Skip to main content

Quantum Dots, a New Tool for Real-Time in Vivo Imaging

  • Conference paper
  • 867 Accesses

Part of the book series: NATO Security through Science Series ((NASTB))

Abstract

Semiconductor nanocrystals, or quantum dots (QDs), are exciting new fluorescent probes useful in imaging at the single molecule to the whole animal level. Some recent applications of QDs are reviewed here and the reader is directed to the original literature for further details.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. Jaiswal J.K., and Simon S.M. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 2004; 14: 497–504.

    Article  PubMed  CAS  Google Scholar 

  2. Lidke D., and Arndt-Jovin D. Imaging takes a quantum leap. Physiology 2004; 19: 322–325.

    Article  PubMed  CAS  Google Scholar 

  3. Smith A., and Nie S. Chemical analysis and cellular imaging with quantum dots. Analyst. 2004; 129: 672–677.

    Article  PubMed  CAS  Google Scholar 

  4. Dabbousi B.O., Rodriguezviejo J., Mikulec F.V., Heine J.R., Mattoussi H., Ober R., Jensen K.F., and Bawendi M.G. (Cdse)Zns core-shell quantum dots-synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 1997; 101: 9463–9475.

    Article  CAS  Google Scholar 

  5. Alivisatos A.P. Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 1996; 100: 13226–13239.

    Article  CAS  Google Scholar 

  6. Bruchez M., Moronne M., Gin P., Weiss S., and Alivisatos A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998; 281: 2013.

    Article  PubMed  CAS  Google Scholar 

  7. Mattheakis L.C., Dias J.M., Choi Y.-J., Gong, J. Bruchez M.P., Liu J., and Wang E. Optical coding of mammalian cells using semiconductor quantum dots. Anal Biochem 2004; 327: 200–208.

    Article  PubMed  CAS  Google Scholar 

  8. Bailey R., Strausburg J., and Nie S. A new class of far-red and near-infrared biological labels based on alloyed semiconductor quantum dots. J Nanosci Nanotechnol 2004; 4: 569–574.

    Article  PubMed  CAS  Google Scholar 

  9. Gao X., Y C., Levenson R., Chung L., and Nie S., In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004; 22: 969–976.

    Article  PubMed  CAS  Google Scholar 

  10. Ballou B., Lagerholm B.C., Ernst L.A., Bruchez M.P., and Waggoner A.S. Noninvasive imaging of quantum dots in mice. Bioconjug Chem 2004; 15: 79–86.

    Article  PubMed  CAS  Google Scholar 

  11. Dubertret B., Skourides P., Norris D.J., Noireaux V., Brivanlou A.H., and Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002; 298: 1759–1762.

    Article  PubMed  CAS  Google Scholar 

  12. Kim S., Lim Y.T., Soltesz E.G., De Grand A.M., Lee J., Nakayama A., Parker J.A., Mihaljevic T., Laurence R.G., Dor D.M., Cohn L.H., Bawendi M.G., and Frangioni J.V. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 2004; 22: 93–97.

    Article  PubMed  CAS  Google Scholar 

  13. Wu X., Liu H., Liu J., Haley K.N., Treadway J.A., Larson J.P., Ge N., Peale F., and Bruchez M.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003; 21: 41–46.

    Article  PubMed  CAS  Google Scholar 

  14. Jaiswal J.K., Mattoussi H., Mauro J.M., and Simon S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 2003; 21: 47–51.

    Article  PubMed  CAS  Google Scholar 

  15. Lidke D.S., Nagy P., Heintzmann R., Arndt-Jovin D.J., Post J.N., Grecco H.E., Jares-Erijman E.A., and Jovin T.M. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 2004; 22: 198–203.

    Article  PubMed  CAS  Google Scholar 

  16. Clapp A., Medintz I., Mauro J., Fisher B., Bawendi M., and H M. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc 2004; 126: 301–310.

    PubMed  CAS  Google Scholar 

  17. Medintz I., Clapp A., Mattoussi H., Goldman E., Fisher B., and Mauro J. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2003; 2: 630–638.

    Article  PubMed  CAS  Google Scholar 

  18. Grecco H., Lidke K., Heintzmann R., Lidke D., Spagnuolo C., Martinez O., Jares-Erijman E., and Jovin T. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells. Microsc. Res. Technique 2004; 65: 169–179.

    Article  CAS  Google Scholar 

  19. Murase K., Fujiwara T., Umemura Y., Suzuki K., Iino R., Yamashita H., Saito M., Murakoshi H., Ritchie K., and Kusumi A. Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys. J. 2004; 86: 4075–4093.

    Article  PubMed  CAS  Google Scholar 

  20. Dahan M., Levi S., Luccardini C., Rostaing P., Riveau B., and Triller A. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 2003; 302: 442–445.

    Article  PubMed  CAS  Google Scholar 

  21. Nisman R., Dellaire G., Ren Y., Li R., and Bazett-Jones D.P. Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J Histochem Cytochem 2004; 52: 13–18.

    PubMed  CAS  Google Scholar 

  22. Akerman M., Chan W., Laakkonen P., Bhatia S., and Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 2002; 99: 12617–12621.

    Article  PubMed  CAS  Google Scholar 

  23. Larson D.R., Zipfel W.R., Williams R.M., Clark S.W., Bruchez M.P., Wise F.W., and Webb W.W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003; 300: 1434–1436.

    Article  PubMed  CAS  Google Scholar 

  24. Ruoslahti E. Vascular zip codes in angiogenesis and metastasis. Biochem Soc Trans 2004; 32: 397–402.

    Article  PubMed  CAS  Google Scholar 

  25. Gao X., and Nie S. Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry. Anal Chem 2004; 76: 2406–2410.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Arndt-Jovin, D.J., Jovin, T.M., Lidke, D.S. (2005). Quantum Dots, a New Tool for Real-Time in Vivo Imaging. In: Evangelista, V., Barsanti, L., Passarelli, V., Gualtieri, P. (eds) From Cells to Proteins: Imaging Nature across Dimensions. NATO Security through Science Series. Springer, Dordrecht . https://doi.org/10.1007/1-4020-3616-7_12

Download citation

Publish with us

Policies and ethics