Skip to main content

Simulation Studies of High-Latitude Magnetospheric Boundary Dynamics

  • Chapter
  • 547 Accesses

Abstract

Magnetic reconnection at the high-latitude magnetopause is studied using 2-1/2-dimensional (2-1/2-D) Hall-MHD simulation. Concentric flow vortices and magnetic islands appear when both Hall effect and sheared flow are considered. Plasma mixing across the magnetopause occurs in the presence of the flow vortices. Reconnected structure generated in the vicinity of the subsolar point changes its geometry with increasing flow shear while moving to high latitudes. In the presence of flow shear, with the Hall-MHD reconnection a higher reconnection rate than with the traditional MHD is obtained. The out-of-plane components of flow and magnetic field produced by the Hall current are redistributed under the action of the flow shear, which makes the plasma transport across the boundaries more complicated. The simulation results provide some help in understanding the dynamic processes at the high-latitude magnetopause.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berchem, J., and Russell, C. T.: 1982, ‘The Thickness of the Magnetopause Current Layer: ISEE 1 and 2 Observations’, J. Geophys. Res. 87, 2108–2114.

    Article  ADS  Google Scholar 

  • Birn, J., Drake, J. F., Shay, M. A., Rogers, B. N., Denton, R. E., Hesse, M., Kuznetsova, M., Ma, Z. W., Bhattacharjee, A., Otto, A., and Pritchett, P. L.: 2001, ‘Geospace Environmental Modeling (GEM) Magnetic Reconnection Challenge’, J. Geophys. Res. 106, 3715–3719.

    Article  ADS  Google Scholar 

  • Chen, Q., Otto, A., and Lee, L. C.: 1997, ‘Tearing Instability, Kelvin-Helmholtz Instability, and Magnetic Reconnection’, J. Geophys. Res. 102, 151–161.

    Article  ADS  Google Scholar 

  • Deng, X. H., and Matsumoto, H.: 2001, ‘Rapid Magnetic Reconnection in the Earth’s Magnetosphere Mediated by Whistler Waves’, Nature 410, 557–560.

    Article  ADS  Google Scholar 

  • Fu, S. Y., Pu, Z. Y., and Liu, Z. X.: 1995, ‘Vortex-induced Magnetic Reconnection and Single X line Reconnection at the Magnetopause’, J. Geophys. Res. 100, 5657–5663.

    Article  ADS  Google Scholar 

  • Haerendel, G., and Paschmann, G.: 1982, ‘Interaction of the Solar Wind with the Dayside Magnetopause’, in A. Nishida (ed.), Magnetospheric Plasma Physics, Center for Academic Pub., Japan, pp. 81–122.

    Google Scholar 

  • Hughes, W. J.: 1995, ‘The Magnetopause, Magnetotail and Magnetic Reconnection’, in M. G. Kivelson, and C. T. Russell (eds.), Introduction to Space Physics, Cambridge University Press, pp. 259–287.

    Google Scholar 

  • Karimabadi, H., Krauss-Varban, D., Omidi, N., and Vu, H. X.: 1999, ‘Magnetic Structure of the Reconnection Layer and Core Field Generation in Plasmoids’, J. Geophys. Res. 104, 12,313–12,316.

    Article  ADS  Google Scholar 

  • Lee, L. C., and Fu, Z. F.: 1985, ‘A Theory of Magnetic Flux Transfer at the Earth’s Magnetopause’, Geophys. Res. Lett. 12, 105–108.

    Article  ADS  Google Scholar 

  • Levy, R. H., Petschek, H. E., and Siscoe, G. L.: 1964, ‘Aerodynamic Aspects of the Magnetospheric Flow’, AIAA J. 2, 2065–2076.

    Article  Google Scholar 

  • Liu, Z. X., and Hu, Y. D.: 1988, ‘Local Magnetic Reconnection Caused by Vortices in the Flow Field’, Geophys. Res. Lett. 15, 752–755.

