Skip to main content

Integrated Effects of Atmospheric CO2 Concentration on Plant and Ecosystem Respiration

  • Chapter
Plant Respiration

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 18))

Summary

Atmospheric CO2 concentrations have been increasing since the industrial revolution due to fossil fuel burning and deforestation. Elevated levels of atmospheric [CO2] are likely to enhance photosynthesis and plant growth, which, in turn should result in increased specific and whole-plant respiration rates. However, a large body of literature has shown that specific respiration rates of plant tissues can be considerably reduced when plants are exposed to or grown at high [CO2]. Reductions in respiration by [CO2] have been explained by either direct inhibitory effects of [CO2] on respiratory processes or by indirect effects associated with changes in the chemical composition of tissues of plants grown at high [CO2]. The observed reductions in plant respiration rates by elevated [CO2] can represent a large biospheric sink for atmospheric carbon. Although doubling current ambient levels of atmospheric [CO2] could inhibit some mitochondrial enzymes directly in the short-term, the magnitude of the direct effect of [CO2] on tissue respiration has now been shown to be largely explained by measurement artifacts, diminishing the impact that direct effects would have on the carbon cycle. A reduction in construction and maintenance costs of tissues of plants grown at high [CO2] can explain an indirect reduction of respiration. Such indirect effects, however, may be offset by the larger biomass of plants exposed to elevated [CO2]. A lack of clear understanding of the physiological control of plant respiration, of the role(s) of non-phosphorylating pathways, and effects associated with plant size, makes it difficult to predict how respiration and the processes it supports respond to elevated [CO2]. Therefore, the role of plant respiration in augmenting or controlling the sink capacity of terrestrial ecosystems is still uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Affourtit C, Krab K and Moore AL (2001) Control of plant mitochondrial respiration. Biochim Biophys Acta 1504, 58–69

    PubMed  CAS  Google Scholar 

  • Allen AS, Andrews JA, Finnzi AC, Matamala R, Richter DD and Schlesinger WH, 2000. Effects of free-air CO2 enrichment on below-ground processes in a loblolly pine forest. Ecol Appl 10: 437–448

    Google Scholar 

  • Amthor JS (1989) Respiration and Crop Productivity. Springer Verlag, New York

    Google Scholar 

  • Amthor JS (1991) Respiration in a future, higher CO2 world. Plant Cell Environ 14: 13–20

    CAS  Google Scholar 

  • Amthor JS (1995) Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Global Change Biol 1: 243–274

    Google Scholar 

  • Amthor JS (1997) Plant respiratory responses to elevated carbon dioxide partial pressure. In: Allen LH, Kirkham MB, Olszyk DM and Whitman CE (eds) Advances in Carbon Dioxide Effects Research, pp 35–77. American Society of Agronomy, Madison

    Google Scholar 

  • Amthor JS (2000a) Direct effect of elevated CO2 on nocturnal in situ leaf respiration in nine temperate deciduous trees species is small. Tree Physiol 20, 139–144

    PubMed  Google Scholar 

  • Amthor JS (2000b) The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. Ann Bot 86: 1–20

    Article  CAS  Google Scholar 

  • Amthor JS, Koch G and Boom AJ (1992) CO2 inhibits respiration in leaves of Rumex crispus L. Plant Physiol 98: 1–4

    Google Scholar 

  • Amthor JS, Mitchell RJ, Runion GB, Rogers HH, Prior SA and Wood CW (1994) Energy content, construction cost and phytomass accumulation of Glycine max (L.) Merr. and Sorghum bicolor (L.) Moench grown in elevated CO2 in the field. New Phytol 128: 443–450

    Google Scholar 

  • Amthor JS, Koch GW, Willms JR and Layzell DB (2001) Leaf O2 uptake in the dark is independent of coincident CO2 partial pressure. J Exper Bot 52: 2235–8

    CAS  Google Scholar 

  • Azcón-Bieto J and Osmond CB (1983) Relationship between photosynthesis and respiration. The effect of carbohydrate status on the rate of CO2 production by respiration in darkened and illuminated wheat leaves. Plant Physiol 71: 574–581

