Skip to main content

Effects of Soil pH and Aluminum on Plant Respiration

  • Chapter
Plant Respiration

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 18))

Summary

Interactions among external (soil) pH, cellular pH, and their effects on respiratory metabolism are complex. While the effects of changes in the apoplastic pH on the cytosolic pH are not clearly understood, pH directly affects enzymatic reactions in the cell, and pH-regulated ion uptake has profound indirect effects on cellular respiratory metabolism. A major consequence of soil acidification is the release of aluminum in solubilized forms from its insoluble forms, which, in turn, adversely affects the uptake of cations, causes organic acid secretion, and inhibits cell division and growth in the roots. Consequently, the respiratory metabolism is redirected to meet the needs of organic acid efflux from the roots. The effects of changes in external pH on cellular pH and consequent effects of this change on respiratory metabolism, particularly through effects on soil aluminum are summarized.

Scientific contribution number 2168 from the New Hampshire Agricultural Experiment Station.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akeson MA and Munns DN (1990) Lipid bilayer permeation by neutral aluminum citrate and by three α-hydroxy carboxylic acids. Biochim Biophys Acta 984: 200–206

    Google Scholar 

  • Asada K and Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond, CB and Arntzen, CJ (eds) Photoinhibition, pp: 227–289. Elsevier Science Publishers, New York

    Google Scholar 

  • Asp H, Bengtsson B and Jensén P (1988) Growth and cation uptake in spruce (Picea abies Karst.) grown in sand culture with various aluminum contents. Plant Soil: 111: 127–133

    Article  CAS  Google Scholar 

  • Basu A, Basu U and Taylor GJ (1994) Induction of microsomal membrane proteins in roots of an aluminum-resistant cultivar of Triticum aestivum L. under conditions of aluminum stress. Plant Physiol 104: 1007–1013

    PubMed  CAS  Google Scholar 

  • Basu U, Good AG and Taylor GJ (2001) Transgenic Brassica napus plants overexpressing aluminum-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminum. Plant Cell Environ 24: 1269–1278

    Article  CAS  Google Scholar 

  • Bligny R and Douce R (2001) NMR and plant metabolism. Curr Opin Plant Biol 4: 191–196

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Ayoubi P, Borchert C, Bressan RA, Burnap RL, Cushman JC, Deyholos M, Fischer R, Galbraith D, Hasegawa PM, Jenks M, Kawasak S, Koiwa H, Kore-Eda S, Lee BH, Michalwoski CB, Misawa E, Nomura M, Ozturk N, Postier B, Prade R, Song CP, Tanaka Y, Wang H and Zhy JK (2001) A genomics approach towards salt stress tolerance. Plant Physiol Biochem 39: 295–311

    Article  CAS  Google Scholar 

  • Boron WF and Roos A (1976) Comparison of microelectrode, DMO and methylamine method for measuring intracellular pH. Am J Physiol 231: 799–809

    PubMed  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J and Weretilnyk E (2000) Response to abiotic stress. In: Buchanan BB, Gruissem W and Jones RL (eds) Biochemistry and Molecular Biology of Plants, pp 1158–1203. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Britto DT and Kronzucker HJ (2002) NH4+ toxicity in higher plants: A critical review. J Plant Physiol 159: 56–584

    Article  Google Scholar 

  • Britto DT, Glass ADM, Kronzucker HJ, Siddiqi MY (2001a) Cytosolic concentrations and transmembrane fluxes of NH4+/NH3. An evaluation of recent proposals. Plant Physiol 125: 523–526

    Article  PubMed  CAS  Google Scholar 

  • Britto DT, Siddiqi MY, Glass ADM and Kronzucker HJ (2001b) Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci USA 98: 4255–4258

    Article  PubMed  CAS  Google Scholar 

  • Burt CT, Cohen SM and Barany M (1979) Analysis of intact tissue with 31P NMR. Annu Rev Biophys Bioeng 8: 1–25

    Article  PubMed  CAS  Google Scholar 

  • Chiba H (1999) Masters Thesis (Japanese). Okayama University, Okayama, Japan

    Google Scholar 

  • Cohen SS (1998) A Guide to the Polyamines. Oxford University Press, New York

    Google Scholar 

  • Collier DE, Ackermann F, Somers DJ, Cummins RW and Atkin OK (1993) The effect of aluminum exposure on root respiration in an aluminum-sensitive and an aluminum-tolerant cultivar of Triticum aestivum. Physiol Plant 87: 447–452

    Article  CAS  Google Scholar 

  • Coté GG and Crain RC (1993) Biochemistry of phosphoinositides. Annu Rev Plant Physiol Plant Mol Biol 44: 333–356

    Google Scholar 

  • Cuenca G, Herrera R and Mérida T (1991) Distribution of aluminum in accumulator plants by X-ray microanalysis in Richeria grandis Vahl leaves from a cloud forest in Venezuela. Plant Cell Environ 14: 437–441

    CAS  Google Scholar 

  • Davies DD (1973a) Control of and by pH. Symp Soc Biol 27: 513–529

    CAS  Google Scholar 

  • Davies DD (1973b) Metabolic control in higher plants. In: Milborrow BV (ed) Biosynthesis and its Control in Plants, pp 1–20. Academic Press, London

