Skip to main content

Fluorescence Resonance Energy Transfer (FRET) and Fluorescence Lifetime Imaging Microscopy (FLIM)

  • Conference paper

Part of the book series: NATO Security through Science Series ((NASTB))

Abstract

Current approaches and developments in the field of microscopy based on determinations of Fluorescence (Förster) Resonance Energy Transfer (FRET) and Fluorescence Lifetime (FLIM) are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. Lakowicz J.R. Principles of Fluorescence Spectroscopy. Kluwer Academic/Plenum, New York, 1999,.

    Google Scholar 

  2. Periasamy A. and Day R.N., ed., Molecular Protein Imaging in Cells and Tissues: FRET Microscopy. Oxford University Press, in press.

    Google Scholar 

  3. Valeur B., Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim, 2002.

    Google Scholar 

  4. McNamara G., Multi-Probe Microscopy, http://home.earthlink.net/∼mpmicro/, 2005.

    Google Scholar 

  5. Jares-Erijman E.A. and Jovin T.M. FRET imaging. Nat. Biotechnol. 2003; 21: 1387–1395.

    Article  PubMed  CAS  Google Scholar 

  6. Suhling K., French P.M. and Phillips D. Time-resolved fluorescence microscopy. Photochem. Photobiol. Sci. 2005; 4: 13–22.

    Article  PubMed  CAS  Google Scholar 

  7. Jovin T.M., Lidke D.S. and Post J.N. Dynamic and static anisotropy in biological microscopy (rFLIM and emFRET). SPIE Proc. 2004; 5323: 1–12.

    CAS  Google Scholar 

  8. Lidke D.S., Nagy P., Barisas B.G., Heintzmann R., Post J.N., Lidke K.A., Clayton A.H.A., Arndt-Jovin D.J. and Jovin T.M. Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). Biochem. Soc. Trans. 2003; 31: 1020–1027.

    PubMed  CAS  Google Scholar 

  9. Zal T. and Gascoigne N.R. Using live FRET imaging to reveal early protein-protein interactions during T cell activation. Curr. Opin. Immunol. 2004; 16: 418–427.

    Article  PubMed  CAS  Google Scholar 

  10. Wahl M., Koberling F., Patting M., Rahn H. and Erdmann R. Time-resolved confocal fluorescence imaging and spectrocopy system with single molecule sensitivity and submicrometer resolution. Curr. Pharm. Biotechnol. 2004;5: 299–308.

    Article  PubMed  CAS  Google Scholar 

  11. Schneckenburger H., Wagner M., Kretzschmar M., Strauss W.S. and Sailer R. Laser-assisted fluorescence microscopy for measuring cell membrane dynamics. Photochem. Photobiol. Sci. 2004; 3: 817–822.

    Article  PubMed  CAS  Google Scholar 

  12. Neher R.A. and Neher E. Applying spectral fingerprinting to the analysis of FRET images. Microsc. Res. Tech. 2004; 64: 185–195.

    Article  PubMed  Google Scholar 

  13. Gu Y., Di W.L., Kelsell D.P. and Zicha D. Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing. J. Microsc. 2004; 215: 162–173.

    Article  PubMed  CAS  Google Scholar 

  14. Ecker R.C., de Martin R., Steiner G.E. and Schmid J.A. Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis. Cytometry A 2004; 59: 172–181.

    Article  PubMed  CAS  Google Scholar 

  15. Dumas D., Gaborit N., Grossin L., Riquelme B., Gigant-Huselstein C., De Isla N., Gillet P., Netter P. and Stoltz J.F. Spectral and lifetime fluorescence imaging microscopies: new modalities of multiphoton microscopy applied to tissue or cell engineering. Biorheology 2004; 41: 459–467.

    PubMed  CAS  Google Scholar 

  16. Trugnan G., Fontanges P., Delautier D. and Ait-Slimane T. FRAP, FLIP, FRET, BRET, FLIM, PRIM…new techniques for a colourful life. Med. Sci. 2004; 20: 1027–1034.

    Google Scholar 

  17. Peter M. and Ameer-Beg S.M. Imaging molecular interactions by multiphoton FLIM. Biol. Cell. 2004; 96: 231–236.

    Article  PubMed  CAS  Google Scholar 

  18. Peter M., Ameer-Beg S.M., Hughes M.K., Keppler M.D., Prag S., Marsh M., Vojnovic B. and Ng T. Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys. J., in press.

    Google Scholar 

  19. Becker W., Bergmann A., Hink M.A., Konig K., Benndorf K. and Biskup C. Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc. Res. Tech. 2004; 63: 58–66.

    Article  PubMed  CAS  Google Scholar 

  20. Clayton A.H., Hanley Q.S. and Verveer P.J. Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data. J. Microsc. 2004; 213: 1–5.

    Article  PubMed  CAS  Google Scholar 

  21. Van Munster E.B. and Gadella T.W. Jr. phiFLIM: a new method to avoid aliasing in frequency-domain fluorescence lifetime imaging microscopy. J. Microsc. 2004; 213: 29–38.

    Article  PubMed  Google Scholar 

  22. Ulrich V., Fischer P., Riemann I. and Konigt K. Compact multiphoton/single photon laser scanning microscope for spectral imaging and fluorescence lifetime imaging. Scanning 2004; 26: 217–225.