    Google Scholar 

  • Azcón-Bieto J, Lambers H and Day DA (1983) Effect of photosynthesis and carbohydrate status on respiratory rates and the involvement of the alternative pathway in leaf respiration. Plant Physiol 72: 598–603

    Google Scholar 

  • Azcón-Bieto J, Gonzàlez-Meler MA, Doherty W and Drake BG (1994) Acclimation of respiratory O2 uptake in green tissues of field grown native species after. Plant Physiol 106: 1163–1168

    PubMed  Google Scholar 

  • Ball AS, and Drake BG (1998) Stimulation of soil respiration by carbon dioxide enrichment of marsh vegetation. Soil Biol Biochem 30: 1203–1205

    Article  CAS  Google Scholar 

  • Bouma TJ, De Viser R, Janseen JHJA, De Kick MJ, Van Leeuwen PH, and Lambers H (1994) Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect. Physiol Planta 92: 585–594

    CAS  Google Scholar 

  • Bouma TJ, De Viser R, Van Leeuwen PH, De Kick MJ and Lambers H (1995) The respiratory energy requirements involved in nocturnal carbohydrate export from starch-storing mature source leaves and their contribution to leaf dark respiration. J Exper Bot 46: 1185–1194

    CAS  Google Scholar 

  • Buchmann N and Schulze ED (1999) Net CO2 and H2O fluxes of terrestrial ecosystems. Global Biogeochem Cycles 13: 751–760.

    Article  CAS  Google Scholar 

  • Bruhn D, Mikkelsen TN and Atkin OK (2002) Does the direct effect of atmospheric CO2 concentration on leaf respiration vary with temperature? Responses in two species of Plantago that differ in relative growth rate. Physiol Planta, 114: 57–64

    CAS  Google Scholar 

  • Bunce JA (1994) Responses of respiration to increasing atmospheric carbon dioxide concentrations. Physiol Planta 90: 427–430

    CAS  Google Scholar 

  • Bunce JA (1995) Effects of elevated carbon dioxide concentration in the dark on the growth of soybean seedlings. Ann Bot 75: 365–368.

    Article  Google Scholar 

  • Bunce JA (2001) Effects of prolonged darkness on the sensitivity of leaf respiration to carbon dioxide concentration in C3 and C4 species. Ann Bot 87: 463–468

    Article  CAS  Google Scholar 

  • Bunce JA (2002) Carbon dioxide concentration at night affects translocation from soybean leaves. Ann Bot 90: 399–403

    Article  PubMed  CAS  Google Scholar 

  • Burns RM and Honkala BH (1990) Silvics of North America: II. Hardwoods. USDA Agriculture Handbook 654. USDA, Washington, D.C.

    Google Scholar 

  • Carey EV, DeLucia EH and Ball JT (1996) Stem maintenance and construction respiration in Pinus ponderosa grown in different concentrations of atmospheric CO2. Tree Physiol 16: 125–130

    PubMed  Google Scholar 

  • Curtis PS and Wang X (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113: 299–313

    Article  Google Scholar 

  • Davey PA, Hunt S, Hymus GJ, DeLucia EH, Drake BG, Karnosky DF and Long SP (2003) Respiratory oxygen uptake is not decreased by an instantaneous elevation of [CO2], but is increased with long-term growth in the field at elevated [CO2]. Plant Physiol 134: 520–527

    PubMed  Google Scholar 

  • DeLucia EH, Hamilton JG, Naidu SL, Thomas RB, Andrews JA, Finzi A, Lavine M, Matamala R, Mohan JE, Hendrey GR and Schlesinger WH (1999) Net primary production of a forest ecosystem with experimental CO2 enrichment. Science 284: 1177–1179

    Article  PubMed  CAS  Google Scholar 

  • Drake BG, Meuhe M, Peresta G, Gonzàlez-Meler MA and Matamala R (1996) Acclimation of photosynthesis, respiration and ecosystem carbon flux of a wetland on Chesapeake Bay, Maryland, to elevated atmospheric CO2 concentration. Plant Soil 187: 111–118

