulated by means of its disulfide bonds: A single-molecule force-spectroscopy study. Angewandte Chemie International Edition 2002; 41(9): 1546–1548.

    Article  CAS  Google Scholar 

  82. Rief M., et al. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol 1999; 286(2): 553–61.

    Article  PubMed  CAS  Google Scholar 

  83. Schwaiger I., et al. The myosin coiled-coil is a truly elastic protein structure. Nat Mater 2002; 1(4): p. 232–5.

    Article  PubMed  CAS  Google Scholar 

  84. Viani M.D., et al. Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope design for small cantilevers. Rev Sci Instr 1999; 70(11): 4300–4303.

    Article  CAS  Google Scholar 

  85. Samori B., Zuccheri G. and Baschieri P. Protein Unfolding and Refolding Under Force: Methodologies for Nanomechanics. Chemphyschem 2005; 6(1): 29–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Sandal, M., Zuccheri, G., Samorì, B. (2005). Inside the Small Length and Energy Scales of the World of the Individual Biological Molecule. In: Evangelista, V., Barsanti, L., Passarelli, V., Gualtieri, P. (eds) From Cells to Proteins: Imaging Nature across Dimensions. NATO Security through Science Series. Springer, Dordrecht . https://doi.org/10.1007/1-4020-3616-7_7

Download citation

Publish with us

Policies and ethics