    Article  PubMed  CAS  Google Scholar 

  23. Requejo-Isidro J., McGinty J., Munro I., Elson D.S., Galletly N.P., Lever M.J., Neil M.A., Stamp G.W., French P.M., Kellett P.A., Hares J.D. and Dymoke-Bradshaw A.K. High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging. Opt. Lett. 2004; 29: 2249–2251.

    Article  PubMed  CAS  Google Scholar 

  24. Niggli E. and Egger M. Applications of multi-photon microscopy in cell physiology. Front. Biosci. 2004; 9: 1598–1610.

    PubMed  CAS  Google Scholar 

  25. Elson D., Requejo-Isidro J., Munro I., Reavell F., Siegel J., Suhling K., Tadrous P., Benninger R., Lanigan P., McGinty J., Talbot C., Treanor B., Webb S., Sandison A., Wallace A., Davis D., Lever J., Neil M., Phillips D., Stamp G. and French P. Time-domain fluorescence lifetime imaging applied to biological tissue. Photochem. Photobiol. Sci. 2004; 3: 795–801.

    Article  PubMed  CAS  Google Scholar 

  26. Rolisnki O.J., Mathivanan C., Mcnaught G. and Birch D.J.S. Structural information on nanomolecular systems revealed by FRET. Biosensors & Bioelectronics 2004; 20: 424–430.

    Article  CAS  Google Scholar 

  27. Clayton A.H., Klonis N., Cody S.H. and Nice E.C. Dual-channel photobleaching FRET microscopy for improved resolution of protein association states in living cells. Eur. Biophys. J. Published on line: 30 June 2004.

    Google Scholar 

  28. Jares-Erijman E.A., Giordano L., Spagnuolo C., Kawior J., Vermeij R.J. and Jovin T.M. Photochromic Fluorescence Resonance Energy Transfer (pcFRET): formalism, implementation, and perspectives. SPIE Proc. 2004; 5323: 13–26.

    CAS  Google Scholar 

  29. Jares-Erijman E.A., Giordano L., Spagnuolo C., Lidke K.A. and Jovin T.M. Imaging quantum dots switched on and off by photochromic Fluorescence Resonance Energy Transfer (pcFRET). Molec. Crystals & Liq. Crystals, in press.

    Google Scholar 

  30. Squire A., Verveer P.J., Rocks O., and Bastiaens P.I. Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells. J. Struct. Biol. 2004; 147: 62–69.

    Article  PubMed  CAS  Google Scholar 

  31. Rizzo M.A. and Piston D.W. A high contrast method for imaging FRET between fluorescent proteins. Biophys. J., in press.

    Google Scholar 

  32. Mattheyses A.L., Hoppe A.D. and Axelrod D. Polarized fluorescence resonance energy transfer microscopy. Biophys. J. 2004; 87: 2787–2797.

    Article  PubMed  CAS  Google Scholar 

  33. Rocheleau J.V., Edidin M. and Piston D.W. Intrasequence GFP in Class I MHC molecules, a rigid probe for fluorescence anisotropy measurements of the membrane environment. Biophys. J. 2003; 84: 4078–4086.

    PubMed  CAS  Google Scholar 

  34. Jares-Erijman E.A., Spagnuolo C., Giordano L., Etchehon M., Kawior J., Mañalich-Arana M., Bossi M., Lidke D.S., Post J.N., Vermeij R.J., Heintzmann R., Lidke K.A., Arndt-Jovin D.J. and Jovin T.M. “Novel (bio)chemical and (photo)physical probes for imaging live cells.” In Supramolecular structure and function Vol. 8, G. Pifat-Mrzljak, ed., pp.99–118, Amsterdam: Kluwer,. 2004

    Google Scholar 

  35. Schenkeveld V.M.E. and Young I.T. Simulations of measurements of fluorescence lifetimes using noise-modulated light. J. Fluoresc. 1997; 7: 55–58.

    CAS  Google Scholar 

  36. Neher R. and Neher E. Optimizing imaging parameters for the separation of multiple labels in a fluorescence image. J. Microsc. 2004; 213: 46–62.

    Article  PubMed  CAS  Google Scholar 

  37. Krishnan R.V., Masuda A., Centonze V.E., and Herman B. Quantitative imaging of protein-protein interactions by multiphoton fluorescence lifetime imaging microscopy using a streak camera. J. Biomed. Opt. 2003; 8: 362–367.

    Article  PubMed  CAS  Google Scholar 

  38. Clayton A.H.A., Hanley Q.S., Arndt-Jovin D.J., Subramaniam V. and Jovin T.M. Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM). Biophys. J. 2002; 83: 1631–1649.

    Article  PubMed  CAS  Google Scholar 

  39. Subramaniam V., Hanley Q.S., Clayton A.H.A. and Jovin, T.M. Photophysics of green and red fluorescent proteins: some implications for quantitative microscopy. Methods Enzymol. 2003; 360: 178–201.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Jovin, T.M., Lidke, D.S., Jares-Erijman, E.A. (2005). Fluorescence Resonance Energy Transfer (FRET) and Fluorescence Lifetime Imaging Microscopy (FLIM). In: Evangelista, V., Barsanti, L., Passarelli, V., Gualtieri, P. (eds) From Cells to Proteins: Imaging Nature across Dimensions. NATO Security through Science Series. Springer, Dordrecht . https://doi.org/10.1007/1-4020-3616-7_11

Download citation

Publish with us

Policies and ethics