    CAS  Google Scholar 

  • Drake BG, Gonzàlez-Meler MA and Long SP (1997) More efficient plants: A consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Molec Biol 48: 609–639

    CAS  Google Scholar 

  • Drake BG, Azcón-Bieto J, Berry JA, Bunce J, Dijkstra P, Farrar J, Koch GW, Gifford R, Gonzàlez-Meler MA, Lambers H, Siedow JN, Wullschleger S (1999) Does elevated CO2 inhibit plant mitochondrial respiration in green plants? Plant Cell Environ 22: 649–657

    Article  CAS  Google Scholar 

  • Dvorak V, Oplustilova M (1997) Respiration of woody tissues of Norway spruce in elevated CO2 concentrations. In: Mohren GMJ, Kramer K, Sabate S (eds) Impacts of Global Change on Tree Physioland Forests Ecosystems, pp 47–51. Kluver Academic Publishers, Dordrecht

    Google Scholar 

  • Edwards N, Norby RJ (1999) Belowground respiratory responses of sugar maple and red maple saplings to atmospheric CO2 enrichment and elevated air temperature. Plant Soil 206: 85–97

    Google Scholar 

  • El Kohen A, Pontailler Y, Mousseau M (1991) Effect d’un doublement du CO2 atmosphérique sur la respiration à l’obscurité des parties aeriennes de jeunes chataigniers (Castanea sativa Mill.). Comptes Rendus de l’Academie des Sciences 312: 477–481.

    Google Scholar 

  • Felitti SA and Gonzalez DH (1998) Carbohydrates modulate the expression of the sunflower cytochrome c gene at the mRNA level. Planta 206, 410–415

    Article  CAS  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT and Falkowski P (1998) Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281: 237–240

    Article  PubMed  CAS  Google Scholar 

  • Giardina CP and Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404: 858–861

    Article  PubMed  CAS  Google Scholar 

  • Gifford RM (1994) The global carbon cycle: A view point on the missing sink. Aust J Plant Physiol 21: 1–15

    Google Scholar 

  • Gifford RM (2003) Plant respiration in productivity models: Conceptualization, representation and issues for global terrestrial carbon-cycle research. Func Plant Biol, 30: 171–86

    Google Scholar 

  • Gonzàlez-Meler MA (1995) Effects of increasing atmospheric concentration of carbon dioxide on plant respiration. Ph.D. Thesis. Universitat Barcelona, Barcelona

    Google Scholar 

  • Gonzàlez-Meler MA and Siedow JN (1999) Inhibition of respiratory enzymes by elevated CO2: Does it matter at the intact tissue and whole plant levels? Tree Physiol 19: 253–259

    PubMed  Google Scholar 

  • Gonzàlez-Meler MA, Drake BG and Azcón-Bieto J (1996a) Rising atmospheric carbon dioxide and plant respiration. In: Breymeyer AI, Hall DO, Melillo JM and Ågren GI (eds) Global Change: Effects on Coniferous Forests and Grasslands, pp 161–181. John Wiley & Sons, New York

    Google Scholar 

  • Gonzàlez-Meler MA, Ribas-Carbo M, Siedow JN and Drake BG (1996b) Direct inhibition of plant mitochondrial respiration by elevated CO2. Plant Physiol 112: 1349–1355

    PubMed  Google Scholar 

  • Gonzàlez-Meler MA, Giles L, RB Thomas and Siedow JN (2001). Metabolic regulation of leaf respiration and alternative pathway activity in response to phosphate supply. Plant Cell Environ, 24: 205–215

    Google Scholar 

  • Grace J, Lloyd J, Mcintyre J, Miranda Ac, Meir P, Miranda Hs, Nobre C, Moncrieff J, Massheder J, Malhi Y, Wright I and Gash J (1995) Carbon dioxide uptake by an undisturbed tropical rain forest in Southwest Amazonia, 1992 to 1993. Science 270: 778–780

