Skip to main content

Cell Membrane Specializations as Revealed by the Freeze-Fracture Technique

  • Conference paper
From Cells to Proteins: Imaging Nature across Dimensions

Part of the book series: NATO Security through Science Series ((NASTB))

Abstract

Two examples of membrane specializations are here reported as revealed by thin sections and freeze-fracture replicas. They are involved in intercellular junctions (tight junctions of urochordates and septate junctions of insects) and ciliary specializations of the apical corona of rotifers. The appearance of these specializations is described and their functional role is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. Branton D. Fracture face of frozen membranes. Proc Nat Acad Sci 1966; 55: 1048–1056

    Article  PubMed  CAS  Google Scholar 

  2. Fawcett D.W. “Junctional specializations.” In The Cell. Fawcett D.W ed., Philadelphia: W.B. Saunders Comp 1981

    Google Scholar 

  3. Revel J.P., Karnovsky M.J. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol 1975; 33: 3–7

    Google Scholar 

  4. Lane N.J., Skaer H.leB. Intercellular junctions in insect tissues. Adv Insect Physiol 1980; 15; 35–213

    Google Scholar 

  5. Lane N.J. Tight junctions in arthropod tissues. Int Rev Cytol 1981; 73: 243–318

    Article  Google Scholar 

  6. Lane N.J., Dallai R., Martinucci G.B., Burighel P. “Electron microscopic structure and evolution of epithelial junctions.” In Molecular mechanisms of epithelial cell junctions: from the development to disease. Citi S. ed. R.G. Landes Co., Bionedical Publ. 1994

    Google Scholar 

  7. Tsukita S., Furuse M. Claudin-based barrier in simple and stratified cellular sheets. Curr Opin Cell Biol 2002; 14: 531–536

    Article  PubMed  CAS  Google Scholar 

  8. Furuse M., Hata M., Furuse K., Yoshida Y., Haratake A., Sugitani Y., Noda T., Kubo A., Tsukita S. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficiengt mice. J Cell Biol 2002; 156: 1099–1111.

    Article  PubMed  CAS  Google Scholar 

  9. Roh M.H., Makarova O., Liu C.-J., Shin K.Y., Lee S., Laurinec S., Goyal M., Wiggins R., Magolis B. The Maguk protein, Pls1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost. J Cell Biol 2002; 157: 161–172

    Article  PubMed  CAS  Google Scholar 

  10. Martinucci G.B., Dallai R., Burighel P., Lane N.J. Different functions of tight junctions in the ascidian branchial basket. Tissue Cell 1988; 20: 119–132

    Article  PubMed  CAS  Google Scholar 

  11. Dallai R., Xué L. Cells junctions in the gut of Protura. Tissue Cell 1992; 24: 51–59

    Article  Google Scholar 

  12. Dallai R., Lane N.J., Bigliardi E. Intercellular junctions in myriapods. Tissue Cell 1990; 22: 359–369

    Article  PubMed  CAS  Google Scholar 

  13. Lane N.J., Dallai R., Ashhurst D.E. “Structural macromolecules of the cell membranes and the extracellular matrices of the insect midgut.” In The biology of the insect midgut. Lehane M.J. and Billingsley P.F. eds. Chapman & Hall, London. 1996

    Google Scholar 

  14. Noirot C., Noirot-Timothée C. “Cell associations.” In Microscopic anatomy of Invertebrates. Vol. 11A: Insecta. Harrison F.W. and Locke M. eds. Wiley-Liss Inc. 1998

    Google Scholar 

  15. Skaer H.leB., Maddrell S.H.P., Harrison J.B. The permeability properties of septata junctions in Malpighian tubules of Rhodnius. J Cell Sci 1987; 88: 251–265

    PubMed  Google Scholar 

  16. Lane N.J., Flores V. Actin filaments are associated with the septate junctions of invertebrates. Tissue Cell, 1988; 20: 211–217

    Article  PubMed  CAS  Google Scholar 

  17. Dallai R., Burighel P., Martinucci G.B., Maci R., Camatini M. Actin localization at the tight junction level in invertebrate ciliated epithelia. Tissue Cell 1989; 21: 37–46

    Article  PubMed  CAS  Google Scholar 

  18. Dallai R., Lupetti P., Lane N.J. The organization of actin in the apical region of insect midgut cells after deep-etching. J Struct Biol 1998; 122: 283–292

    Article  PubMed  CAS  Google Scholar 

  19. Dallai R., Trastullo E., Lupetti P., Mencarelli C. Unusual cytoskeletal association with the intercellular septate junction in the midgut of Collembola. Int J Insect Morphol Embryol 1993; 22: 473–486

    Article  Google Scholar 

  20. Colombo A., Bonfanti P., Camatini M.. Actin, ß-actinin, and vinculin are associated with septate junctions in Insecta. Cell Motil Cytoskel 1993; 26: 205–213

    Article  CAS  Google Scholar 

  21. Knust E., Bossinger O. Composition and formation of intercellular junctions in epithelial cells. Science 2002; 298: 1955–1959

    Article  PubMed  CAS  Google Scholar 

  22. Burighel P., Martinucci G.B., Lane N.J., Dallai R. Junctional complexes of the branchia and gut of the tunicate, Pyrosoma atlanticum (Pyrosomatida, Thaliacea). Cell Tissue Res 1992; 267: 357–364

    Article  Google Scholar 

  23. van Meer G., Simons K. The function of tight junctions in maintaining differences in lipid composition between the apical and basolateral cell surface domains of MDCK cells. EMBO J 1986; 5: 1455–1464