    Google Scholar 

  • Davis RF (1974) Photoinduced changes in electrical potentials and H+ activities of the chloroplast, cytoplasm, and vacuole of Phaeoceros laevis. In: Zimmerman U, Dainty J (eds) Membrane Transport in Plants, pp: 197–201. Springer-Verlag, New York

    Google Scholar 

  • de la Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL and Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276: 1566–1568

    PubMed  Google Scholar 

  • Delhaize E and Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107: 315–321

    PubMed  CAS  Google Scholar 

  • Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC and Randall PJ (1993a) Aluminum tolerance in wheat (Triticum aestivum L.) I. Uptake and distribution of aluminum in root apices. Plant Physiol 103: 685–693

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Hocking PJ and Richardson AE (2003) effects of altered citrate synthase and isocitrate dehydrogenase expression on internal citrate concentrations and citrate efflux from tobacco (Nicotiana tabacum L.) roots. Plant Soil 248: 137–144

    Article  CAS  Google Scholar 

  • Delhaize E, Ryan PR and Randall PJ (1993b) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103: 695–702

    PubMed  CAS  Google Scholar 

  • Dinkelaker B, Romheld V and Marschner H (1989) Citric-acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ 12: 285–292

    CAS  Google Scholar 

  • Dohmen GP, Koppers A and Langebartels C (1990) Biochemical response of Norway spruce (Picea abies (L.) Karst.) towards 14-month exposure to ozone and acid mist: Effects on amino acid, glutathione and polyamine titers. Environ Pollut 64: 375–383

    Article  PubMed  CAS  Google Scholar 

  • Dong B, Sang WL, Jiang X, Zhou JM, Kong FX, Hu W and Wang LS (2002) Effects of aluminum on physiological metabolism and antioxidant system of wheat (Triticum aestivum L.). Chemosphere 47: 87–92

    Article  PubMed  CAS  Google Scholar 

  • Drake BG, Azcon BJ, Berry J, Bunce J, Dijkstra P, Farrar J, Gifford RM, Gonzales-Meler MA, Koch G, Lambers H, Siedow J and Wullschleger S (1999) Does elevated atmospheric CO2 concentration inhibit mitochondrial respiration in green plants? Plant Cell Environ 22: 649–657

    Article  CAS  Google Scholar 

  • Duff SMG, Lefebvre DD and Plaxton WC (1989a) Purification and characterization of a phosphoenolpyruvate phosphatase from Brassica-nigra suspension cells. Plant Physiol 90: 734–741

    CAS  Google Scholar 

  • Duff SMG, Moorhead GB, Lefebvre DD, and Plaxton WC (1989b) Phosphate starvation inducible ‘bypass’ adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiol 90: 1275–1278

    CAS  Google Scholar 

  • Duff SMG, Plaxton WC and Lefebvre DD (1991) Phosphatestarvation response in plant cells — De novo synthesis and degradation of acid phosphatases. Proc Natl Acad Sci USA 88: 9538–9542

    PubMed  CAS  Google Scholar 

  • Edwards S, Nguyen BT, Do B and Roberts JKM (1998) Contribution of malic enzyme, pyruvate kinase, phosphoenolpyruvate carboxylase, and the Krebs cycle to respiration and biosynthesis and to intracellular pH regulation during hypoxia in maize root tips observed by nuclear magnetic resonance imaging. Plant Physiol 116: 1073–1081

    Article  PubMed  CAS  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Kondo H and Matsumoto H (1998) Protective roles of two aluminum (Al)-induced genes, HSP150 and SED1 of Saccharomyces cerevisiae, in Al and oxidative stresses. FEMS Microbiol Lett 159: 99–105

    Article  PubMed  CAS  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y and Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122: 657–665

    Article  PubMed  CAS  Google Scholar 

  • Flores HE (1991) Changes in polyamine metabolism in response to abiotic stress. In: Slocum R and Flores HE (eds) The Biochemistry and Physiology of Polyamines in Plants, pp 214–225. CRC Press, Boca Raton

    Google Scholar 

  • Forde BG and Clarkson DT (1999) Nitrate and ammonium nutrition of plants: Physiological and molecular perspectives. Adv Bot Res 30: 1–90

    CAS  Google Scholar 

  • Gaume A, Mächler F and Frossard E (2001) Aluminum resistance in two cultivars of Zea mays L.: Root exudation of organic acids and influence of phosphorus nutrition. Plant Soil 234: 73–81

    Article  CAS  Google Scholar 

  • Gauthier DA and Turpin DH (1994) Inorganic phosphate (Pi) enhancement of dark respiration in the Pi-limited green alga Selenastrum minutum — Interactions between H+/Pi co-transport, the plasmalemma H+-ATPase, and dark respiratory carbon flow. Plant Physiol 104: 629–637

    PubMed  CAS  Google Scholar 

  • Gehl KA and Colman B (1985) Effect of external pH on the internal pH of Chlorella saccharophila. Plant Physiol 77: 917–921