    CAS  Google Scholar 

  • Griffin KL, Thomas RB and Strain BR (1993) Effects of nitrogen supply and elevated carbon dioxide on construction cost in leaves of Pinus taeda (L.) seedlings. Oecologia 95: 575–580

    Google Scholar 

  • Griffin KL, Ball JT and Strain BR (1996a) Direct and indirect effects of elevated CO2 on whole-shoot respiration in ponderosa pine seedlings. Tree Physiol 16: 33–41

    PubMed  Google Scholar 

  • Griffin KL, Winner WE and Strain BR (1996b) Construction cost of loblolly and ponderosa pine leaves grown with varying carbon and nitrogen availability. Plant Cell Environ 19: 729–738

    Google Scholar 

  • Griffin KL, Sims DA and Seemann JR (1999) Altered night-tome CO2 concentration affects growth, physiology and biochemistry of soybean. Plant Cell Environ 22: 91–99

    Article  CAS  Google Scholar 

  • Griffin KL, Anderson OR, Gastrich MD, Lewis JD, Lin G, Schuster W, Seemann JR, Tissue DT, Turnbull M and Whitehead D (2001) Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure. Proc Natl Acad Sci USA 98: 2473–2478

    PubMed  CAS  Google Scholar 

  • Hamilton JG, Thomas RB and Delucia EH (2001) Direct and indirect effects of elevated CO2 on leaf respiration in a forest ecosystem. Plant Cell Environ 24: 975–982

    Article  CAS  Google Scholar 

  • Hamilton JG, DeLucia EH, George K, Naidu S, Finzi AC and Schlesinger WH (2002) Forest carbon balance under CO2. Oecologia 131: 250–260

    Article  Google Scholar 

  • Hellmuth EO (1971) The effect of varying air-CO2 level, leaf temperature, and illuminance on the CO2 exchange of the dwarf pea, Pisum sativum L. var Meteor. Photosynthetica 5: 190–194

    Google Scholar 

  • Hesketh JD, Baker DN and Duncan WG (1971) Simulation of growth and yield in cotton: Respiration and the carbon balance. Crop Sci 11: 394–398

    Google Scholar 

  • Hogberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Hogberg MN, Nyberg G, Ottosson-Lofvenius M and Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411: 789–792

    PubMed  CAS  Google Scholar 

  • Hrubec TC, Robinson JM and Donaldson RP (1985) Effects of CO2 enrichment and carbohydrate content on the dark respiration of soybeans. Plant Physiol 79: 684–689

    CAS  Google Scholar 

  • Hungate BA, Holland EA, Jackson RB, Chapin III FS, Mooney HA and Field CB (1997) The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388: 576–579

    Article  CAS  Google Scholar 

  • Idso SB and Kimball BA (1992) Effects of atmospheric CO2 enrichment on photosynthesis, respiration and growth of sour orange trees. Plant Physiol 99: 341–343

    CAS  Google Scholar 

  • Jahnke S (2001) Atmospheric CO2 concentration does not directly affect leaf respiration in bean or poplar. Plant Cell Environ 24: 1139–1151

    Article  CAS  Google Scholar 

  • Jahnke S and Krewitt M (2002) Atmospheric CO2 concentration may directly affect leaf respiration measurement in tobacco, but not respiration itself. Plant Cell Environ 25: 641–651

    Article  CAS  Google Scholar 

  • Johnson DW, Geisinger D, Walker R, Newman J, Vose JM, Elliott KJ and Ball T (1994) Soil pCO2, soil respiration, and root activity in CO2-fumigated and nitrogen-fertilized ponderosa pine. Plant Soil 165: 129–138

    CAS  Google Scholar 

  • Kacser H and Burns JA (1979) Molecular democracy: Who shares control? Biochem Soc Trans 7: 1149–1160

