Skip to main content

Imaging, Measuring and Manipulating Biological Matter from the Millimeter to Nanometer Scale

  • Conference paper
From Cells to Proteins: Imaging Nature across Dimensions

Part of the book series: NATO Security through Science Series ((NASTB))

  • 852 Accesses

Abstract

Visualizing the structure and dynamics of proteins, molecular assemblies and cellular components is usually key to our understanding of biological function. Here, we discuss the major approaches in imaging, measuring, and manipulating biological matter ranging from the millimeter to the nanometer scale. Relevant biomedical applications at different length scales are chosen to discuss the various aspects of data acquisition with multiple modalities including confocal laser scanning microscopy, electron microscopy and scanning force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  1. Pawley, J.B.. The Handbook of Biological Confocal Microscopy. New York: Plenum, 1990

    Google Scholar 

  2. Boyde A. Bibliography on confocal microscopy and its applications. Scanning 1994; 16: 33–56.

    Google Scholar 

  3. Lichtman J.W. Confocal microscopy. Scientific American 1994; 271: 40–45.

    Article  Google Scholar 

  4. Wilson, T. and Sheppard, C. Theory and Practice of Scanning Optical Microscopy. London: Academic Press, 1984.

    Google Scholar 

  5. Kro, S.J., Toyoshima Y.Y., Uyeda T.Q.R. and Spudich J.A. Assays for actin sliding movement over myosin-coated surfaces. Methods in Enzymology 1991; 196: 399–416.

    Article  Google Scholar 

  6. Rayment I. and Holden H.M. The 3Dimensional structure of a molecular motor. Trends in Biochemical Sciences 1994; 19: 129–134.

    Article  PubMed  CAS  Google Scholar 

  7. Kull F.J., Sablin E.P., Lau R., Fletterich R.J. and Vale R.D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 1996; 380: 550–555.

    Article  PubMed  CAS  Google Scholar 

  8. Rayment I., Holden H.M., Whittaker M., Yohn C.B., Lorenz M., Holmes K.C. and Milligan R.A. Structure of the actin-myosin complex and its implications for muscle contraction. Science 1993; 261: 58–65.

    PubMed  CAS  Google Scholar 

  9. Inoué, S. Video Microscopy. New York: Plenum Press,. 1986.

    Google Scholar 

  10. Finer J.T., Simmons R.M. and Spudich J.A. Single myosin molecule mechanics-piconewton forces and nanometer steps. Nature 1994; 368: 113–119.

    Article  PubMed  CAS  Google Scholar 

  11. Huxley H.E. A personal view of muscle and motility mechanisms. Annual Review of Physiology 1996; 58: 1–19.

    Article  PubMed  CAS  Google Scholar 

  12. Warrick H.M. and Spudich J.A. Myosin structure and function in cell motility. Annual Review of Cell Biology 1987; 3: 379–421.

    Article  PubMed  CAS  Google Scholar 

  13. Binning G., Quate C.F., and Gerber C. The Atomic Force Microscope. Phys. Ref. Lett. 1986; 56: 930–933.

    Article  Google Scholar 

  14. Stoffler D., Goldie K.N., Feja B., and Aebi U. Calcium-Mediated Structural Changes of Native Nuclear Pore Complexes Monitored by Time-Lapse Atomic Force Microscopy. J. Mol. Biol. 1999; 287:741–752.

    Article  PubMed  CAS  Google Scholar 

  15. Stolz M., Stoffler D., Aebi U., and Goldsbury C. Monitoring Biomolecular Interactions by Time-Lapse Atomic Force Microscopy. J. Struct. Biol. 2000; 131:171–180.

    Article  PubMed  CAS  Google Scholar 

  16. Moy V.T., Florin E.L. and Gaub H.E. Intermolecular forces and energies between ligands and receptors. Science 1994; 266: 257–259.

    PubMed  CAS  Google Scholar 

  17. Florin E.-L., Vincent T.M. and Gaub H.E. Adhesion forces between individual ligand-receptor pairs. Science 1994; 264: 415–417.

    PubMed  CAS  Google Scholar 

  18. Lee G.U., Chrisey L.A. and Colton R.J. Direct measurements of the forces between complementary strands of DNA. Science 1994; 266: 771–773.

    PubMed  CAS  Google Scholar 

  19. Dammer, U., Popescu, O., Wagner, P., Anselmetti, D., Güntherodt, H.-J. and Misevic, G.N. (1995). Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science 267, 1173–1175.

    PubMed  CAS  Google Scholar 

  20. Dammer U., Hegner M., Anselmetti D., Wagner P., Dreier M., Huber W. and Güntherodt H.-J. Specific antigen/antibody reactions measured by force microscopy. Biophys J 1996; 70: 2437–2441.

    PubMed  CAS  Google Scholar 

  21. Stoffler D., Feja B., Fahrenkrog B., Walz J., Typke D., and Aebi U. Cryo electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J. Mol Biol. 2003; 328: 119–130.

    Article  PubMed  CAS  Google Scholar 

  22. Stolz M., Raiteri R., Daniels A.U., VanLandingham M.R., Baschong W., and Aebi U. Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophysical J. 2004;86: 3269–3283.

    Article  CAS  Google Scholar 

  23. Stolz M., Imer R., Staufer U., and Aebi U. Development of an arthroscopic atomic force microscope. Bioworld (www.bioworld.ch) 2003; 3:2–4.