    PubMed  Google Scholar 

  24. Wood R.L. The septate junction limits mobility of lipophilic markers in pasma membranes of Hydra vulgaris (attenuata). Cell Tissue Res 1990; 259: 61–66

    Article  Google Scholar 

  25. van Meer G., Gumbiner B., Simons K. The tight junction does not allow lipid molecules to diffuse from one epithelial cell to the next. Nature (Lond.) 1986; 322: 639–641

    Article  PubMed  Google Scholar 

  26. Mandel L.J., Bacallao R., Zampighi G. Uncoupling of the molecular “fence” and paracellular “gate” functions in epithelial tight junctions. Nature 1993; 361: 552–555

    Article  PubMed  CAS  Google Scholar 

  27. Dentler W.L. “Linkages between microtubules and membranes in cilia and flagella.” In Ciliary and flagellar membranes. Bloodgood R.A. ed. Plenum Press, New York. 1990

    Google Scholar 

  28. Gilula N.B., Satir P. The ciliary necklace. A ciliary membrane specialization. J. Cell Biol 1972; 53: 494–509.

    Article  PubMed  CAS  Google Scholar 

  29. Plattner H. Ciliary granule plaques: Membrane intrcalated particle aggregates associated with Ca++ binding sites in Paramecium. J Cell Sci 1975; 18: 257–269

    PubMed  CAS  Google Scholar 

  30. Dentler W.L. Cilia and flagella. Int Rev Cytol (suppl) 1987; 17: 391–456

    Google Scholar 

  31. Hill F.G., Outka D.E. The structure and origin of mastigonemes in Ochromonas minute and Monas sp. J. Protozool 1974; 21: 299–312

    PubMed  CAS  Google Scholar 

  32. Afzelius B.A. The fine structure of cilia from ctenophore swimming plates. J Biophys Biochem Cytol 1961; 9: 383–394

    Article  PubMed  CAS  Google Scholar 

  33. Tamm S.L., Tamm S. Visualization of changes in ciliary tip configuration caused by sliding displacement of microtubules in macrocilia of the ctenophore Beroe. J Cell Sci 1985; 79: 161–179

    PubMed  CAS  Google Scholar 

  34. Clément P., Wurdak E. “Rotifera.” In Microscopic anatomy of invertebrates Harrison F.W. and Ruppert E.E. eds. Wiley, New York. 1991

    Google Scholar 

  35. Dallai R., Lupetti P. Ciliary and microvillar specializations in the corona of Brachionus plicatilis (Rotifera, Monogononta) J Submicrosc Cytol Pathol 1994; 26: 497–506

    Google Scholar 

  36. Pitelka D.R. “Basal bodies and root structures.” In Cilia and Flagella. Sleigh M.A. ed. Academic Press, London-New York. 1974

    Google Scholar 

  37. Dute R., Kung C. Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia. J Cell Biol 1978; 78: 451–464

    Article  PubMed  CAS  Google Scholar 

  38. Torikata_ C. The ciliary necklace. A transmission electron micfroscopic study using tannic acid-containing fixation. J Ultrastruct Mol Struct Res 1988; 101: 210–214

    Article  PubMed  CAS  Google Scholar 

  39. Roperto F., Langella M., Oliva G., Restucci B., Varricchio E., Dallai R. Ultrastructural and freeze fracture cilia morphology of trachea epithelium in apparently healthy small ruminants. J Submicrosc Cytol Pathol 1998; 30: 65–69

    PubMed  CAS  Google Scholar 

  40. Bardele C.F. Functional and phylogenetic aspects of the ciliary membrane: a comparative freeze-fracture study. Biosystems 1981; 14: 403–421.

    Article  PubMed  CAS  Google Scholar 

  41. Dallai R., Burighel P., Martinucci G.B. Ciliary differentiation in the branchial stigmata of the ascidian Diplosoma listeriam. J Submicrosc Cytol 1985; 17: 381–390

    Google Scholar 

  42. Martinucci G.B., Dallai R., Burighel P. A comparative study of ciliary differentiations in the branchial stigmata of ascidians. Tissue Cell 1987; 19: 251–263

    Article  PubMed  CAS  Google Scholar 

  43. Rosenbaum J.L., Cole D.G., Diener D.R. Intraflagellar transport: The eyes have it. J Cell Biol 1999; 144: 385–388

    Article  PubMed  CAS  Google Scholar 

  44. Kozminski K.G., Johnson K.A., Forscher P., Rosenbaum J.L. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci USA 1993; 90: 5519–5523

    Article  PubMed  CAS  Google Scholar 

  45. Kozminski K.G., Beech P.L., Rosednbaum J.L. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J Cell Biol 1995; 131: 1517–1527

    Article  PubMed  CAS  Google Scholar 

  46. Kozminski K.G., Forscher P., Rosenbaum J.L. Three flagellar motilities in Chlamydomonas unrelated to flagellar beating. Cell Motil Cytoskel 1998; 39: 347–348

    CAS  Google Scholar 

  47. Ringo D.L. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol 1967; 33: 543–571

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Dallai, R. (2005). Cell Membrane Specializations as Revealed by the Freeze-Fracture Technique. In: Evangelista, V., Barsanti, L., Passarelli, V., Gualtieri, P. (eds) From Cells to Proteins: Imaging Nature across Dimensions. NATO Security through Science Series. Springer, Dordrecht . https://doi.org/10.1007/1-4020-3616-7_5

Download citation

Publish with us

Policies and ethics