    Article  ADS  Google Scholar 

  • Ma, Z. W., Otto, A., and Lee, L. C.: 1994, ‘Core Magnetic Field Enhancements in Single X line, Multiple X line and Patchy Reconnection’, J. Geophys. Res. 99, 6125–6136.

    Article  ADS  Google Scholar 

  • Ma, Z. W., and Bhattacharjee, A.: 2001, ‘Hall Magnetohydrodynamic Reconnection: The Geospace Environmental Modeling Challenge’, J. Geophys. Res. 106, 3773–3782.

    Article  ADS  Google Scholar 

  • Matthaeus, W. H., and Lamkin, S. L.: 1985, ‘Rapid Magnetic Reconnection Caused by Finite Amplitude fluctuations’, Phys. Fluids 28, 303.

    Article  ADS  Google Scholar 

  • Otto, A.: 1995, ‘Magnetic Reconnection at the Magnetopause: A Fundamental Process and Manifold Properties’, Rev. Geophys. 33(Supplement), 657.

    Article  ADS  Google Scholar 

  • Paschmann, G., Haerendel, G., Sckopke, N., Rosenbauer, H., and Hedgecock, P. C.: 1976, ‘Plasma and Magnetic Field Characteristics of the Distant Polar Cusp Near Local Noon: The Entry Layer’, J. Geophys. Res. 81, 2883–2899.

    Article  ADS  Google Scholar 

  • Paschmann, G., Haerendel, G., Paparnastorakis, I., Sckopke, N., Bame, S. J., Gosling, J. T., and Russell, C. T.: 1982, ‘Plasma and Magnetic Field Characteristics of Magnetic Flux Transfer Events’, J. Geophys. Res. 87, 2159–2168.

    Article  ADS  Google Scholar 

  • Pu, Z. Y., Yei, M., and Liu, Z. X.: 1990a, ‘Generation of Vortex-Induced Tearing Mode Instability at the Magnetopause’, J. Geophys. Res. 95, 10,559–10,566.

    ADS  Google Scholar 

  • Pu, Z. Y., Hou, P. T., and Liu, Z. X.: 1990b, ‘Vortex-induced Tearing Mode Instability as a Source of Flux Transfer Events’, J. Geophys. Res. 95, 18,861–18,869.

    ADS  Google Scholar 

  • Pu, Z. Y., and Fu, S. Y.: 1997, ‘Transient Magnetic Reconnection at the Magnetopause in the Presence of a Velocity Shear’, Plasma Phys. Control. Fusion 39, A251–A260.

    Article  ADS  Google Scholar 

  • Pu, Z. Y., Zong, Q. G., Fritz, T., Xiao, C. J., Huang, Z. Y., Fu, S. Y., Shi, Q. Q., Dunlop, M. W., Glassmeier, K.-H., Balogh, A., Daly, P., Cao, J. B., Liu, Z. X., Shen, C., Shi, J. K., Reme, H. and Dandouras, J.: 2003, ‘Multiple Flux Rope Events at the High-latitude Magnetopause: Cluster/Rapid Observation on January 26, 2001’, Surveys Geophys. 64, this volume.

    Google Scholar 

  • Russell, C. T., and Elphic, R. C.: 1978, ‘Initial ISEE Magnetometer Results: Magnetopause Observations’, Space Sci. Rev. 22, 681–715.

    Article  ADS  Google Scholar 

  • Russell, C. T.: 1995, ‘The Structure of the Magnetopause’, in P. Song, B. U. O. Sonnerup, and M. F. Thomsen (eds.), Physics of the magnetopause, Geophysical Monograph 90, American Geophysical Union, Washington D.C, pp. 81–98.

    Google Scholar 

  • Scholer, M.: 1988, ‘Magnetic Flux Transfer at the Magnetopause Based on Single X line Bursty Reconnection’, Geophys. Res. Lett. 15, 291–294.