    Google Scholar 

  24. Engel A. and Colliex C. Application of scanning transmission electron microscopy to the study of biological structure. Current Opinion in Biotechnology 1993; 4: 403–411.

    Article  PubMed  CAS  Google Scholar 

  25. Reichelt R., Holzenburg A., Buhle E.L., Jarnik M., Engel A. and Aebi U. Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J Cell Biol 1990; 110: 883–894.

    Article  PubMed  CAS  Google Scholar 

  26. Müller S.A., Goldie K.N., Bürki R., Häring R. and Engel A. Factors influencing the precision of quantitative scanning transmission electron microscopy. Ultramicroscopy 1992; 46: 317–334.

    Article  Google Scholar 

  27. Bremer A., Henn C., Goldie K.N., Engel A., Smith P.R. and Aebi U. Towards atomic interpretation of F-actin filament 3-dimensional reconstructions. J Mol Biol 1994; 742:683–700.

    Article  Google Scholar 

  28. Bremer A., Millonig R.C., Sütterlin R., Engel A., Pollard T.D. and Aebi U. The structural basis for the intrinsic disorder of the actin filament: The “lateral slipping” model. J Cell Biol 1991; 115: 689–703.

    Article  PubMed  CAS  Google Scholar 

  29. Steinmetz M.O., Stoffler D., Müller S.A., Jahn W., Wolpensinger B., Goldie K.N., Engel A., Faulstich H., and Aebi U. (). Evaluating atomic models of F-actin with an undecagold-tagged phalloidin derivative. J Mol Biol 1998; 276: 1–6.

    Article  PubMed  CAS  Google Scholar 

  30. Walz T., Smith B.L., Zeidel M.L., Engel A. and Agre P. Biologically active 2Dimensional crystals of aquaporin CHIP. J Biological Chemistry 1994; 269: 1583–1586.

    CAS  Google Scholar 

  31. Henderson R., Baldwin J.M., Ceska T.A., Zemlin F., Beckmann E. and Downing K.H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy. J Mol Biol 1990; 213: 899–929.

    Article  PubMed  CAS  Google Scholar 

  32. Dolder M., Engel A. and Zulauf M. The micelle to vesicle transition of lipids and detergents in the presence of a membrane protein: towards a rationale for 2D crystallization. FEBS Letters 1996; 382: 203–208.

    Article  PubMed  CAS  Google Scholar 

  33. Costello M. J., McIntosh T. J. and Robertson J. D. Distribution of gap junctions and square array junctions in the mammalian lens. Invest. Ophthalmol. Vis. Sci. 1989; 30:975–989.

    PubMed  CAS  Google Scholar 

  34. Gonen T., Sliz P. Kistler, J. Cheng, Y. and Walz T. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 2004; 429: 193–197.

    Article  PubMed  CAS  Google Scholar 

  35. Sanner M.F. “Using the Python Programming Language for Bioinformatics.” Encyclopedia of Genomics, Proteomics and Bioinformatics. Addision-Wesley, John Wiley & sons, Ltd. (in press) 2005.

    Google Scholar 

  36. Sanner M.F.A component-based software environment for visualizing large macromolecular assemblies. Structures, special issue in visualization, simulation and representation of biological complexes. (in press) 2005.

    Google Scholar 

  37. Lutz M. Programming Python 2 nd Edition. Sebastapol, CA: O’Reilly & Associates, Inc., ISBN 0-596-00085-5. www.python.org 2001

    Google Scholar 

  38. Sanner M.F. Python: A Programming Language for Software Integration and Development. J. Mol. Graphics Mod. 1999; 17: 57–61.

    CAS  Google Scholar 

  39. Sanner M.F., Stoffler D., and Olson A.J. ViPEr, a Visual Programming Environment for Python. In Proceedings of the 10th International Python conference. 103–115. February 4–7, 2002. ISBN 1-930792-05-0.

    Google Scholar 

  40. Stoffler D., Coon S.I, Huey R., Olson A.J., and Sanner M.F. Integrating Biomolecular Analysis and Visual Programming: Flexibility and Interactivity in the Design of Bioinformatics Tools. Proceedings of the Thirty-Sixth Annual Hawaii International Conference on System Sciences (CD/ROM), January 6–9, 2003, Computer Society Press, 2003.

    Google Scholar 

  41. Stoffler D., Sanner M.F., Morris G.M., Olson A.J., and Goodsell D.S. Evolutionary analysis of HIV-1 protease inhibitors: Methods for design of inhibitors that evade resistance. Proteins 2002; 48: 53–74.

    Article  CAS  Google Scholar 

  42. SciPy Python for Scientific Computing Workshop. CalTech, Pasadena, Sep 2–3 2004. www.scipy.org/wikis/scipy04

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Stoffler, D., Aebi, U. (2005). Imaging, Measuring and Manipulating Biological Matter from the Millimeter to Nanometer Scale. In: Evangelista, V., Barsanti, L., Passarelli, V., Gualtieri, P. (eds) From Cells to Proteins: Imaging Nature across Dimensions. NATO Security through Science Series. Springer, Dordrecht . https://doi.org/10.1007/1-4020-3616-7_6

Download citation

Publish with us

Policies and ethics