    PubMed  CAS  Google Scholar 

  • Karnosky DF, Zak DR, Pregitzer KS, Awmack CS, Bockheim JG, Dickson RE, Hendrey GR, Host GE, King JS, Kopper BJ, Kruger EL, Kubiske ME, Lindroth RL, Mattson WJ, Mcdonald EP, Noormets A, Oksanen E, Parsons WFJ, Percy KE, Podila GK, Riemenschneider DE, Sharma P, Thakur R, Sober A, Sober J, Jones WS, Anttonen S, Vapaavuori E, Mankovska B, Heilman W and Isebrands JG (2003) Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: A synthesis of molecular to ecosystem: Results from the Aspen FACE project. Func Ecol 17: 289–304

    Article  Google Scholar 

  • Katul GG, Oren R, Ellsworth D, Hsieh CI, Phillips N and Lewin K (1997) A Lagrangian dispersion model for predicting CO2 sources, sinks, and fluxes in a uniform Loblolly pine (Pinus taeda L.) stand. J Geophys Res 102: 9309–9321

    CAS  Google Scholar 

  • Katul GG, Hsieh CI, Bowling D, Clark K, Shurpali N, Turnipseed A, Albertson J, Tu K, Hollinger D, Evans B, Offerle B, Anderson D, Ellsworth D, Vogel C and Oren R (1999) Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest. Boundary Layer Meteorol 93: 1–28

    Article  Google Scholar 

  • Kimball BA, Mauney JR, Nakayama FS and Idso SB (1993) Effects of increasing atmospheric CO2 on vegetation. Vegetatio 104/105: 65–75

    Article  Google Scholar 

  • King JS, Pregitzer KS, Zak DR, Sober J, Isebrands JG, Dickson RE, Hendrey GR and Karnosky DF (2001) Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia 128: 237–250

    Google Scholar 

  • Lin G, Rygiewicz PT, Ehleringer JR, Johnson MG and Tingey DT (2001) Time-dependent responses of soil CO2 efflux components to elevated atmospheric [CO2] and temperature in experimental forest mesocosms. Plant Soil 229: 259–270.

    Article  CAS  Google Scholar 

  • Luo Y, Medlyn B, Hui D, Ellsworth D, Reynolds J and Katul G (2001) Gross primary production in Duke Forest: Modeling synthesis of CO2 experiment and eddy-flux data. Ecol Appls 11, 239–252

    Google Scholar 

  • Matamala R and Schlesinger WH (2000) Effects of elevated atmospheric CO2 on fine-root production and activity in an intact temperate forest ecosystem. Global Change Biol, 6: 967–979

    Article  Google Scholar 

  • Matthews E (1997) Global litter production, pools and turnover times: Estimates from measurement data and regression models. J Geophys Res 102: 18771–18800

    Article  Google Scholar 

  • Naumburg E and Ellsworth DS (2000) Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO2 in FACE. Oecologia 122: 163–174

    Google Scholar 

  • Norby RJ, Hanson PJ, O’Neill EG, Tschaplinski TJ, Weltzin JF, Hansen RA, Cheng WX, Wullschleger SD, Gunderson CA, Edwards NT and Johnson DW (2002) Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecol Appls 12: 1261–1266

    Google Scholar 

  • Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW and Ceulemans R (1999) Tree responses to rising CO2 in field experiments: Implications for the future forest. Plant Cell Environ 22: 683–714

    Article  CAS  Google Scholar 

  • Palet A, Ribas-Carbo M, Argilés JM and Azcón-Bieto J (1991) Short-term effects of carbon dioxide on carnation callus cell respiration. Plant Physiol 96: 467–472

    CAS  Google Scholar 

  • Pendall E, Del Grosso S, King JY, LeCain DR, Milchunas DG, Morgan JA, Mosier AR, Ojima DS, Parton WA, Tans PP and White JWC (2003) Elevated atmospheric CO2 effects and soil water feedbacks on soil respiration components in a Colorado grassland. Global Biogeochem Cycles 17: 1046

    Article  Google Scholar 

  • Perez-Trejo MS (1981) Mobilization of respiratory metabolism in potato tubers by carbon dioxide. Plant Physiol 67: 514–517

    CAS  Google Scholar 

  • Pons TL and Welschen RAM (2002) Overestimation of respiration rates in commercially available clamp-on leaf chambers. Complications with measurement of net photosynthesis. Plant Cell Environ 25, 1367

    Article  Google Scholar 

  • Poorter H, Gifford RM, Kriedemann PE and Wong SC (1992) A quantitative analysis of dark respiration and carbon content as factors in the growth response of plants to elevated CO2. Aust J Bot 40: 501–513

    CAS  Google Scholar 

  • Poorter H, VanBerkel Y, Baxter R, DenHertog J, Dijkstra P, Gifford RM, Griffin KL, Roumet C, Roy J and Wong SC (1997) The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C-3 species. Plant Cell Environ 20: 472–482

    Article  CAS  Google Scholar 

  • Pregitzer KS, Zak DR, Maziasz J, DeForest J, Curtis PS, and Lussenhop J (2000) Interactive effects of elevated CO2 and soil N availability on fine roots of Populus tremuloides. Ecol Appls 10: 18–33

    Google Scholar 

  • Raich, JW and Potter CS (1995) Global patterns of carbon dioxide emissions from soils. Global Biogeochem Cycles 9: 23–36

    Article  CAS  Google Scholar 

  • Raich JW and Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B: 81–89

    CAS  Google Scholar 

  • Reuveni, J, Gale J and Mayer AM (1993) Reduction of respiration by high ambient CO2 and the resulting error in measurements of respiration made with O2 electrodes. Ann Bot 72: 129–131

    Article  CAS  Google Scholar 

  • Reuveni J, Gale J and Mayer AM (1995) High ambient carbon dioxide does not affect respiration by suppressing the alternative cyanide-resistant respiration. Ann Bot 76: 291–295

    Article  CAS  Google Scholar 

  • Reuveni J, Gale J and Zeroni M (1997) Differentiating day from night effects of high ambient [CO2] on the gas exchange and growth of Xanthium strumarium L. exposed to salinity stress. Ann Bot 80: 539–546

    Article  PubMed  CAS  Google Scholar 

  • Ribas-Carbo M, Berry JA, Yakir D, Giles L, Robinson SA, Lennon AM and Siedow JN (1995) Electron partitioning between the cytochrome and alternative pathways in plant mitochondria. Plant Physiol 109, 829–837

    PubMed  CAS  Google Scholar 

  • Ryan MG (1991) Effects of climate change on plant respiration. Ecol Appls 1: 157–167

    Google Scholar 

  • Ryan MG, Hubbard RM, Pongracic S, Raison RJ and McMurtrie RE (1996) Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiol 16: 333–343.

    PubMed  Google Scholar 

  • Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Global Change Biol 1, 77–91

    Google Scholar 

  • Schimel DS, Braswell BH, Holland EA, McKeown R., Ojima D.S., Painter T.H., Parton WJ and Townsend AR (1994) Climatic, edaphic and biotic controls over storage and turnover of carbon in soils. Global Biogeochem Cycles 8: 279–293

    Article  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: An Analysis of Global Change. Second edition, Academic Press, San Diego

    Google Scholar 

  • Schlesinger WH and Andrews JA, (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48: 7–20

    Article  CAS  Google Scholar 

  • Schlesinger WH and Lichter J (2000) Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411: 466–469.

    Google Scholar 

  • Steffen W, Noble I, Canadell J, Apps M, Schulze ED, Jarvis PG, Baldocchi D, Ciais P, Cramer W, Ehleringer J, Farquhar G, Field CB, Ghazi A, Gifford R, Heimann M, Houghton R, Kabat P, Korner C, Lambin E, Linder S, Mooney HA, Murdiyarso D, Post WM, Prentice IC, Raupach MR, Schimel DS, Shvidenko A and Valentini R (1998) The terrestrial carbon cycle: Implications for the Kyoto protocol. Science 280: 1393–1394

    Google Scholar 

  • Teskey RO (1995) A field study of the effects of elevated CO2 on carbon assimilation, stomatal conductance and leaf and branch growth of Pinus taeda trees. Plant Cell Environ 18: 565–573

    Google Scholar 

  • Tjoelker MG, Reich PB and Oleksyn J (1999) Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal species. Plant Cell Environ 22: 767–778

    Article  Google Scholar 

  • Tjoelker MG; Oleksyn J, Lee TD and Reich PB (2001) Direct inhibition of leaf dark respiration by elevated CO2 is minor in 12 grassland species. New Phytologist 150: 419–24

    Article  CAS  Google Scholar 

  • Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grunwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik U, Berbigier P, Loustau D, Guomundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S and Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404: 861–865.

    Article  PubMed  CAS  Google Scholar 

  • Vose JM, Elliott KJ, Johnson DW, Walker RF, Johnson MG and Tingey DT (1995) Effects of elevated CO2 and N fertilization on soil respiration from ponderosa pine (Pinus ponderosa) in open-top chambers. Can J For Res 25: 1243–1251.

    Google Scholar 

  • Will RE and Ceulemans R (1997) Effects of elevated CO2 concentrations on photosynthesis, respiration and carbohydrate status of coppice Populus hybrids. Physiol Planta 100: 933–939

    CAS  Google Scholar 

  • Williams ML, Jones DG, Baxter R and Farrar JF (1992) The effect of enhanced concentrations of atmospheric CO2 on leaf respiration. In: Lambers H, van der Plas LHW (eds), Molecular, Biochimical and Physiological Aspects of Plant Respiration, pp 547–551. SPB Academic Publishing bv, The Hague

    Google Scholar 

  • Wullschleger SD and Norby RJ (1992) Respiratory cost of leaf growth and maintenance in white oak saplings exposed to atmospheric CO2 enrichment. Can J For Res 22: 1717–1721

    CAS  Google Scholar 

  • Wullschleger SD, Norby RJ and Hendrix DL (1992a) Carbon exchange rates, chlorophyll content, and carbohydrate status of two forest tree species exposed to carbon dioxide enrichment. Tree Physiol 10: 21–31

    PubMed  CAS  Google Scholar 

  • Wullschleger SD, Norby RJ and Gunderson CA (1992b) Growth and maintenance respiration in leaves of Liriodendron tulipifera L. exposed to long-term carbon dioxide enrichment in the field. New Phytologist 121: 515–523

    CAS  Google Scholar 

  • Wullschleger SD, Ziska LH and Bunce JA (1994) Respiratory response of higher plants to atmospheric CO2 enrichment. Physiol Planta 90: 221–229.

    CAS  Google Scholar 

  • Wullschleger SD, Norby RJ and Hanson PJ (1995) Growth and maintenance respiration in stems of Quercus alba after four years of CO2 enrichment. Physiol Planta 93, 47–54

    CAS  Google Scholar 

  • Wullschleger SD, Norby RJ, Love JC and Runck C (1997) Energetic costs of tissue construction in yellow-poplar and white oak trees exposed to long-term CO2 enrichment. Ann Bot 80: 289–297

    Article  Google Scholar 

  • Zak DR, Pregitzer KS, King JS and Holmes WE (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: A review and hypothesis. New Phytologist 147: 201–222

    Article  CAS  Google Scholar 

  • Ziska, LH and Bunce JA (1994) Direct and indirect inhibition of single leaf respiration by elevated CO2 concentrations: Interaction with temperature. Physiol Planta 90: 130–138

    CAS  Google Scholar 

  • Ziska, LH and Bunce JA (1999) Effects of elevated carbon dioxide concentration at night on the growth and gas exchange of selected C4 species. Aust J Plant Physiol 26: 71–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel A. Gonzàlez-Meler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Gonzàlez-Meler, M.A., Taneva, L. (2005). Integrated Effects of Atmospheric CO2 Concentration on Plant and Ecosystem Respiration. In: Lambers, H., Ribas-Carbo, M. (eds) Plant Respiration. Advances in Photosynthesis and Respiration, vol 18. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3589-6_13

Download citation

Publish with us

Policies and ethics