    CAS  Google Scholar 

  • Givan CV (1999) Evolving concepts in plant glycolysis: Two centuries of progress. Biol Rev 74: 277–309

    Article  Google Scholar 

  • Godbold DL, Fritz E and Holtermann A (1988) Aluminum toxicity and forest decline. Proc Natl Acad Sci USA 85: 3888–3892

    CAS  Google Scholar 

  • Godbold DL and Jentschke G (1998) Aluminium accumulation in root cell walls coincides with inhibition of root growth but not with inhibition of magnesium uptake in Norway spruce. Physiol Plant 102: 553–560

    Article  CAS  Google Scholar 

  • Gonzalez-Meler MA, Ribas Carbo M, Siedow JN and Drake BG (1996) Direct inhibition of plant mitochondrial respiration by elevated CO2. Plant Physiol 112: 1349–1355

    PubMed  CAS  Google Scholar 

  • Goodchild JA and Givan CV (1991) Stimulation of bicarbonate incorporation by ammonium in nonphotosynthetic cell-suspension cultures of Acer-pseudoplatanus. Physiol Plant 82: 537–542

    Article  CAS  Google Scholar 

  • Grauer UE and Horst WJ (1990) Effect of pH and nitrogen source on aluminium tolerance of rye (Secale cereale L.) and yellow lupin (Lupinus luteus L.). Plant Soil 127:13–21

    CAS  Google Scholar 

  • Hamilton CA, Good AG and Taylor GJ (2001) Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiol 125: 2068–2077

    Article  PubMed  CAS  Google Scholar 

  • Hao LN and Liu HT (1989) Effects of aluminum on physiological functions of rice seedlings. Acta Bot Sin 31: 847–853

    CAS  Google Scholar 

  • Haug A, Shi B and Vitorello V (1994) Aluminum interaction with phosphoinositide-associated signal transduction. Arch Toxicol 68: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Heldt HW, Werdan K, Milovancev M and Geller G (1973) Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. Biochim Biophys Acta 314: 224–241

    PubMed  CAS  Google Scholar 

  • Hesse SJA, Ruijter GJG and Dijkema C (2002) Intracellular pH homeostasis in the filamentous fungus Aspergillus niger. Eur J Biochem 269: 3485–3494

    Article  PubMed  CAS  Google Scholar 

  • Hoffland E, Vandenboogaard R, Nelemans J and Findenegg G (1992) Biosynthesis and root exudation of citric and malic-acids in phosphate-starved rape plants. New Phytol 12: 675–680

    Google Scholar 

  • Honda M, Ito K and Hara T (1997) Effect of physiological activities on aluminum uptake in carrot (Daucus carota L.) cells in suspension culture. Soil Sci Plant Nutr 43: 361–368

    CAS  Google Scholar 

  • Huang JW, Shaff JE, Grunes DL and Kochian LV (1992) Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars. Plant Physiol 98: 230–237

    CAS  Google Scholar 

  • Ikegawa H, Yamamoto Y and Matsumoto H (1998) Cell death caused by a combination of aluminum and iron in cultured tobacco cells. Physiol Plant 104: 474–478

    Article  CAS  Google Scholar 

  • Ingo R and Wolfgang B (2000) The role of lipid peroxidation in aluminum toxicity in soybean cell suspension cultures. J Biol Sci 55: 957–964

    Google Scholar 

  • Ishikawa S, Wagatsuma T, Sasaki R and Ofei-Manu P (2000) Comparison of the amount of citric and malic acids in Al media of seven plant species and two cultivars each in five plant species. Soil Sci Plant Nutr 46: 751–758

    CAS  Google Scholar 

  • Jansen S, Broadley MR and Robbrecht E (2002) Aluminum hyperaccumulation in angiosperms: A review of its phylogenetic significance. Bot Rev 68: 235–269

    Google Scholar 

  • Johnson JF, Allan DL and Vance CP (1994) Phosphorus stressinduced proteoid roots show altered metabolism in Lupinus albus. Plant Physiol 104: 657–665

    PubMed  CAS  Google Scholar 

  • Johnson JF, Allan DL, Vance CP and Weiblen G (1996a) Root carbon dioxide fixation by phosphorus-deficient Lupinus albus — Contribution to organic acid exudation by proteoid roots. Plant Physiol 112: 19–30

    Article  PubMed  CAS  Google Scholar 

  • Johnson JF, Vance CP and Allan DL (1996b) Phosphorus deficiency in Lupinus albus — Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol 112: 31–41

    Article  PubMed  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere — A critical review. Plant Soil 205: 25–44

    Article  CAS  Google Scholar 

  • Juszczuk IM and Rychter AM (1997) Changes in pyridine nucleotide levels in leaves and roots of bean plants (Phaseolus vulgaris L.) during phosphate deficiency. J Plant Physiol 151: 399–404

    CAS  Google Scholar 

  • Karr MC, Coutinho J and Ahlrichs JL (1984) Determination of aluminum toxicity in Indiana soils by petri dish bioassays. Proc Ind Acad Sci 93: 85–88

    Google Scholar 

  • Keerthisinghe G, Hocking PJ and Ryan PR (1998) Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.) Plant Cell Environ 21: 467–478

    Article  CAS  Google Scholar 

  • Keltjens WG (1995) Magnesium uptake by Al-stressed maize plants with special emphasis on cation interactions at root exchange sites. Plant Soil 171: 141–146

    Article  CAS  Google Scholar 

  • Kinraide TB (1993) Aluminum enhancement of plant-growth in acid rooting media — A case of reciprocal alleviation of toxicity by 2 toxic cations. Physiol Plant 88: 619–625

    Article  CAS  Google Scholar 

  • Kinraide TB and Parker DR (1990) Apparent phytotoxicity of mononuclear hydroxy-aluminum to 4 dicotyledonous species. Physiol Plant 79: 283–288

    Article  CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46: 237–260

    Article  CAS  Google Scholar 

  • Kochian LV (2000) Molecular physiology of mineral nutrient acquisition, transport, and utilization. In: Buchanan BB, Gruissem W and Jones RL (eds) Biochemistry and Molecular Biology of Plants, pp 1158–1203. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Kochian LV, Pence NS, Letham DLD, Piñeros MA, Magalhaes JV, Hoekenga OA and Garvin DF (2002) Mechanisms of metal resistance in plants: Aluminum and heavy metals. Plant Soil 247: 109–119

    Article  CAS  Google Scholar 

  • Koyama H, Takita E, Kawamura A, Hara T and Shibata D (1999) Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium. Plant Cell Physiol 40: 482–488

    PubMed  CAS  Google Scholar 

  • Kronzucker HJ, Britto DT, Davenport RJ and Tester M (2001) Ammonium toxicity and the real cost of transport. Trends Plant Sci 6: 335–337

    Article  PubMed  CAS  Google Scholar 

  • Kuhn E (2001) From library screening to microarray technology: Strategies to determine gene expression profiles and to identify differentially regulated genes in plants. Ann Bot 87: 139–155

    Article  CAS  Google Scholar 

  • Kurkdjian A and Guern J (1989) Intracellular pH: Measurement and importance in cell activity. Annu Rev Plant Physiol Plant Mol Biol 40: 271–303

    Article  CAS  Google Scholar 

  • Kuzniak E (2002) Transgenic plants: An insight into oxidative stress tolerance mechanisms. Acta Physiol Plant 24: 97–113

    CAS  Google Scholar 

  • Lambers H, Atkin OK and Scheurwater I (1996) Respiration patterns in roots in relation to their functioning. In: Waise Y, Eshel A, Kafkaki U (eds) Plant Roots: The Hidden Half, pp 323–362. Marcel Dekker, New York

    Google Scholar 

  • Lambers H, Chapin III FS and Pons TL (1998) Plant Physiological Ecology. Springer-Verlag, New York

    Google Scholar 

  • Lane A and Burris JE (1981) Effect of environmental pH on the internal pH of Chlorella pyrenoidosa, Scenedesmus quadricauda, and Euglena mutabilis. Plant Physiol 68: 43–442

    Google Scholar 

  • Lawrence GB, David MB and Shortle WC (1995) A new mechanism for calcium loss in forest-floor soils. Nature 378: 162–165

    Article  CAS  Google Scholar 

  • Lazof DB, Goldsmith JG, Rufty TW and Linton RW (1994) Rapid uptake of aluminum into cells of intact soybean root tips. A microanalytical study using secondary ion mass spectroscopy. Plant Physiol 106: 1107–1114

    PubMed  CAS  Google Scholar 

  • Lazof DB, Goldsmith JG and Linton RW (1997) The in situ analysis of intracellular aluminum in plants. Prog Bot 58: 112–159

    CAS  Google Scholar 

  • Lee CH, Jin HO and Izuta T (1999) Growth, nutrient status and net photosynthetic rate of Pinus densiflora seedlings in various levels of aluminum concentrations. J Korean For Soc 88: 249–254

    Google Scholar 

  • Lee CH, Jin HO and Kim YK (2001) Effects of Al and Mn on the growth, nutrient status and gas exchange rates of Pinus densiflora seeds. J Korean For Soc 90: 74–82

    Google Scholar 

  • Levi C and Gibbs M (1976) Starch degradation in isolated spinach chloroplasts. Plant Physiol 57: 933–935

    CAS  Google Scholar 

  • Li XF, Ma JF and Matsumoto H (2000) Pattern of aluminum-induced secretion of organic acids differs between rye and wheat. Plant Physiol 123: 1537–1543

    PubMed  CAS  Google Scholar 

  • Lidon FC, Barreiro MG, Ramalho JC and Lauriano JA (1999) Effects of aluminum on nutrient accumulation in maize shoots: Implications on photosynthesis. J Plant Nutr 22: 397–416

    CAS  Google Scholar 

  • López-Bucio J, Nieta-Jacobo MF, Ramírez-Rodríguez V and Herrera-Estrella L (2000) Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 160: 1–13

    PubMed  Google Scholar 

  • Ma JF (2000) Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol 41: 383–390

    PubMed  CAS  Google Scholar 

  • Ma JF, Ryan PR and Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6: 273–278

    Article  PubMed  CAS  Google Scholar 

  • Macdonald TL and Martin RB (1988) Aluminum ion in biological systems. TIBS 13: 15–19

    PubMed  CAS  Google Scholar 

  • Malkin R and Niyogi K (2000) In: Buchanan BB, Gruissem W, and Jones RL (eds) Biochemistry and Molecular Biology of Plants, pp 568–628. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Marienfeld S and Stelzer R (1993) X-ray microanalyses in roots of Al-treated Avena sativa plants. J Plant Physiol 141: 569–573

    CAS  Google Scholar 

  • Marienfeld S, Lehmann H and Stelzer R (1995) Ultrasound investigations and EDX analyses of Al-treated oat (Avena sativa) roots. Plant Soil 171: 167–173

    Article  CAS  Google Scholar 

  • Marschner H (ed) (1995) Mineral Nutrition of Higher Plants. 2nd ed, Academic Press, London

    Google Scholar 

  • Marschner H, Häussling M and George E (1991) Ammonium and nitrate uptake rates and rhizosphere-pH in non-mycorrhizal roots of Norway spruce (Picea abies (L.) Karst.) Trees-Struct Funct 5:14–21

    Google Scholar 

  • Martin RB (1988) Bioinorganic chemistry of aluminum. In Sigel H (Ed) Metal Ions in Biological Systems, Vol 24. Aluminum and its Role in Biology, pp 1–57. Marcel Dekker, New York

    Google Scholar 

  • Martin RB (1992) Aluminum speciation in biology. In: Chadwick DJ and Whelan J (eds) Aluminum in Biology and Medicine, pp 5–25. Wiley, New York

    Google Scholar 

  • Matsumoto H, Hirasawa E, Torikai H and Takahashi E (1976) Localization of absorbed aluminum in pea root and its binding to nucleic acids. Plant Cell Physiol 17: 127–137

    CAS  Google Scholar 

  • McLaughlin SB, Andersen CP, Edwards NT, Roy WK and Layton PA (1990) Seasonal patterns of photosynthesis and respiration of red spruce saplings from two elevations in declining southern Appalachian Stands. Can J For Res 20: 485–495

    CAS  Google Scholar 

  • McLaughlin SB, Andersen CP, Hanson PJ, Tjoelker MG and Roy WK (1991) Increased dark respiration and calcium deficiency of red spruce in relation to acidic deposition at high-elevation southern Appalachian Mountain sites. Can J For Res 21: 1234–1244

    CAS  Google Scholar 

  • Meychik NR and Yermakov LP (2001) Ion exchange properties of plant root cell walls. Plant Soil 234: 181–193

    Article  CAS  Google Scholar 

  • Millenaar FF and Lambers H (2003) The alternative oxidase: In vivo regulation and function. Plant Biol 5: 2–15

    Article  CAS  Google Scholar 

  • Minocha R and Long S (2004) Effects of aluminum on organic acid metabolism and secretion into the culture medium and the reversal of Al effects by exogenous addition of organic acids in cell suspension cultures of red spruce (Picea rubens Sarg.). Tree Physiol 24: 55–64

    PubMed  CAS  Google Scholar 

  • Minocha R, Minocha SC, Long S and Shortle WC (1992) Effects of aluminum on DNA synthesis, cellular polyamines, polyamine biosynthetic enzymes, and inorganic ions in cell suspension cultures of a woody plant, Catharanthus roseus. Physiol Plant 85: 417–424

    Article  CAS  Google Scholar 

  • Minocha R, Shortle WC, Coughlin DJ and Minocha SC (1996) Effects of Al on growth, polyamine metabolism, and inorganic ions in suspension cultures of red spruce (Picea rubens). Can J For Res 26: 550–559

    CAS  Google Scholar 

  • Minocha R, Shortle WC, Lawrence GB, David MB and Minocha SC (1997) A relationship among foliar chemistry, foliar polyamines, and soil chemistry in red spruce trees growing across the northeastern United States. Plant Soil 191: 109–122

    Article  CAS  Google Scholar 

  • Minocha R, Aber JD, Long S, Magill AH and McDowell W (2000) Foliar polyamine and inorganic ion content in relation to soil and soil solution chemistry in two fertilized forest stands at the Harvard Forest, Massachusetts. Plant Soil 222: 119–137

    Article  CAS  Google Scholar 

  • Minocha R, McQuattie C, Fagerberg W, Long S and Noh EW (2001) Effects of aluminum in red spruce (Picea rubens) cell cultures: Cell growth and viability, mitochondrial activity, ultrastructure, and potential sites of intracellular aluminum accumulation. Physiol Plant 113: 486–498

    Article  CAS  Google Scholar 

  • Minocha SC (1987) pH of the medium and the growth and metabolism of cells in culture. In: Bonga JW and Durzan DJ (eds) Cell and Tissue Culture in Forestry, pp 125–141. Martinus Nijhoff Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: Electron transport, NADH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52: 561–591

    PubMed  Google Scholar 

  • Moon RB and Richards JH (1973) Determination of intracellular pH by 31P magnetic resonance. J Biol Chem 248: 7276–7278

    PubMed  CAS  Google Scholar 

  • Moustakas M, Ouzounidou G and Lannoye R (1993) Rapid screening for aluminum tolerance in cereals by use of the chlorophyll fluorescence test. Plant Breed 111: 343–346

    CAS  Google Scholar 

  • Moustakas M, Ouzounidou G and Lannoye R (1995) Aluminum effects on photosynthesis and elemental uptake in an aluminum-tolerant and non-tolerant wheat cultivar. J Plant Nutr 18: 669–683

    CAS  Google Scholar 

  • Mugai EN, Agong SG and Matsumoto H (2000) Aluminium tolerance mechanisms in Phaseolus vulgaris L.: Citrate synthase activity and TTC reduction are well correlated with citrate secretion. Soil Sci Plant Nutr 46:939–950

    CAS  Google Scholar 

  • Neumann G and Römheld V (2000) The release of root exudates as affected by the plant’s physiological status. In: Pinton R, Varanini Z, Nannipieri Z (eds) In the Rhizosphere: Biochemistry and Organic Substances in Soil-Plant Interface. pp 41–93, Marcel Dekker, New York

    Google Scholar 

  • Neumann G, Massonneau A, Langlade N, Dinkelaker B, Hengeler C, Romheld V and Martinoia E (2000) Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.) Ann Bot 85: 909–919

    Article  CAS  Google Scholar 

  • Nobel PS and Palta JA (1989) Soil O2 and CO2 effects on root respiration of cacti. Plant Soil 120: 263–271

    CAS  Google Scholar 

  • Nosko P, Brasnard P, Kramer JR and Kershaw KA (1988) The effect of aluminum on seed germination and early seedling establishment growth and respiration of white spruce Picea glauca. Can J Bot 66: 2305–2310

    CAS  Google Scholar 

  • Ogawa T, Matsumoto C, Takenaka C and Tezuka T (2000) Effect of Ca on Al-induced activation of antioxidant enzymes in the needles of Hinoki cypress (Chamaecyparis obtuse). J For Res 5: 81–85

    CAS  Google Scholar 

  • Oleksyn J, Karolewski P, Giertych MJ, Werner A, Tjoelker MG and Reich PB (1996) Altered root growth and plant chemistry of Pinus sylvestris seedlings subjected to aluminum in nutrient solution. Tree 10: 135–144

    Google Scholar 

  • Olivetti GP and Etherton B (1991) Aluminum interactions with corn root plasma membrane. Plant Physiol 96(suppl): 142

    Google Scholar 

  • Palta JA and Nobel PS (1989) Influence of soil O2 and CO2 on root respiration of Agave deserti. Physiol Plant 76: 187–192

    Google Scholar 

  • Peiter E, Yan F and Schubert S (2001) Lime-induced growth depression in Lupinus species: Are soil pH and bicarbonate involved? J Plant Nutr Soil Sci 164: 165–172

    Article  CAS  Google Scholar 

  • Pellet DM, Grunes DL and Kochian LV (1995) Organic acid exudation as an aluminum tolerance mechanism in maize (Zea mays L.). Planta 196: 788–95

    CAS  Google Scholar 

  • Piñeros MA and Kochian LV (2001) A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of Al3+-induced anion channels. Plant Physiol 125: 292–305

    PubMed  Google Scholar 

  • Qi JE, Marshall JD and Mattson KG (1994) High soil carbondioxide concentrations inhibit root respiration of Douglas-fir. New Phytol 128: 435–442

    Google Scholar 

  • Qian XM (1998) Influence of liming and acidification on the activity of the mycorrhizal communities in a Picea abies (L.) Karst. stand. Plant Soil 199: 99–109

    CAS  Google Scholar 

  • Raven JA and Smith FA (1974) Significance of hydrogen ion transport in plant cells. Can J Bot 52: 1035–1048

    CAS  Google Scholar 

  • Raven JA and Smith FA (1978) Effect of temperature and external pH on the cytoplasmic pH of Chara corallina. J Exp Bot 29: 853–856

    CAS  Google Scholar 

  • Rayle DL and Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99: 1271–1274

    PubMed  CAS  Google Scholar 

  • Rengel Z (1992) Role of Ca in Al toxicity. New Phytol 121: 499–513

    CAS  Google Scholar 

  • Rengel Z (1996) Uptake of aluminum by plant cells. New Phytol 134: 389–406

    CAS  Google Scholar 

  • Rent RK, Johnson RA and Barr CE (1972) Net H+ influx in Nitella clavata. J Membrane Biol 7: 231–244

    Article  CAS  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK, Davis KR and Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116: 409–418

    Article  PubMed  CAS  Google Scholar 

  • Roberts JKM, Hooks MA, Miaullis AP, Edwards S and Webster C (1992) Contribution of malate and amino acid metabolism to cytoplasmic pH regulation in hypoxic maize root tips studied using Nuclear Magnetic Resonance spectroscopy. Plant Physiol 98: 480–487

    CAS  Google Scholar 

  • Ryan PR, Delhaize E and Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52: 527–560

    Article  PubMed  CAS  Google Scholar 

  • Ryan PR, Delhaize E and Randall PJ (1995) Characterization of Al stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196: 103–110

    Article  CAS  Google Scholar 

  • Ryan PR, Reid RJ and Smith FA (1997) Direct evaluation of the Ca2+-displacement hypothesis for Al toxicity. Plant Physiol 113: 1351–1357

    PubMed  CAS  Google Scholar 

  • Sakihama Y and Yamasaki H (2002) Lipid peroxidation induced by phenolics in conjunction with aluminum ions. Biol Plant 45: 249–254

    Article  CAS  Google Scholar 

  • Sanders D and Bethke P (2000) Membrane Transport. In Buchanan BB, Gruissem W, and Jones RL (eds) (2000) Biochemistry and Molecular Biology of Plants, pp 110–158. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Santerre A, Markiewicz M and Villanueva VR (1990) Effect of acid rain on polyamines in Picea. Phytochemistry 29: 1767–1769

    Article  CAS  Google Scholar 

  • Schaberg PG, Dehayes DH, Hawley GJ, Strimbeck GR, Cumming JR, Murakami PF and Borer CH (2000) Acid mist and soil Ca and Al after the mineral nutrition and physiology of Red Spruce. Tree Physiol 20: 73–85

    PubMed  CAS  Google Scholar 

  • Schröder WH, Bauch J and Endeward R (1988) Microbeam analysis of Ca exchange and uptake in the fine roots of spruce: influence of pH and aluminum. Trees 2: 96–103

    Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y and Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13: 113–123

    Article  Google Scholar 

  • Siedow JN and Day DA (2000) Respiration and photorespiration. In: Buchanan BB, Gruissem W, and Jones RL eds. Biochemistry and Molecular Biology of Plants, pp 672–726. American Society of Plant Physiologists, Rockville, MD.

    Google Scholar 

  • Simon L, Kieger M, Sung SS and Smalley TJ (1994) Aluminum toxicity in tomato: Part 2. Leaf gas exchange, chlorophyll content, and invertase activity. J Plant Nutr 17: 307–317

    CAS  Google Scholar 

  • Simons BH and Lambers H (1998) The alternative oxidase: Is it a respiratory pathway allowing a plant to cope with stress? In: Lerner HR (ed) Plant Responses to Environmental Stress: From Phytohormones to Genome Reorganization. pp. 265–286. Plenum Press, New York

    Google Scholar 

  • Smith FA (1984) Regulation of the cytoplasmic pH of Chara corallina: Response to changes in external pH. J Exp Bot 35: 43–50

    CAS  Google Scholar 

  • Smith FA and Raven JA (1976) H+ transport and regulation of cell pH. In: Lüttge U and Pitman MG(eds) Encyclopedia of Plant Physiology, New Ser, 2A, pp: 317–346. Springer-Verlag, Berlin

    Google Scholar 

  • Smith FA and Raven JA (1979) Intracellular pH and its regulation. Annu Rev Plant Physiol 30: 28–311

    Article  Google Scholar 

  • Son KC, Gu EG, Byoun HJ and Lim JH (1994) Effects of sucrose, BA, or aluminum sulfate in the preservative solutions on photosynthesis, respiration, and transpiration of cut rose leaf. J Korean Soc Hort Sci 35: 480–486

    CAS  Google Scholar 

  • Sorensen KU, Terry RE, Jolley VD and Brown JC (1989) Ironstress response of inoculated and non-inoculated roots of an iron inefficient soybean cultivar in a split-root system. J Plant Nutr 12: 437–447

    Google Scholar 

  • Sparling DW and Lowe TP (1996) Environmental hazards of aluminum to plants, invertebrates, fish, and wildlife. Rev Environ Contam 145: 1–127

    CAS  Google Scholar 

  • Steup M, Peavey DG and Gibbs M (1976) The regulation of starch metabolism by inorganic phosphate. Biochem Biophys Res Commun 72: 1554–1561

    Article  PubMed  CAS  Google Scholar 

  • Tesfaye M, Temple SJ, Allan DL, Vance CP and Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127: 1836–1844

    Article  PubMed  CAS  Google Scholar 

  • Theodorou ME, Cornel FA, Duff SMG and Plaxton WC (1992) α-subunit of pyrophosphate-dependent phosphofructokinase in black mustard suspension cells. J Biol Chem 267: 21901–21905

    PubMed  CAS  Google Scholar 

  • Thomas M, Richardson JA and Ranson SL (eds) (1973) Plant Physiology. Longman, London

    Google Scholar 

  • Torimitsu K, Yazaki Y, Nagasuka K, Ohta E and Sakata M (1984) Effect of external pH on the cytoplasmic and vacuolar pH’s in mung bean root-tip cells: A 31P nuclear magnetic resonance study. Plant Cell Physiol 25: 1403–1409

    CAS  Google Scholar 

  • Van Breemen N (1985) Acidification and decline of Central European forests. Nature 315: 16

    Google Scholar 

  • Van der Werf A, Welschen R and Lambers H (1992) Respiratory losses increase with decreasing inherent growth rate of a species and with decreasing nitrogen supply. A search for explanations for these observations. In: Lambers H, van der Plas LHW (eds) Molecular, Biochemical and Physiological Aspects of Plant Respiration, pp 421–432. SPB Academic Publishing, The Hague

    Google Scholar 

  • Vanhala P (2002) Seasonal variation in the soil respiration rate in coniferous forest soils. Soil Biol Biochem 34: 1375–1379

    Article  CAS  Google Scholar 

  • Vanlerberghe GC and Ordog SH (2002) Alternative oxidase: Integrating carbon metabolism and electron transport in plant respiration. In: Foyer CH and Noctor G (eds) Photosynthetic Assimilation and Associated Carbon Metabolism. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Votyakova TV, Wallace HM, Dunbar B and Wilson SB (1999) The covalent attachment of polyamines to proteins in plant mitochondria. Eur. J. Biochem 260: 250–257

    Article  PubMed  CAS  Google Scholar 

  • Walker NA and Smith FA (1975) Intracellular pH in Chara corallina by DMO distribution. Plant Sci Lett 4: 125–132

    CAS  Google Scholar 

  • Wang MY, Siddiqi MY, Ruth TJ and Glass ADM (1993a) Ammonium uptake by rice roots I. Fluxes and subcellular-distribution of NH4+-N13. Plant Physiol 103: 1249–1258

    Article  PubMed  CAS  Google Scholar 

  • Wang MY, Siddiqi MY, Ruth TJ and Glass ADM (1993b) Ammonium uptake by rice roots. II. Kinetics of NH4+-N−13 influx across the plasmalemma. Plant Physiol 103: 1259–1267

    Article  PubMed  CAS  Google Scholar 

  • Wargo PM, Minocha R, Wong B, Long RP, Horsley SB and Hall TJ (2002) Measuring stress and recovery in lime fertilized sugar maple in the Allegheny Plateau area of northwestern Pennsylvania. Can J For Res 32: 629–641

    Article  Google Scholar 

  • Watt M and Evans JR (1999a) Linking development and determinancy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol 120: 705–716

    Article  PubMed  CAS  Google Scholar 

  • Watt M and Evans JR (1999b) Proteoid roots: Physiology and development. Plant Physiol 121: 317–323

    Article  PubMed  CAS  Google Scholar 

  • Wlodarczyk T, Stepniewski W and Brzezinska M (2002) Dehydrogenase activity, redox potential, and emissions of carbon dioxide and nitrous oxide from Cambisols under flooding conditions. Biol Fert Soils 36: 200–206

    CAS  Google Scholar 

  • Woolhouse HW (1969) Differences in the properties of the acid phosphatase of plant roots and their significance in the evolution of edaphic ecotypes. In: Rorison, IH (ed) Aspects of the Mineral Nutrition of Plants, pp: 357–380. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Wu SH, Ramonell K., Gollub J and Somerville S (2001) Plant gene expression profiling with DNA microarrays. Plant Physiol Biochem 39: 917–926

    Article  CAS  Google Scholar 

  • Yamamoto Y, Hachiya A and Matusumoto H (1997) Oxidative damage to membranes by a combination of aluminum and iron in suspension-cultured tobacco cells. Plant Cell Physiol 38: 1333–1339

    CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S and Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128: 63–72

    PubMed  CAS  Google Scholar 

  • Yan F, Schubert S, and Mengel K (1992) Effect of low root medium pH on net proton release, root respiration, and rootgrowth of corn (Zea mays L) and broad bean (Vicia faba L.). Plant Physiol 99: 415–421

    CAS  Google Scholar 

  • You G and Nelson DJ (1991) Al3+ versus Ca2+ ion binding to methionine and tyrosine spin-labeled bovine brain calmodulin. J Inorg Biochem 41: 283–291

    Article  PubMed  CAS  Google Scholar 

  • Zhang G and Taylor G (1989) Kinetics of aluminum uptake by excised roots of aluminum-tolerant and aluminum-sensitive cultivars of Triticum aestivum L. Plant Physiol 91: 1094–1099

    CAS  Google Scholar 

  • Zhang G, Slaski JJ, Archambault DJ and Taylor GJ (1997) Alteration of plasma membrane lipids in aluminum-resistant and aluminum-sensitive wheat genotypes in response to aluminum stress. Physiol Plant 99: 302–308

    Article  CAS  Google Scholar 

  • Zhang WH, Ryan PR and Tyerman SD (2001) Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiol 125: 1459–1472

    Article  PubMed  CAS  Google Scholar 

  • Zhou X-H, Minocha R and Minocha SC (1995) Physiological responses of suspension cultures of Catharanthus roseus to aluminum: Changes in polyamines and inorganic ions. J Plant Physiol 145: 277–284

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Minocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Minocha, R., Minocha, S.C. (2005). Effects of Soil pH and Aluminum on Plant Respiration. In: Lambers, H., Ribas-Carbo, M. (eds) Plant Respiration. Advances in Photosynthesis and Respiration, vol 18. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3589-6_9

Download citation

Publish with us

Policies and ethics