    Article  ADS  Google Scholar 

  • Scholer, M.: 1989, ‘Asymmetric Time-dependent and Stationary Magnetic Reconnection at the Dayside Magnetopause’, J. Geophys. Res. 94, 15,099–15,011.

    ADS  Google Scholar 

  • Scholer, M.: 1995, ‘Models of Flux Transfer Events’, in P. Song, B. U. O. Sonnerup, and M. F. Thomsen (eds.), Physics of the magnetopause Geophysical Monograph 90, American Geophysical Union, Washington D.C, pp. 235–245.

    Google Scholar 

  • Scudder, J. D., Mozer, F. S., Maynard, N. C., and Russell, C. T.: 2002, ‘Fingerprints of Collisionless Reconnection at the Separator: I, Ambipolar-Hall Signatures’, J. Geophys. Res. 107, 1294, doi:10.1029/2001JA000126.

    Article  Google Scholar 

  • Shay, M. A., Drake, J. F., Rogers, B. N., and Denton, R. E.: 2001, ‘Alfvénic Collisionless Magnetic Reconnection and the Hall Term’, J. Geophys. Res. 106, 3759–3772.

    Article  ADS  Google Scholar 

  • Shen, C., and Liu, Z. X.: 1999, ‘The Coupling Mode Between Kelvin-Helmholtz and Resistive Instabilities in Compressible Plasmas’, Phys. Plasmas 6, 2883–2886.

    Article  ADS  MathSciNet  Google Scholar 

  • Sonnerup, B. U. O.: 1979, ‘Magnetic field reconnection’, in L. J. Lanzerotti, C. F. Kennel, and E. N. Parker (eds.), Solar System Plasma Physics 3, North Holland Pub., Amsterdam, pp. 46–108.

    Google Scholar 

  • Southwood, D. J., Farrugia, C. J., and Saunders, M. A.: 1988, ‘What are Flux Transfer Events?’, Planet. Space Sci. 36, 503–508.

    Article  ADS  Google Scholar 

  • Vasyliunas, V. M.: 1975, ‘Theoretical Models of Magnetic Field Line Merging, 1’, Rev. Geophys. Space Phys. 13, 303–336.

    Article  ADS  Google Scholar 

  • Bhattacharjee, A., and Ma, Z. W.: 2000, ‘Collisionless Reconnection: Effects of Hall Current and Electron Pressure Gradient’, J. Geophys. Res. 105, 27,633–27,648.

    ADS  Google Scholar 

  • Zong, Q.-G., Fritz, T. A., Wilken, B., and Daly, P.: 2002, ‘Energetic Ions in the High-latitude Boundary Layer of the Magnetopause RAPID/CLUSTER Observation’, Geophys. Monograph 122, 101–110.

    Google Scholar 

  • Zong, Q.-G., Fritz, T. A., Spence, H., Dunlop, M., Pu, Z. Y., Korth, A., Daly, P. W., Balogh, A., and Reme, H.: 2003a, ‘Bursty Energetic Electrons Confined in Flux Ropes in the Cusp Region’, Planet. Space Sci. 51, 821–830.

    Article  ADS  Google Scholar 

  • Zong, Q.-G., Fritz, T. A., Spence, H., Korth A., Daly, P. W., Dunlop, M., Balogh, A., Fennell, J., Pu, Z. Y. and Reme, H.: 2003b, ‘Energetic Electrons as a Field Line Topology Tracer in the High-Latitude Boundary/Cusp Region: Cluster RAPID Observations’, Surveys Geophys. 26, this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Theodore A. Fritz Shing F. Fung

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Shi, Q.Q. et al. (2005). Simulation Studies of High-Latitude Magnetospheric Boundary Dynamics. In: Fritz, T.A., Fung, S.F. (eds) The Magnetospheric Cusps: Structure and Dynamics. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3605-1_15

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3605-1_15

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3438-1

  • Online ISBN: 978-1-4020-3605-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics