Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 21))

Summary

Both endogenous and exogenous factors are involved in modulating and coordinating gene expression during plant development. Among them are light and plant hormones such as ethylene, cytokinins, abscisic acid, gibberellins, and brassinosteroids. Light and brassinosteroids have received particular attention because of their obvious and pronounced effects on early plant development following seed germination. By contrast, much less is known about the terminal stage of plant development referred to as senescence and the factors controlling this cell death program. Plant hormones such as ethylene and jasmonic acid have, however, been implicated in the initiation and progression of leaf senescence.

At all stages of their life cycle, plants are prone to various forms of oxidative stress. Upon illumination, excited tetrapyrroles such as chlorophyll, heme, and their precursors as well as degradation products can transfer their excitation energy onto oxygen, leading to the formation of highly reactive singlet oxygen. Angiosperms being the most highly evolved group of plants must have evolved efficient strategies to prevent the accumulation of such potentially harmful compounds. It is the aim of this chapter to summarize current concepts on the regulation of plant gene expression by light and the plant hormone jasmonic acid, with particular emphasis on the mechanisms by which higher plants prevent photooxidative self-poisoning. Special reference is made to the plastid compartment, which is the major site of tetrapyrrole metabolism and a source of signals that coordinate nuclear gene expression in response to light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam Z and Clarke AK (2002) Cutting edge of chloroplast proteolysis. Trends Plant Sci 7: 452–456

    Google Scholar 

  • Adam Z, Adamska I, Nakabayashi K, OstersetzerO, Haussuhl K, Manuall A, ZhengB, VallonO, Rodermel SR, ShinozakiKand Clarke AK (2001) Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature. Plant Physiol 125: 1912–1918

    Google Scholar 

  • Adamska I (1997) ELIPs – Light-induced stress proteins. Physiol Plant 100: 75–85

    Google Scholar 

  • Adamska I, Funk C, Renger G and Andersson B (1996) Developmental regulation of the PsbS gene expression in spinach seedlings: the role of phytochrome. Plant Mol Biol 31: 793– 802

    PubMed  CAS  Google Scholar 

  • Adamska I, Roobol-Boza M, LindahlMand Andersson B (1999) Isolation of pigment-binding early light-inducible proteins from pea. Eur J Biochem 260: 453–460

    Google Scholar 

  • Ahmad M, Jarillo JA, Smirnova O and Cashmore AR (1998) The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A. Mol Cell 1: 939–948

    PubMed  CAS  Google Scholar 

  • Altmann T (1999) Molecular physiology of brassinosteroids revealed by the analysis of mutants. Planta 208: 1–11

    PubMed  CAS  Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA and Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92: 773–784

    PubMed  CAS  Google Scholar 

  • Andrew T, Riley PG and Dailey HA (1990) Heme response pathways in yeast. In: Dailey HA (ed) Biosynthesis of Heme and Chlorophyll, pp 163–200. McGraw–Hill, New York

    Google Scholar 

  • Apel K (1981) The protochlorophyllide holochrome of barley (Hordeum vulgareL.): phytochrome-induced decrease of translatable mRNA coding for the NADPH:protochlorophyllide oxidoreductase. Eur J Biochem 120: 89–93

    PubMed  CAS  Google Scholar 

  • Apel K, Santel HJ, Redlinger TE and Falk H (1980) The protochlorophyllide holochrome of barley (Hordeum vulgare L.): isolation and characterization of the NADPHprotochlorophyllide oxidoreductase. Eur J Biochem 111: 251–258

    PubMed  CAS  Google Scholar 

  • Armstrong GA (1998) Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. J Photochem Photobiol B Biol 43: 87–100

    CAS  Google Scholar 

  • Armstrong GA, Runge S, Frick G, Sperling U and Apel K (1995) Identification of NADPH: protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108: 1505–1517

    PubMed  CAS  Google Scholar 

  • Asai T, Stone JM, Heard JE, Kovtun Y, Yorgey P, Sheen J and Ausubel FM (2000) Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12: 1823–1835

    PubMed  CAS  Google Scholar 

  • Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K and Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295: 2073–2076

    PubMed  CAS  Google Scholar 

  • Azumi Y, Watanabe A (1991) Evidence for a senescenceassociated gene induced by darkness. Plant Physiol 95: 577–583

    PubMed  CAS  Google Scholar 

  • Balk J and Leaver CJ (2001) The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13: 1803–1818

    PubMed  CAS  Google Scholar 

  • Barthélemy X, Bouvier G, Radunz A, Docquier S, Schmid GH and Franck F (2000) Localization of NADPHprotochlorophyllide reductase in plastids of barley at different greening stages. Photosynth Res 64: 63–76

    PubMed  Google Scholar 

  • Beale SI (1990) Biosynthesis of the tetrapyrrole pigment precursor, 6-aminolevulinic acid, from glutamate. Plant Physiol: 93: 1273–1279

    CAS  Google Scholar 

  • Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60: 43–73

    CAS  Google Scholar 

  • Beale SI and Weinstein JD (1990) Tetrapyrrole metabolism in photosynthetic organisms. In: Dailey HA (ed) Biogenesis of Hemeand Chlorophylls, pp 287–391. McGraw-Hill, NewYork

    Google Scholar 

  • Belknap WR and Garbarino JE (1996) The role of ubiquitin in plant senescence and stress responses. Trends Plant Sci 1: 331–335

    Google Scholar 

  • Benedetti CE, Costa CL, Turcinelli SR and Arruda P (1998) Differential expression of a novel gene in response to coronatine, methyl jasmonate, and wounding in the coi1 mutant of Arabidopsis. Plant Physiol 116: 1037–1042

    PubMed  CAS  Google Scholar 

  • Bent AF, Innes RW, Ecker JR and Staskawicz BJ (1992) Disease development in ethylene-insensitive Arabidopsis thaliana infected with virulent and avirulent Pseudomonas and Xanthomonas pathogens. Mol Plant–Microbe Interact 5: 372–378

    PubMed  CAS  Google Scholar 

  • Benvenuto G, Formiggini F, Laflamme P, Malakhov M and Bowler C (2002) The photomorphogenesis regulator DET1 binds the aminoterminal tail of histone H2B in a nucleosome context. Curr Biol 12: 1529–1534

    PubMed  CAS  Google Scholar 

  • Bishop GJ and KonczC (2002) rassinosteroids and plant steroid hormone signaling. Plant Cell Suppl 14: 97–110

    Google Scholar 

  • Bishop GJ and Yokota T (2001) Plants steroid hormones, brassinosteroids: Current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol 42: 114–120

    PubMed  CAS  Google Scholar 

  • Biswal UC and Biswal B (1999) Leaf senescence: physiology and molecular biology. Curr Sci 77: 775–782

    Google Scholar 

  • Bleecker AB and Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16: 1–18

    Google Scholar 

  • Bleecker A and Patterson S (1997) Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 9: 1169–1179

    PubMed  CAS  Google Scholar 

  • Blumwald E, Aharon GS and Lam BCH (1998) Early signal transduction pathways in plant-pathogen interactions. Trends Plant Sci 3: 342–346

    Google Scholar 

  • Boardman NK (1962) Studies on a protochlorophyll-protein complex. I. Purification and molecular weight determination. Biochem Biophys Acta 62: 63–79

    Google Scholar 

  • Boese QF, Spano AJ, Li J and Timko MP (1991) Aminolevulinic acid dehydratase in pea (Pisum sativumL.). Identification of an unusual metal-binding domain in the plant enzyme. J Biol Chem 266: 17060–17066

    PubMed  CAS  Google Scholar 

  • Bowler C, Neuhaus G, Yamagata H and Chua NH (1994) Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 77: 73–81

    PubMed  CAS  Google Scholar 

  • Bozhkov PV, Filonova LH, Suarez MF, Helmersson A, Smertenko AP, Zhivotovsky B and von Arnold S (2004) VEIDase is a principal caspase-like activity involved in plant programmed cell death and essential for embryonic pattern formation. Cell Death Diff 11: 175–182

    CAS  Google Scholar 

  • Brady L, Brzozowski AM, Derewenda ZS, Dodson E, Dodson GO, Tolley S, Turkenburg JP, Christiansen L, Huge-Jensen B, Norskov L, Thim L and Menge U (1990) A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343: 767–770

    PubMed  CAS  Google Scholar 

  • Brandis A, Vainstein A and Goldschmidt EE (1996) Distribution of chlorophyllase among components of chloroplastmembranes in Citrus sinensisorgans. Plant Physiol Biochem 34: 49–54

    CAS  Google Scholar 

  • Brodersen P, Petersen M, Pike HM, Olszak B, Skov S, Odum N, Jorgensen LB, Brown RE and Mundy J (2002) Knock-out of Arabidopsis accelerated cell death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev 16: 490–502

    PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot >48: 181–199

    Google Scholar 

  • Buchanan-Wollaston V, Ainsworth C (1997) Leaf senescence in Brassica napus: cloning of senescence related genes by subtractive hybridisation. Plant Mol Biol 33: 821–834

    PubMed  CAS  Google Scholar 

  • Burke DH, Hearst JE and Sidow A (1993) Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc Natl Acad Sci USA 90: 7134–7138

    PubMed  CAS  Google Scholar 

  • Casadoro G, Byer-Hansen G, Kannangara G and Gough S (1983) An analysis of temperature and light sensitivity in tigrina mutants of barley. Carlsberg Res Commun 48: 95–129

    CAS  Google Scholar 

  • Casal JJ (2000) Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem Photobiol 71: 1–11

    PubMed  CAS  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu YJ and Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284: 760–765

    PubMed  CAS  Google Scholar 

  • Chandlee JM (2001) Current molecular understanding of the genetically programmed process of leaf senescence. Physiol Plant 113: 1–8

    CAS  Google Scholar 

  • Chen M, Choi Y, Voytas DF and Rodermel S (2000) Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease. Plant J 22: 303–313

    PubMed  Google Scholar 

  • Chiba A, Ishida H, Nishizawa NK, Makino A and Mae T (2003) Exclusion of ribulose-1.5-bisphosphate carboxylase/ oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat. Plant Cell Physiol 44: 914–921

    Google Scholar 

  • Chichova NV, Kim Sh, Titova ES, Kalkum M, Morozov VS, Rubtsov YP, Kalinina NO, Taliansky ME and Vartapetian AB (2004) A plant caspase-like protease activated during the hypersensitive response. Plant Cell 16: 157–171

    Google Scholar 

  • Chory JP, Nagpal and Peto CA (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3: 445–459

    Google Scholar 

  • Christie JM and Briggs WR (2001) Blue light sensing in higher plants. J Biol Chem 276: 11457–11460

    PubMed  CAS  Google Scholar 

  • Ciardi JA and Klee H (2001) Regulation of ethylene-mediated responses at the level of receptor. Ann Bot 88: 813–822

    Google Scholar 

  • Ciardi JA, Tieman DM, Lund ST, Jones JB, Stall RE and Klee HJ (2000) Response to Xanthomonas campestrispv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiol 123: 81–92

    PubMed  CAS  Google Scholar 

  • Ciardi JA, Tieman DM, Jones JB and Klee HJ (2001) Reduced expression of the tomato ethylene receptor gene LeETR4 enhances the hypersensitive response to Xanthomonas campestrispv. vesicatoria. Mol Plant–Microbe Interact 14: 487–495

    Google Scholar 

  • Clouse SD (2002) Arabidopsis mutants reveal multiple roles for sterols in plant development. Plant Cell 14: 1995–2000

    PubMed  CAS  Google Scholar 

  • ClouseSDand SasseJM (1998) Brassinosteroids: Essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol Plant Mol Biol 49: 49: 427–451

    Google Scholar 

  • Coupe SA, Watson LM, Ryan DJ, Pinkney TT and Eason JR (2004) Molecular analysis of programmed cell death during senescence in Arabidopsis thalianaand Brassica oleracea: cloning broccoli LSD1, Bax inhibitor and serine palmitoyltransferase homologues. J Exp Bot 55: 59–68

    PubMed  CAS  Google Scholar 

  • Crafts-Brandner SJ, Klein RR, Klein P, Holzer R and Feller U (1996) Coordination of protein and mRNA abundances of stromal enzymes and mRNA abundances of the Clp protease subunits during senescence of Phaseolus vulgaris(L.) leaves. Planta 200: 312–318

    PubMed  CAS  Google Scholar 

  • Creelman RA and Mullet JE (1995) Jasmonic acid distribution and action in plants: Regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92: 4114–4119

    PubMed  CAS  Google Scholar 

  • Creelman RA and Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48: 355–381

    PubMed  CAS  Google Scholar 

  • Dangl JL, Dietrich RA and Thomas H (2000) Senescence and programmed cell death. In: Buchanan B, Gruissem W and Jones R (eds) Biochemistry and Molecular Biology of Plants, pp 1044–1100. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Danon A, Delorme V, Mailhac N and Gallois P (2000) Plant programmed cell death: a common way to die. Plant Physiol Biochem 38: 647–655

    CAS  Google Scholar 

  • Danon A, Rotari VI, Gordon A, Mailhac N and Gallois P (2004) Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and Defender against Apoptotic Death. J Biol Chem 279: 779–787

    PubMed  CAS  Google Scholar 

  • Dat JF, Pellinen R, Beeckman T, Van De Cotte B, Langebartels C, Kangasjarvi J, Inze D and van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33: 621–632

    PubMed  CAS  Google Scholar 

  • Davis SJ, Kurepa J and Vierstra RD (1999) The Arabidopsis thalianaHY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc Natl Acad Sci USA 96: 6541–6546

    PubMed  CAS  Google Scholar 

  • Dehesh K and Ryberg M (1985) The NADPH-protochlorophyllide oxidoreductase is the major protein constituent of prolamellar bodies in wheat (Triticum aestivumL.). Planta 164: 396–399

    CAS  Google Scholar 

  • Dehesh K, Häuser I, Apel K and Kloppstech K (1983) The distribution of NADPH-protochlorophyllide oxido-reductase in relation to chlorophyll accumulation along the barley leaf gradient. Planta 158: 134–139

    CAS  Google Scholar 

  • Dietrich RA, Delaney TP, Uknes SJ, Ward ER, Ryals J and Dangl JL (1994) Arabidopsis mutants simulating disease resistance response. Cell 77: 565–577

    Google Scholar 

  • Dietrich RA, Richberg MH, Schmidt R, Dean C and Dangl JL (1997) Anovel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell 88: 685–694

    PubMed  CAS  Google Scholar 

  • DrewMC, He CJ and MorganPW(2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5: 123–127

    Google Scholar 

  • Dreyfuss BW and Thornber JP (1994) Assembly of the lightharvesting complexes (LHCs) of photosystem II. Monomeric LHCIIb complexes are intermediates in the formation of oligomeric LHC IIb complexes. Plant Physiol 106: 829–839

    PubMed  CAS  Google Scholar 

  • Durnford DG and Falkowski PG (1997) Chloroplast redox regulation of nuclear gene transcription during photoacclimation. Photosynth Res 53: 229–241

    CAS  Google Scholar 

  • Escoubas JM, Lomas M, LaRoche J and Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92: 10237–10241

    PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S and Somssich IE (2001) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5: 199–206

    Google Scholar 

  • Fan L, Zheng S and Wang X (1997) Antisense suppression of phospholipase D retards abscisic acid- and ethylene-promoted senescence of post-harvest Arabidopsis leaves. Plant Cell 9: 2183–2196

    PubMed  CAS  Google Scholar 

  • Farmer EE and Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87: 7713–7716

    PubMed  CAS  Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56: 340–369

    PubMed  CAS  Google Scholar 

  • Fankhauser C (2001) The phytochromes, a family of red/far-red absorbing photoreceptors. J Biol Chem 276: 11453–11456

    PubMed  CAS  Google Scholar 

  • Fankhauser C and Staiger D (2002) Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and the entrainment of the endogenous clock. Planta 219: 1–16

    Google Scholar 

  • Fankhauser C, Yeh KC, Lagarias JC, Zhang H, Elich TD and Chory J (1999) PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284: 1539–1541

    PubMed  CAS  Google Scholar 

  • Ferri KF and Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3: E255–E263

    PubMed  CAS  Google Scholar 

  • Forreiter C and Apel K (1993) Light-independent and lightdependent protochlorophyllide-reducing activities and two distinct NADPH-protochlorophyllide oxidoreductase polypeptides in mountain pine (Pinus mugo). Planta 190: 536–545

    PubMed  CAS  Google Scholar 

  • Forreiter C, van Cleve B, Schmidt A and Apel K (1990) Evidence for a general light-dependent negative control of NADPHprotochlorophyllide oxidoreductase in angiosperms. Planta 183: 126–132

    Google Scholar 

  • Fradkin LI, Domanskaya IN, Radyuk MS, Domanskii VP and Kolyago VM (1993) Effect of benzyladenine and irradiation on energy transfer from precursor to chlorophyll in greening barley leaves. Photosynthetica 29: 227–234

    CAS  Google Scholar 

  • Franck F, Sperling U, Frick G, Pochert B, van Cleve B, Apel K and Armstrong GA (2000) Regulation of etioplast pigmentprotein complexes, inner membrane architecture, and protochlorophyllide a chemical heterogeneity by light-dependent NADPH:protochlorophyllide oxidoreductases A and B. Plant Physiol 124: 1678–1696

    PubMed  CAS  Google Scholar 

  • Frick G, Apel K and Armstrong GA (1995) Light-dependent protochlorophyllide oxidoreductase, phytochrome and greening in Arabidopsis thaliana. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol. III, pp 893–898. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Frick G, van Cleve B, Apel K and Armstrong GA (1999) Developmental regulation of the PORA and PORB genes in wildtype Arabidopsis seedlings grown in far-red light and in the dark-grown cop1 mutant. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol. IV, pp 3253–3256. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Frick G, Su Q, Apel K and Armstrong GA (2003) An Arabidopsis porB porC double mutant lacking light-dependent NADPH:protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested. Plant J 25: 141–153

    Google Scholar 

  • Friedrichsen D and Chory J (2001) Steroid signaling in plants: from the cell surface to the nucleus. Bioessays 23: 1028–1036

    PubMed  CAS  Google Scholar 

  • Fujita Y, Takagi H and Hase T (1998) Cloning of a gene encoding a protochlorophyllide reductase: the physiological significance of the co-existence of light-dependent and -independent protochlorophyllide reduction systems in the cyanobacterium, Plectonema boryanum. Plant Cell Physiol 39: 177– 185

    PubMed  CAS  Google Scholar 

  • Funk C, Schröder WP, Napiwotzki A, Tjus SE, Renger G and Andersson B (1995a) The PSII-S protein of higher plants: A new type of pigment-binding protein. Biochemistry 34: 1135– 1141

    Google Scholar 

  • Funk C, Adamska I, Green BR, Andersson B and Renger G (1995b) The nuclear-encoded chlorophyll-binding PSII-S protein is stable in the absence of pigments. J Biol Chem 270: 30141–30147

    CAS  Google Scholar 

  • Gepstein S (1988) Photosynthesis. In: Nood’en L and Leopold A (eds) Senescence and Aging in Plants, pp 85–109. Academic Press, San Diego, CA

    Google Scholar 

  • Gibson LC, Marrison JL, Leech RM, Jensen PE, Bassham DC, Gibson M and Hunter CN (1996) A putative Mg chelatase subunit from Arabidopsis thaliana cv C24: Sequence and transcript analysis of the gene, import of the protein into chloroplasts, and in situ localization of the transcript and protein. Plant Physiol 111: 61–71

    PubMed  CAS  Google Scholar 

  • Gilchrist DG (1997) Mycotoxins reveal connections between plants and animals in apoptosis and ceramide signaling. Cell Death Dif 4: 689–698

    CAS  Google Scholar 

  • Glickman MH and Ciechanover A (2002) The ubiquitinproteasome proteolysis pathway: destruction for the sake of construction. Physiol Rev 82: 373–428

    PubMed  CAS  Google Scholar 

  • Gough SP and Kannangara CG (1979) Biosynthesis of 5- aminolevulinate in tigrina mutants of barley. Carlsberg Res Commun 44: 403–416

    CAS  Google Scholar 

  • Granick S (1950) The structural and functional relationship between heme and chlorophyll. Harvey Lect 44: 220–245

    Google Scholar 

  • Gray J, Close PS, Briggs SP and Johal GS (1997) A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell 89: 25–31

    PubMed  CAS  Google Scholar 

  • Gray J, Janick-Buckner D, Buckner B, Close PS and Johal GS (2002) Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol 130: 1894–1907

    PubMed  CAS  Google Scholar 

  • Green BR and Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47: 685–714

    PubMed  CAS  Google Scholar 

  • Green BR, Pichersky E and Kloppstech K (1991) The chlorophyll a/b-binding light-harvesting antennas of green plants: the story of an extended gene family. Trends Biochem Sci 16: 181– 186

    PubMed  CAS  Google Scholar 

  • Green DR and Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309–1312

    PubMed  CAS  Google Scholar 

  • Greenberg JT, Guo A, Klessig DF and Ausubel FM (1994) Programmed cell death in plants: A pathogen-triggered response activated coordinately with multiple defense functions. Cell 77: 551–563

    PubMed  CAS  Google Scholar 

  • Griffiths CM, Hosken SE, Oliver D, Chojecki J and Thomas H (1997) Sequencing, expression pattern and RFLP mapping of a senescence-enhanced cDNA from Zea mays with high homology to oryzain gamma and aleurain. Plant Mol Biol 34: 815–821

    PubMed  CAS  Google Scholar 

  • Griffiths WT (1975) Characterization of the terminal stage of chlorophyll(ide) synthesis in etioplast membrane preparations. Biochem J 152: 623–635

    PubMed  CAS  Google Scholar 

  • Griffiths WT (1978) Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem J 174: 681–692

    PubMed  CAS  Google Scholar 

  • Grimm B and Kloppstech K (1987) The early light-inducible proteins of barley. Characterization of two families of 2-hspecific nuclear coded chloroplast proteins. Eur J Biochem 167: 493–499

    PubMed  CAS  Google Scholar 

  • Grimm B, Kruse E and Kloppstech K (1989) Transiently expressed early light-inducible thylakoid proteins share transmembrane domains with light-harvesting chlorophyll binding proteins. Plant Mol Biol 13: 583–593

    PubMed  CAS  Google Scholar 

  • Guiamét JJ, Pichersky E and Noodén, LD (1999) Mass exodus from senescing soybean chloroplasts. Plant Cell Physiol 40: 986–992

    Google Scholar 

  • Guo H, Mockler T, Duong H and Lin C (2001) SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science 291: 487–490

    PubMed  CAS  Google Scholar 

  • Hadfield KA and Bennett AB (1997) Programmed senescence of plant organs. Cell Death Diff 4: 662–670

    CAS  Google Scholar 

  • Hajouj T, Michelis R and Gepstein S (2000) Cloning and characterization of a receptor-like protein kinase gene associated with senescence. Plant Physiol 124: 1305–1314

    PubMed  CAS  Google Scholar 

  • Hardtke CS and Deng XW (2000) The cell biology of the COP/DET/FUS proteins. Regulating proteolysis in photomorphogenesis and beyond? Plant Physiol 124: 1548–1557

    CAS  Google Scholar 

  • Häuser I, Dehesh K and Apel K (1984) The proteolytic degradation in vitro of the NADPH-protochlorophyllide oxidoreductase of barley (Hordeum vulgare L.). Arch Biochem Biophys 228: 577–586

    PubMed  Google Scholar 

  • Haussuhl K, Andersson B and Adamska I (2001) A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. EMBO J 20: 713–722

    PubMed  CAS  Google Scholar 

  • He Q, Brune D, Nieman R and Vermaas W (1998) Chlorophyll a synthesis upon interruption and deletion of por coding for the light-dependentNADPH:protochlorophyllide oxidoreductase in a photosystem-I-less/chlL—strain of Synechocystis sp. PCC 6803. Eur J Biochem 253: 161–172

    PubMed  CAS  Google Scholar 

  • He Y and Gan S (2002) A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. Plant Cell 14: 805–815

    PubMed  CAS  Google Scholar 

  • He Y, Tang W, Swain JD, Green AL, Jack TP and Gan S (2001) Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol 126: 707– 716

    PubMed  CAS  Google Scholar 

  • He Y, Fukushige H, Hildebrand DF and Gan S (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128: 876–884

    PubMed  CAS  Google Scholar 

  • He ZH, Li J, Sundqvist C and Timko MP (1994) Leaf developmental age control expression of genes encoding enzymes of chlorophyll and heme biosynthesis in pea (Pisum sativum L.). Plant Physiol 106: 537–546

    PubMed  CAS  Google Scholar 

  • He ZH, Wang ZY, Li JM, Zhu Q, Lamb C, Ronald P and Chory J (2000) Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288: 2360– 2363

    PubMed  CAS  Google Scholar 

  • Hellmann H and EstelleM(2002) Plant development: regulation by protein degradation. Science 297: 793–797

    Google Scholar 

  • Hensel LL, Grbic V, Baumgarten DA and Bleecker AB (1993) Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5: 553–564

    PubMed  CAS  Google Scholar 

  • Hinderhofer K and Zentgraf U (2001) Identification of a transcriptional factor specifically expressed at the onset of leaf senescence. Planta 213: 469–473

    PubMed  CAS  Google Scholar 

  • Hoeberichts FA and Woltering EJ (2002) Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators. BioEssays 25: 47– 57

    CAS  Google Scholar 

  • Holland IB and Blight MA (1999) ABC-ATPases, adaptable energy generators fuelling transmembranemovement of a variety of molecules in organisms from bacteria to humans. J. Mol. Biol. 293: 381–399

    PubMed  CAS  Google Scholar 

  • Holm M, Ma LG, Qu LJ and Deng XW (2002) Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 16: 1247–1259

    PubMed  CAS  Google Scholar 

  • Holtorf H, Reinbothe S, Reinbothe C, Bereza B and Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley. Proc Natl Acad Sci USA 92: 3254–3258

    PubMed  CAS  Google Scholar 

  • Hörtensteiner S (1999) Chlorophyll breakdown in higher plants and algae. Cell. Mol Life Sci 56: 330–347

    PubMed  Google Scholar 

  • Hörtensteiner S, Vicentini F and Matile P (1995) Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L.: enzymatic cleavage of phaeophorbide a in vitro. New Phytol 129: 237–246

    Google Scholar 

  • Hörtensteiner S, Wüthrich KL, Matile P, Ongania KH and Kräutler B (1998) The key step in chlorophyll breakdown in higher plants: cleavage of pheophorbide a macrocycle by a monooxygenase. J Biol Chem 273: 15335–15339

    PubMed  Google Scholar 

  • Hsieh HM, Liu WK and Huang PC (1995) A novel stressinducible metallothionin-like gene from rice. Plant Mol Biol 28: 381–389

    PubMed  CAS  Google Scholar 

  • Hu G, Yalpani N, Briggs SP and Johal G (1998) A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10: 1095–1105

    PubMed  CAS  Google Scholar 

  • Hu YX, Bao F and Li JY (2000) Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J 24: 693–701

    PubMed  CAS  Google Scholar 

  • Huang L, Bonner BA and Castelfranco PA (1989) Regulation of 5-aminolevulinic acid (ALA) synthesis in developing chloroplasts. 11. Regulation of ALA-synthesizing capacity by phytochrome. Plant Physiol 90: 1003–1008

    PubMed  CAS  Google Scholar 

  • Hudson A, Carpenter R, Doyle S and Coen ES (1993) Olive: a key gene required for chlorophyll biosynthesis in Antirrhinum majus. EMBO J 12: 3711–3719

    PubMed  CAS  Google Scholar 

  • Huq E, Al-Sady B, Hudson M, Kim Ch, Apel K and Quail P (2004) PHYTOCHROME-INTERACTING FACTOR 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science 305: 1937–1941

    PubMed  CAS  Google Scholar 

  • Ide JP, Klug DR,Kühlbrandt W, Georgi L and Porter G (1987) The state of detergent-solubilized light harvesting chlorophyll-a/b protein complex as monitored by picosecond time-resolved fluorescence and circular dichroism. Biochim Biophys Acta 893: 349–364

    CAS  Google Scholar 

  • Ishikawa A, Okamoto H, Iwasaki Y and Asahi T (2001) A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J 27: 89–99

    PubMed  CAS  Google Scholar 

  • Jiang CZ and Rodermel SR (1995) Regulation of photosynthesis during leaf development in RbcS antisense DNA mutants of tobacco. Plant Physiol 107: 215–224

    PubMed  CAS  Google Scholar 

  • Jiang CZ, Rodermel SR and Shibles RM (1993) Photosynthesis, Rubisco activity and amount, and their regulation by transcription in senescing soybean leaves. Plant Physiol 101: 105–112

    PubMed  CAS  Google Scholar 

  • Ignatov NV and Litvin FF (1981) Energy migration in a pigmented protochlorophyllide complex. Biofizika 26: 664–668

    PubMed  CAS  Google Scholar 

  • Ishikawa A, Okamoto H, Iwasaki Y and Asahi T (2001) A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J 27: 89–99

    PubMed  CAS  Google Scholar 

  • Iwamoto K, Fukuda H and Sugiyama M (2001) Elimination of POR expression correlates with red leaf formation in Amaranthus tricolor. Plant J 27: 275–284

    PubMed  CAS  Google Scholar 

  • Jabs T, Dietrich RA and Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273: 1853–1856

    PubMed  CAS  Google Scholar 

  • Jacob-Wilk D, Holland D, Goldschmidt EE, Riov J and Eyal Y (1999) Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylenetreated Citrus fruit and its regulation during development. Plant J 20: 653–661

    PubMed  CAS  Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll a/b binding proteins. Biochim Biophys Acta 1184: 1–19

    PubMed  CAS  Google Scholar 

  • Johal GS, Hulbert S and Briggs SP (1995) Disease lesion mimic mutations of maize:Amodel for cell death in plants. Bioessays 17: 685–692

    Google Scholar 

  • Kachroo P, Shranklin J, Shah J, Whittle E and Klessig DF (2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci 98: 9448– 9453

    PubMed  CAS  Google Scholar 

  • Kågedal K, Zhao M, Svensson I and Brunk UT (2001) Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem J 359: 335–343

    PubMed  Google Scholar 

  • Kahn A (1968) Developmental physiology of bean leaf plastids. Tube transformation and protochlorphyll(ide) photoconversion by a flash irradiation. Plant Physiol 43: 1781–1785

    Article  PubMed  CAS  Google Scholar 

  • Kahn AA, Boardman NK and Thorne SW (1970) Energy transfer between protochlorophyllide molecules: Evidence for multiple chromophores in the photoactive protochlorophyllide- protein complex in vivo and in vitro. J Mol Biol 48: 85–101

    PubMed  CAS  Google Scholar 

  • Kang JG,Yun J, Kim DH, Chung KS, Fujioka S, Kim JI, DaeHW, Yoshida S, Takatsuto S, Song PS and Park CM (2001) Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell 105: 625– 636

    Google Scholar 

  • Karger GA, Reid JD and Hunter CN (2001) Characterization of the binding of deuteron-porphyrin IX to the magnesium chelatase H subunit and spectroscopic properties of the complex. Biochemistry 40: 9291–9299

    PubMed  CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G and Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9: 627– 640

    PubMed  CAS  Google Scholar 

  • Kaup MT, Froese CD and Thompson JE (2002) A role of diacylglycerol acyltransferase during leaf senescence. Plant Physiol 129: 1616–1626

    PubMed  CAS  Google Scholar 

  • Kauschmann A, Jessop A, Koncz C, Szekeres M, Willmitzer L and Altmann T (1996) Genetic evidence for an essential role of brassinosteroids in plant development. Plant J 9: 701–713

    CAS  Google Scholar 

  • Kawai-Yamada M, Ohori Y and Ucimiya H (2004) Dissection of Arabidopsis Bax inhibitor -1 suppressing Bax-, hydrogen peroxide-, and salicylic acid- induced cell death. Plant Cell 16: 21–32

    PubMed  CAS  Google Scholar 

  • KawanoT, SahashiN, Takahashi K, UozumiNand Muto S (1998) Salicylic acid induces extracellular generation of superoxide followed by an increase in cytosolic calcium ion in tobacco suspension culture: the earliest events in salicylic acid signal transduction. Plant Cell Physiol 39: 721–730

    Google Scholar 

  • Kay SA and Griffiths WT (1983) Light-induced breakdown of NADPH:protochlorophyllide oxidoreductase in vitro. Plant Physiol 72: 229–236

    PubMed  CAS  Google Scholar 

  • Kendrick RE and Kronenberg GH (1994) Photomorphogenesis in Plants. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • Khalyfa A, Kermasha S, Marsot P and Goetgebheur M (1995) Purification and characterization of chlorophyllase from alga Phaeodactylum tricornutum by preparative native electrophoresis. Appl Biochem Biotechnol 53: 11–27

    CAS  Google Scholar 

  • Kirk JTO and Tilney-Basset RAE (1978) The Plastids: Their Chemistry, Structure, Growth and Inheritance. Elsevier North- Holland Biomedical Press, Amsterdam/New York

    Google Scholar 

  • Kleffmann T, Russenberger D, von Zychlinske A, Christopher W, Sjölander K, GruissemWand Baginsky S (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14: 354–362

    Google Scholar 

  • Kloppstech K, Meyer G, Bartsch K, Hundrieser J and Link G (1984) Control of gene expression during the early stages of chloroplast development. In: Wiessner W, Robinson D and Starr R (eds) Compartments of Algal Cells and Their Interaction, pp 36–46. Springer Verlag, Berlin

    Google Scholar 

  • Kohchi T, Mukougawa K, Frankenberg N, Masuda M, Yokota A and Lagarias JC (2001) The Arabidopsis hy2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13: 425–436

    PubMed  CAS  Google Scholar 

  • Koncz C, Mayerhofer R, Koncz-Kalman Z, Nawrath C, Reiss B, Redei GP and Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J 9: 1337–1346

    PubMed  CAS  Google Scholar 

  • K’ota Z, Horvath LJ, Droppa M, Horvath G, Farkas T and Pali T (2002) Protein assembly and heat stability in developing thylakoid membranes during greening. Proc Natl Acad Sci USA 99: 12149–12154

    CAS  Google Scholar 

  • Kovtun Y, Chui WL, Tena G and Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97: 2940–2945

    PubMed  CAS  Google Scholar 

  • Kroemer G (1999) Mitochondrial control of apoptosis: an overview. Biochem Soc Symp 66: 1–15

    PubMed  CAS  Google Scholar 

  • KühlbrandtW, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Google Scholar 

  • Kuriyama H and Fukuda H (2002) Developmental programmed cell death in plants. Curr Opin Plant Biol 5: 568–573

    PubMed  CAS  Google Scholar 

  • Labbe-Bois R and Labbe P (1990) Regulation of gene expression by iron and heme. In: Dailey HA (ed) Biosynthesis of Heme and Chlorophyll, pp 235–285. McGraw–Hill, New York

    Google Scholar 

  • Lebedev N and Timko MP (1998) Protochlorophyllide photoreduction. Photosynth Res 58: 5–23

    CAS  Google Scholar 

  • Lebedev N and Timko MP (1999) Protochlorophyllide oxidoreductase B-catalyzed protochlorophyllide photoreduction in vitro: insight into the mechanism of chlorophyll formation in light-adapted plants. Proc Natl Acad Sci USA 96: 9954–9959

    PubMed  CAS  Google Scholar 

  • Lebedev N, van Cleve B, Armstrong G and Apel K (1995) Chlorophyll synthesis in a de-etiolated (det340) mutant of Arabidopsis without NADPH-protochlorophyllide (PChlide) oxidoreductase (POR)Aand photoactive PChlide-F655. Plant Cell 7: 2081–2090

    PubMed  CAS  Google Scholar 

  • Lee KP, Kim C, Lee DW and Apel K(2003) TIGRINAd, required for regulating the biosynthesis of tetrapyrroles in barley, is an ortholog of the FLU gene of Arabidopsis thaliana. FEBS Lett 553: 119–24

    PubMed  CAS  Google Scholar 

  • Lehnen LP, Sherman TD, Becerril JM and Duke SO (1990) Tissue and cellular localization of acifluorfen-induced porphyrins in cucumber cotyledons. Pestic Biochem Physiol 37: 239– 248

    CAS  Google Scholar 

  • Li JM and Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90: 929–938

    PubMed  CAS  Google Scholar 

  • Li JM and Nam KH (2002) Regulation of brassinosteroid signaling by aGSK3/SHAGGY-like kinase. Science 295: 1299–1301

    PubMed  CAS  Google Scholar 

  • Li JM and Timko MP (1996) The pc-1 phenotype of Chlamydomonas reinhardtii results from a deletion mutation in the nuclear gene for NADPH:protochlorophyllide oxidoreductase. Plant Mol Biol 30: 15–37

    PubMed  CAS  Google Scholar 

  • Li JM, Nagpal P, Vitart V, McMorris TC and Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272: 398–401

    PubMed  CAS  Google Scholar 

  • Lin J-F and Wu S-H (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39: 612–628

    PubMed  CAS  Google Scholar 

  • Lund S, Stall RE and Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10: 372–382

    Google Scholar 

  • Ma LG, Li JM, Qu LJ, Hager J, Chen Z, Zhao HY and DengXW (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13: 2589–2607

    PubMed  CAS  Google Scholar 

  • Mach JM, Castillo AR, Hoogstraten R and Greenberg JT (2001) The Arabidopsis accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci USA 98: 771–776

    PubMed  CAS  Google Scholar 

  • Mae T, Makino A and Ohira K (1987) Carbon fixation and changes with senescence in rice leaves. In: Thomson W, Nothnegel E and Huffaker R (eds) Plant Senescence: Its Biochemistry and Physiology, pp 123–131. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Marchetti P, HirschT, ZamzamiN, CastedoM, DecaudinD, Susin SA, Masse B and Kroemer G(1996) Mitochondrial permeability transition triggers lymphocyte apoptosis. J Immunol 157: 4830–4836

    Google Scholar 

  • Martinez-Garcia JF, Huq E and Quail PH (2000) Direct targeting of light signals to a promoter element-bound transcription factor. Science 288: 859–863

    PubMed  CAS  Google Scholar 

  • Masuda T, FusadaN, Shiraishi T, Kuroda H, Awai K, Shimada H, Ohta H and Takamiya K (2002) Identification of two differentially regulated isoforms of protochlorophyllide oxidoreductase (POR) from tobacco revealed a wide variety of light- and development-dependent regulations of POR gene expression among angiosperms. Photosynth Res 74: 165–172

    Google Scholar 

  • Mathis P and Sauer K (1972) Circular dichroism studies on the structure and the photochemistry of protochlorophyllide and chlorophyllide holochrome. Biochim Biophys Acta 267: 498– 511

    PubMed  CAS  Google Scholar 

  • Matile P and Schellenberg M(1996) The cleavage of phaeophorbide a is located in the envelope of barley gerontoplasts. Plant Physiol Biochem 34: 55–59

    CAS  Google Scholar 

  • Matile P, Schellenberger M and Vicentini F (1997) Localization of chlorophyllase in the chloroplast envelope. Planta 201: 96– 99

    CAS  Google Scholar 

  • Matile P, Thomas H and Hörtensteiner S (1999) Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 50: 67– 95

    PubMed  CAS  Google Scholar 

  • Matringe M, Camadro JM, Block MA, Joyard J, Scalla R, Labbe P and Douce R (1992) Localisation within chloroplasts of protoporphyrinogen oxidase, the target enzyme for diphenyletherlike herbicides. J Biol Chem 267: 4646–4651

    PubMed  CAS  Google Scholar 

  • Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R and Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98: 12826–12831

    PubMed  CAS  Google Scholar 

  • Meskauskiene R and Apel K (2002) Interaction of FLU, a negative regulator of tetrapyrrole biosynthesis, with the glutamyltRNA reductase requires the tetratricopeptide repeat domain of FLU. FEBS Lett 532: 27–30

    PubMed  CAS  Google Scholar 

  • Miller BL and Huffaker RC (1981) Partial purification and characterization of endoproteinases from senescing barley leaves. Plant Physiol 68: 930–936

    PubMed  CAS  Google Scholar 

  • Mochizuki N, Brusslan JA, Larkin R, Nagatani A and Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastidto- nucleus signal transduction. Proc Natl Acad Sci USA 98: 2053–2058

    PubMed  CAS  Google Scholar 

  • Moeder W, Barry CS, Tauriainen AA, Betz C, Tuomainen J, Utriainen M, Grierson D, Sandermann H, Langebartels C and Kangasjarvi J (2002) Ethylene synthesis regulated by biphasic induction of ACC synthase and ACC oxidase genes is required for H2O2 accumulation and cell death in ozoneexposed tomato. Plant Physiol 130: 1918–1926

    PubMed  CAS  Google Scholar 

  • Molina A, Volrath S, Guyer D, Maleck K, Ryals J and Ward E (1999) Inhibition of protoporphyrinogen oxidase expression in Arabidopsis causes a lesion-mimic phenotype that induces systemic acquired resistance. Plant J 17: 667–678

    PubMed  CAS  Google Scholar 

  • Møller SG, Kunkel T and Chua NH (2001) A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes Dev 15: 90–103

    PubMed  Google Scholar 

  • Møller SG, Ingles PJ and Whitelam GC (2002) The cell biology of phytochrome signalling. New Phytol 154: 553–590

    Google Scholar 

  • Montgomery BL and Lagarias JC (2002) Phytochrome ancestry: sensors of bilins and light. Trends Plant Sci 7: 357–366

    PubMed  CAS  Google Scholar 

  • Morel JB and Dangl JL (1997) The hypersensitive response and the induction of cell death in plants. Cell Death Diff 4: 671– 683

    CAS  Google Scholar 

  • MouZ, HeY, DaiY, LiuXand Li J (2000) Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology. Plant Cell 12: 405–417

    Google Scholar 

  • Muramoto T, Kohchi T, Yokota A, Hwang I and Goodman HM (1999) The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11: 335– 348

    PubMed  CAS  Google Scholar 

  • Nagy F and Schäfer E (2002) Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu Rev Plant Biol 53: 329– 355

    PubMed  CAS  Google Scholar 

  • Nakabayashi K, Ito M, Kiyosue T, Shinozaki K and Watanabe A (1999) Identification of clp genes expressed in senescing Arabidopsis thaliana leaves. Plant Cell Physiol 40: 504– 514

    PubMed  CAS  Google Scholar 

  • Nam HG (1997) The molecular genetic analysis of leaf senescence. Curr Opin Biotechnol 8: 200–207

    PubMed  CAS  Google Scholar 

  • Navarre DA and Wolpert TJ (1999) Victorin induction of an apoptotic/senescence-like response in oats. Plant Cell 11: 137– 144

    Google Scholar 

  • Neff MM, Ngyuen SM, Malancharuvil EJ, Fujiko S, Noichi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S and Chory J (1999)BAS1:Agene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA 96: 15316–15323

    PubMed  CAS  Google Scholar 

  • Ni M, Tepperman JM and Quail PH (1999) Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400: 781–784

    PubMed  CAS  Google Scholar 

  • Nibbe M, HilpertB, Wasternack C, Miersch O and Apel K(2002) Cell death and salicylate- and jasmonate-dependent stress responses in Arabidopsis are controlled by single cet genes. Planta 216: 120–128

    Google Scholar 

  • Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann KA and Tax FE (1999) Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol 121: 743–752

    PubMed  CAS  Google Scholar 

  • Noodén LD and Penny JP (2001) Correlative controls of senescence and plant death in Arabidopsis thaliana (Brassicaceae). J Exp Bot 52: 2151–2159

    PubMed  Google Scholar 

  • Noodén LD, Guiamét JJ and John I (1997) Senescence mechanisms. Physiol Plant 101: 746–753

    Google Scholar 

  • Oberhuber M, Berghold J, Breuker K, Hörtensteiner S and Kräutler B (2003) Breakdown of chlorophyll: a nonenzymatic reaction accounts for the formation of the colorless "nonfluorescent" chlorophyll catabolites. Proc Natl Acad Sci USA 100: 6910–6915

    PubMed  CAS  Google Scholar 

  • Oelmüller R (1989) Photooxidative destruction of chloroplasts and its effect on nuclear gene expression and extraplastidic enzyme levels. Photochem Photobiol 49: 229–239

    Google Scholar 

  • Oh MH, Ray WK, Huber SC, Asara JM, Gage DA and Clouse SD (2000) Recombinant brassinosteroid insensitive 1 receptor-like kinase autophosphorylates on serine and threonine residues and phosphorylates a conserved peptide motif in vitro. Plant Physiol 124: 751–765

    PubMed  CAS  Google Scholar 

  • Oh, SA, Park J-H, Lee GI, Paek KH, Park SK and Nam HG(1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J 12: 527–535

    PubMed  CAS  Google Scholar 

  • Okamoto H, Matsui M and Deng XW (2001) Overexpression of the heterotrimeric G-protein $α$-subunit enhances phytochrome-mediated inhibition of hypocotyl elongation in Arabidopsis. Plant Cell 13: 1639–1651

    PubMed  CAS  Google Scholar 

  • Oosawa N, Masuda T, Awai K, Fusada N, Shimada H, Ohta H and Takamiya KI (2000) Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FEBS Lett 474: 133–136

    PubMed  CAS  Google Scholar 

  • op den Camp R, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hidég E, Göbel C, Feussner I, Nater M and Apel K (2003) Rapid induction of distinct stess responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15: 2320–2332

    PubMed  CAS  Google Scholar 

  • Ordog SH, Higgins VJ and Vanlerberghe GC (2002) Mitochondrial alternative oxidase is not a critical component of plant viral resistance but may play a role in the hypersensitive response. Plant Physiol 129: 1858–1865

    PubMed  CAS  Google Scholar 

  • Orzáez D and Granell A (1997) The plant homologue of the defender against apoptotic death gene is down-regulated during senescence of flower petals. FEBS Lett 404: 275– 278

    PubMed  Google Scholar 

  • Ougham HJ, Thomas AM, Thomas BJ, Frick GA and Armstrong GA (2001) Both light-dependent protochlorophyllide oxidoreductase A and protochlorophyllide oxidoreductase B are down-regulated in the slender mutant of barley. J Exp Bot 52: 1447–1454

    PubMed  CAS  Google Scholar 

  • Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H and Kangasjärvi J (2000) The ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxidedependent cell death. Plant Cell 12: 1849–1862

    PubMed  CAS  Google Scholar 

  • Overmyer K, BorschéM and Kangasjärvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8: 335–342

    Google Scholar 

  • Oyama T, Shimura Y and Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11: 2983– 2995

    PubMed  CAS  Google Scholar 

  • Palsson LO, Spangfort MD, Gulbinas V and Gillbro T (1994) Ultrafast chlorophyll b to chlorophyll excitation energy transfer in the isolated light harvesting complex, LHCII, of green plants: implications for the organisation of chlorophylls. FEBS Lett 339: 134–138

    PubMed  CAS  Google Scholar 

  • Park J-H, Oh SA, Kim YH, Woo HR and Nam HG (1998) Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis. Plant Mol Biol 37: 445–454

    PubMed  CAS  Google Scholar 

  • Pattanayak GK and Tripathy BC (2002) Catalytic function of a novel protein protochlorophyllide oxidoreductase C of Arabidopsis thaliana. Biochem Biophys Res Commun 291: 921– 924

    PubMed  CAS  Google Scholar 

  • Pennell RI and Lamb C (1997) Programmed cell death in plants. Plant Cell 9: 1157–1168

    PubMed  CAS  Google Scholar 

  • Perkins ND (2000) The Rel/NF-kappaB family: friend and foe. Trends Biochem Sci 25: 434–440

    PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Allen JF and Oelmüller R (2001a) Principles of redox control in photosynthesis gene expression. Physiol Plant 112: 1–9

    CAS  Google Scholar 

  • Pfannschmidt T, Schütze K, Brost M and Oelmüller R (2001b) A novel mechanism of nuclear photosynthesis gene regulation by redox signals from the chloroplast during photosystem stoichiometry adjustment. J Biol Chem 276: 36125–36130

    CAS  Google Scholar 

  • Pontoppidan B and Kannangara CG (1994) Purification and characterization of barley glutamyl-tRNA reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem 225: 529–537

    PubMed  CAS  Google Scholar 

  • Pruzinska A, Tanner G, Anders I, Roca M and Hörtensteiner S (2003) Chlorophyll breakdown: phaeophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc Natl Acad Sci USA 100: 15259– 15264

    PubMed  CAS  Google Scholar 

  • Pursiheimo S, Mulo, P, Rintamäki E and Aro E-M (2001) Coregulation of light-harvesting complex II phosphorylation and Lhcb accumulation in winter rye. Plant J 26: 317–327

    PubMed  CAS  Google Scholar 

  • Quail PH (2000) Phytochrome-interacting factors. Semin Cell Dev Biol 11: 457–466

    PubMed  CAS  Google Scholar 

  • Quail PH (2002a) Photosensory perception and signalling in plant cells: new paradigms? Curr Opin Cell Biol 14: 180–188

    CAS  Google Scholar 

  • Quail PH (2002b) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3: 85–93

    CAS  Google Scholar 

  • Quail PH, Boylan, MT, Parks BM, Short TW, Xu Y and Wagner D (1995) Phytochromes: photosensory perception and signal transduction. Science 268: 675–680

    PubMed  CAS  Google Scholar 

  • Rao MV, Lee H, Creelman RA, Mullet JE, Davis KR (2000) Jasmonic acid signalling modulates ozone-induced hypersensitive cell death. Plant Cell 12: 1633–1646

    PubMed  CAS  Google Scholar 

  • Rao MV, Lee HI and Davis KR (2002) Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. Plant J 32: 447–456

    PubMed  CAS  Google Scholar 

  • Reed JW, Nagpal P, Poole DS, Furuya M and Chory J (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5: 147–157

    PubMed  CAS  Google Scholar 

  • Reinbothe C and Reinbothe S (1996a) Jasmonates – secondary messengers in plant defense and stress reactions. In: Grillo S and Leone A (eds) Physical Stresses in Plants – Genes and their Products for Tolerance, pp 161–168. Springer, Berlin

    Google Scholar 

  • Reinbothe S and Reinbothe C (1996b) The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem 237: 323– 343

    CAS  Google Scholar 

  • Reinbothe S and Reinbothe C (2004) Light-harvesting protochlorophyllide binding protein complex (LHPP) is developmentally expressed in angiosperms. In: Schnarrenberger K and Wittmann-Liebold B (eds) Proceedings of 12th International Congress on Genes, Gene Families and Isozymes. Monduzzi Editore, Bologna, Italy, in press

    Google Scholar 

  • Reinbothe S, Reinbothe C and Parthier B (1993a) Methyl jasmonate represses translation initiation of a specific set of mRNAs in barley. Plant J 4: 459–467

    CAS  Google Scholar 

  • Reinbothe S, Reinbothe C and Parthier B (1993b) Methyl jasmonate-regulated translation of nuclear-encoded chloroplast proteins in barley (Hordeum vulgare L. cv. Salome). J Biol Chem 268: 10606–10611

    CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Heintzen C, Seidenbecher C and Parthier B (1993c) A methyl jasmonate-induced shift in the length of the 5_ untranslated region impairs translation of the plastid rbcL transcript in barley. EMBO J 12: 1505–1512

    CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Lehmann J, Becker W, Apel K and Parthier B (1994a) JIP60, a methyl jasmonate-induced ribosome-inactivating protein involved in plant stress reactions. Proc Natl Acad Sci USA 91: 7012–7016

    CAS  Google Scholar 

  • Reinbothe S, Mollenhauer B and Reinbothe C (1994b) JIPs and RIPs: The regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell 6: 1197–1209

    CAS  Google Scholar 

  • Reinbothe S, Runge S, Reinbothe C, van Cleve B and Apel K (1995a) Substrate-dependent transport of the NADPH: protochlorophyllide oxidoreductase into isolated plastids. Plant Cell 7: 161–172

    Google Scholar 

  • Reinbothe S, Reinbothe C, Runge S and Apel K (1995b) Enzymatic product formation impairs both the chloroplast receptor binding function as well as translocation competence of the NADPH:protochlorophyllide oxidoreductase, a nuclearencoded plastid protein. J Cell Biol 129: 299–308

    CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Holtorf H and Apel K (1995c) Two NADPH:protochlorophyllide oxidoreductases in barley: Evidence for the selective disappearance of PORA during the light-induced greening of etiolated seedlings. Plant Cell 7: 1933–1940

    CAS  Google Scholar 

  • Reinbothe C, Apel K and Reinbothe S (1995d) A lightinduced protease from barley plastids degrades NADPH: protochlorophyllide oxidoreductase complexed with chlorophyllide. Mol Cell Biol 15: 6206–6212

    CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Lebedev N and Apel K (1996a) PORA and PORB, two light-dependent protochlorophyllide-reducing enzymes of angiosperm chlorophyll biosynthesis. Plant Cell 8: 763–769

    CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Apel K and Lebedev N (1996b) Evolution of chlorophyll biosynthesis: The challenge to survive photooxidation. Cell 86: 703–705

    CAS  Google Scholar 

  • Reinbothe C, Parthier B and Reinbothe S (1997) Temporal pattern of jasmonate-induced alterations in gene expression of barley leaves. Planta 201: 281–287

    CAS  PubMed  Google Scholar 

  • Reinbothe C, Lebedev N and Reinbothe S (1999) A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants. Nature 397: 80–84

    CAS  Google Scholar 

  • Reinbothe S, Pollmann S and Reinbothe C (2003a) In situ conversion of protochlorophyllide b to protochlorophyllide a in barley: Evidence for a novel role of 7-formyl reductase in the prolamellar body of etioplasts. J Biol Chem 278: 800–806

    CAS  Google Scholar 

  • Reinbothe C, Buhr F, Pollmann S and Reinbothe S (2003b) In vitro reconstitution of LHPP with protochlorophyllides a and b. J Biol Chem 278: 807–815

    CAS  Google Scholar 

  • Reinbothe C, Lepinat A, Deckers M, Beck E and Reinbothe S (2003c) The extra loop distinguishing POR from the structurally related short-chain alcohol dehydrogenases is dispensable for pigment binding, but needed for the assembly ofLHPP. J Biol Chem 278: 816–822

    CAS  Google Scholar 

  • Reinbothe C, Satoh H, Alcaraz JP and Reinbothe S (2004a) A novel role of water-soluble chlorophyll proteins in transitory storage of chorophyllide. Plant Physiol 134: 1355–1365

    CAS  Google Scholar 

  • Reinbothe C, Pollmann S, Desvignes C, Weigele M, Beck E and Reinbothe S (2004b) LHPP, the light-harvesting NADPH: protochlorophyllide (Pchlide) oxidoreductase:Pchlide complex of etiolated plants, is developmentally expressed across the barley leaf gradient. Plant Sci, in press

    Google Scholar 

  • Rintamäki E, Martinsuo P, Pursiheimo S and Aro E-M (2000) Cooperative regulation of light-harvesting complex II phosphorylation via the plastoquinol and ferredoxin-thioredoxin system in chloroplasts. Proc Natl Acad Sci USA 97: 11644– 11649

    PubMed  Google Scholar 

  • Robatzek S and Somssich IE (2001) A new member of the ArabidopsisWRKYtranscription factor family, AtWRKY6, is associated with both senescence- and defense-related processes. Plant J 28: 123–133

    PubMed  CAS  Google Scholar 

  • Robatzek S and Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Gene Dev 16: 1139–1149

    PubMed  CAS  Google Scholar 

  • Rodoni S, Muhlecker W, Anderl M, Krautler B, Moser D, Thomas H, Matile P and Hörtensteiner S (1997) Chlorophyll breakdown in senescent chloroplasts: cleavage of pheophorbide a in two enzymic steps. Plant Physiol 115: 669–676

    PubMed  CAS  Google Scholar 

  • Rowe JD and Griffiths WT (1995) Protochlorophyllide reductase in photosynthetic prokaryotes and its role in chlorophyll synthesis. Biochem J 311: 417–424

    PubMed  CAS  Google Scholar 

  • Runge S, Sperling U, Frick G, Apel K and Armstrong GA (1996) Distinct roles for light-dependent NADPH:protochlorophyllide oxidoreductases (POR)Aand B during greening in higher plants. Plant J 9: 513–523

    PubMed  CAS  Google Scholar 

  • Ryberg M and Dehesh K (1986) Localization of NADPHprotochlorophyllide oxidoreductase in dark-grown wheat (Triticum aestivum) by immuno-electron microscopy before and after transformation of the prolamellar bodies. Physiol Plant 66: 616–624

    CAS  Google Scholar 

  • Satoh H, Nakayama K and Okada M (1998) Molecular cloning and functional expression of a water-soluble chlorophyll protein, a putative carrier of chlorophyll molecules in cauliflower. J Biol Chem 273: 30568–30575

    PubMed  CAS  Google Scholar 

  • Schäfer E and Bowler C (2002) Phytochrome-mediated photoperception and signal transduction. EMBO Rep 3: 1042– 1048

    PubMed  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC and Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97: 11655–11660

    PubMed  CAS  Google Scholar 

  • Schroeder DF, Gahrtz M, Maxwell BB, Cook RK, Kan JM, Alonso JM, Ecker JR and Chory J (2002) De-etiolated1 (DET1) and damaged DNA binding protein1 (DDB1) interact to regulate Arabidopsis photomorphogenesis. Curr Biol 12: 1462–1472

    PubMed  CAS  Google Scholar 

  • Schulze-Lefert P and Panstruga R (2003) Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu Rev Phytopathol 41: 641–667

    PubMed  CAS  Google Scholar 

  • Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T and Chory J (1999) The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes Dev 13: 3259–3270

    PubMed  CAS  Google Scholar 

  • Schwechheimer C, Serino G, Callis J, Crosby WL, Lyapina S, Deshaies RJ, Gray WM, Estelle M and Deng XW(2001) Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIR1 in mediating auxin response. Science 292: 1379– 1382

    PubMed  CAS  Google Scholar 

  • Semdner G and Parthier B (1993) The biochemistry and physiological and molecular aspects of jasmonates. Annu Rev Plant Physiol Plant Mol Biol 44: 569–589

    Google Scholar 

  • Shacklock PS, Read ND and Trewavas AJ (1992) Cytosolic free calcium mediates red light-induced photomorphogenesis. Nature 358: 753–755

    CAS  Google Scholar 

  • Shaw P, Henwood J, Oliver R and Griffiths WT (1985) Immunogold localisation of protochlorophyllide oxidoreductase in barley etioplasts. Eur J Cell Biol 39: 50–55

    Google Scholar 

  • Shinomura T, Uchida K and Furuya M (2000) Elementary processes of photoperception by phytochrome A for high irradiance response of hypocotyl elongation in Arabidopsis thaliana. Plant Physiol 122: 147–156

    PubMed  CAS  Google Scholar 

  • Skinner JS and Timko MP (1998) Loblolly pine (Pinus taeda L.) contains multiple-expressed genes encoding light-dependent NADPH:protochlorophyllide oxidoreductase (POR). Plant Cell Physiol 39: 795–806

    PubMed  CAS  Google Scholar 

  • Smith AG (1986) Enzymes for chlorophyll synthesis in developing pea. In: Akoyunoglou GA and Senger H (eds) Regulation of Chloroplast Differentiation, pp 49–54. Alan R Liss, New York

    Google Scholar 

  • Smith H (1982) Light quality photoperception and plant strategy. Annu Rev Plant Physiol 33: 481–518

    CAS  Google Scholar 

  • Smith H (2000) Phytochromes and light signal perception by plants – an emerging synthesis. Nature 407: 585–591

    PubMed  CAS  Google Scholar 

  • Smith JHC and Benitez A (1954) The effect of temperature on the conversion of protochlorophyll to chlorophyll a in etiolated barley leaves. Plant Physiol 29: 135–143

    PubMed  CAS  Google Scholar 

  • Somanchi A and Mayfield SP (1999) Nuclear-chloroplast signalling. Curr Opin Plant Biol 2: 404–409

    PubMed  CAS  Google Scholar 

  • Spano AJ and Timko MP (1991) Isolation, characterization and partial amino acid sequence of a chloroplast-localized porphobilinogen deaminase from pea (Pisum sativum L.). Biochim Biophys Acta 1076: 29–36

    PubMed  CAS  Google Scholar 

  • Spano AJ, He Z and Timko MP (1992) NADPH: protochlorophyllide oxidoreductases in white pine (Pinus strobus) and loblolly pine (P. taeda). Mol Gen Genet 236: 86–95

    PubMed  CAS  Google Scholar 

  • Sperling U (1998) The In vivo Functions of NADPH: Protochlorophyllide Oxidoreductases A and B as Studied by Genetic Manipulation of Their Expression in Arabidopsis thaliana. PhD Thesis. ETH Zürich, Switzerland

    Google Scholar 

  • Sperling U, van Cleve B, Frick G, Apel K and Armstrong GA (1997) Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedling survival in white light and protects against photooxidative damage. Plant J 12: 649–658

    Google Scholar 

  • Sperling U, Franck F, van Cleve B, Frick G, Apel K and Armstrong GA (1998) Etioplast differentiation in Arabidopsis: both PORA and PORB restore the prolamellar body membrane and photoactive protochlorophyllide-F655 to the cop1 photomorphogenic mutant. Plant Cell 10: 283–296

    PubMed  CAS  Google Scholar 

  • Sperling U, Frick G, van Cleve B, Apel K and Armstrong GA (1999) Pigment-protein complexes, plastid development and photo-oxidative protection: the effects of PORA and PORB overxpression on Arabidopsis seedlings shifted from far-red to white light. In: Argyroudi-Akoyunoglou JH and Senger H (eds) The Chloroplast: From Molecular Biology to Biotechnology, pp 97–102. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Stirpe F, Barbieri L, Gorini P, Valbonesi P, Bolognesi A and Polito L (1996) Activities associated with the presence of ribosomeinactivating proteins increase in senescent and stressed leaves. FEBS Lett 382: 309–312

    PubMed  CAS  Google Scholar 

  • Strand A, Asami T, Alonso A, Ecker JR and Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature 423: 79–83

    Google Scholar 

  • Su Q, Frick G, Armstrong G and Apel K (2001) PORC of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol Biol 47: 805–813

    PubMed  CAS  Google Scholar 

  • Sugimoto A, Hozak RR, Nakashima T, Nishimoto T and Rothman JH (1995) Das.1, an endogenous programmed cell death suppressor in Caenorhabditis elegans and vertebrates. EMBO J 14: 4434–4441

    PubMed  CAS  Google Scholar 

  • Sundqvist C and Dahlin C (1997) With chlorophyll from prolamellar bodies to light-harvesting complexes. Physiol Plant 100: 748–759

    CAS  Google Scholar 

  • Surpin M, Larkin RM and Chory J (2002) Signal transduction between the chloroplast and the nucleus. Plant Cell Vol 14: 327–338

    Google Scholar 

  • Susek RE, Ausubel FM and Chory J (1993) Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 74: 787– 799

    PubMed  CAS  Google Scholar 

  • Suzuki JY and Bauer CE (1995) A prokaryotic origin for lightdependent chlorophyll biosynthesis of plants. Proc Natl Acad Sci USA 92: 3749–3753

    PubMed  CAS  Google Scholar 

  • Suzuki JY, Bollovar DW and Bauer CE (1997) Genetic analysis of chlorophyll biosynthesis. Annu Rev Gen 31: 61–89

    CAS  Google Scholar 

  • Suzuki G, Yanagawa Y, Kwok SF, Matsui M and Deng XW (2002) Arabidopsis COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis. Genes Dev 16: 554–559

    PubMed  CAS  Google Scholar 

  • Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J and Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85: 171–182

    PubMed  CAS  Google Scholar 

  • Taiz L and Zeiger E (2002) Plant Physiology, 3rd Edition. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Takamiya K-i, Tsuchiya T and Ohta H (2000) Degradation pathway( s) of chlorophyll:what has gene cloning revealed? Trends Plant Sci 5: 426–431

    PubMed  CAS  Google Scholar 

  • Takechi K, Sodmergen, Murata M, Motoyoshi F and Sakamoto W (2000) The YELLOW VARIEGATED (VAR2) locus encodes a homologue of FtsH, an ATP-dependent protease in Arabidopsis. Plant Cell Physiol 41: 1334–1346

    Google Scholar 

  • Takio S, Nakao N, Suzuki T, Tanaka K, Yamamoto I and Satoh T (1998) Light-dependent expression of protochlorophyllide oxidoreductase gene in the liverwort, Marchantia paleacea var. diptera. Plant Cell Physiol 39: 665–669

    PubMed  CAS  Google Scholar 

  • Tepperman JM, Zhu T, Chang HS, Wang X and Quail PH (2001) Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci USA 98: 9437– 9442

    PubMed  CAS  Google Scholar 

  • Terry MJ and Lagarias JC (1991) Holophytochrome assembly. Coupled assay for phytochromobilin synthase in organello. J Biol Chem 266: 22215–22221

    PubMed  CAS  Google Scholar 

  • Thayer SS and Huffaker RC (1984) Vacuolar localization of endoproteinases EP1 and EP2 in barley mesophyll cells. Plant Physiol 75: 70–73

    PubMed  CAS  Google Scholar 

  • Thomas H, Ougham H, Wagstaff C and Stead A (2003) Defining senescence and death. J Exp Bot 54: 1127–1132

    PubMed  CAS  Google Scholar 

  • Thomas J and Weinstein JD (1990) Measurement of heme efflux and heme content in isolated developing chloroplasts. Plant Physiol 94: 1414–1423

    PubMed  CAS  Google Scholar 

  • Thompson JE, Froese CD, Madey E, Smith MD and Hong Y (1998) Lipid metabolism during plant senescence. Prog Lipid Res 37: 119–141

    PubMed  CAS  Google Scholar 

  • Trebitsh T, Goldschmidt EE and Riov J (1993) Ethylene induces de novo synthesis of chlorophyllase, a chlorophyll degrading enzyme in Citrus fruit peel. Proc Natl Acad SciUSA90: 9441– 9445

    CAS  Google Scholar 

  • Tsuchiya T, Ohta H, Masuda T, Mikami B, Kita N, Shioi T and Takamiya K-i (1997) Purification and characterization of two isozymes of chlorophyllase from mature leaves of Chenopodium album. Plant Cell Physiol 38: 1026–1031

    CAS  Google Scholar 

  • Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, Masuda T and Takamiya K-i (1999) Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc Natl Acad Sci USA 96: 15362–15367

    PubMed  CAS  Google Scholar 

  • Tsuchiya T, Suzuki T, Yamada T, Shimada H, Masuda T, Ohta H and Takamiya K-i (2003) Chlorophyllase as a serine hydrolase: identification of a putative catalytic triad. Plant Cell Physiol 44: 96–101

    PubMed  CAS  Google Scholar 

  • Uren AG, O‘Rourke K, Aravind L, Pisabarro MT, Seshagiri S, Koonin EV and Dixit VM (2000) Identification of paracaspases and metacaspases. Two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6: 961–967

    PubMed  CAS  Google Scholar 

  • van den Brˆule S and Smart CC (2002) The plant PDR family of ABC transporters. Planta 216: 95–106

    Google Scholar 

  • Varshavsky A (1997) The N-end rule pathway of protein degradation. Gene Cell 2: 13–28

    CAS  Google Scholar 

  • Vaughan GD and Sauer K (1974) Energy transfer from protochlorophyllide to chlorophyllide during photoconversion of etiolated bean holochrome. Biochim Biophys Acta 347: 383– 394

    PubMed  CAS  Google Scholar 

  • Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8: 135–142

    PubMed  CAS  Google Scholar 

  • Virgin HI, Kahn A and von Wettstein D (1963) The physiology of chlorophyll formation in relation to structural changes in chloroplasts. Photochem Photobiol 2: 83–91

    CAS  Google Scholar 

  • von Wettstein D, Gough S and Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7: 1039–1057

    Google Scholar 

  • Vranová E, Inzé D and van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53: 1227– 1236

    PubMed  Google Scholar 

  • Wagstaff C, Leverentz MK, Griffiths G, Thomas B, Chanasut U, Stead AD and Rogers HJ (2002) Cysteine protease gene expression and proteolytic activity during senescence of Alstroemeria petals. J Exp Bot 53: 233–240

    PubMed  CAS  Google Scholar 

  • Walker CJ and Willows RD (1997) Mechanism and regulation of Mg-chelatase. Biochem J 327: 321–333

    PubMed  CAS  Google Scholar 

  • Wang H, Ma LG, Li JM, Zhao HY and Deng XW (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in mediation of photomorphogenic development. Science 294: 154–158

    PubMed  CAS  Google Scholar 

  • Wang KLC, Li H and Ecker JR (2002) Ethylene biosynthesis and signalling networks mediating responses to stress. Plant Cell 14: 131–151

    Google Scholar 

  • Wang ZY, Seto H, Fujioka S, Yoshida S and Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410: 380–383

    PubMed  CAS  Google Scholar 

  • Watanabe N and Lam E (2004) Recent advance in the study of caspase-like proteases and Bax inhibitor-1 in plants: their possible roles as regulator of programmed cell death. Mol Plant Path 5: 65–70

    Google Scholar 

  • Weaver LM, Himelblau E and Amasino RM (1997) Leaf senescence: gene expression and regulation. In: Setlow JK (ed) Genetic Engineering, Vol 19: Principles and Methods, pp 215– 234. Plenum Press, New York

    Google Scholar 

  • Weaver LM, Gan S, Quirino B and Amasino RM (1998) A comparison of the expression patterns of several senescenceassociated genes in response to stress and hormone treatments. Plant Mol Biol 37: 455–469

    PubMed  CAS  Google Scholar 

  • Weiler EW, Kutchan TM, Gorba T, Brodschelm W, Niesel U and Bublitz F (1994) The Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of higher plants. FEBS Lett 345: 9–13

    PubMed  CAS  Google Scholar 

  • Weymann K, Hunt M, Uknes S, Neuenschwander U, Lawton K, Steiner HY and Ryals J (1995) Suppression and restoration of lesion formation in Arabidopsis lsd mutants. Plant Cell 7: 2013–2022

    PubMed  CAS  Google Scholar 

  • Whitelam GC, Johnson E, Peng J, Carol P, Anderson ML, Cowl JS and Harberd NP (1993) Phytochrome A null mutants of Arabidopsis display a wild-type phenotype inwhite light. Plant Cell 5: 757–768

    PubMed  CAS  Google Scholar 

  • Willows R (1999) Making light of a dark situation. Nature 397: 27–28

    CAS  Google Scholar 

  • Willstätter R and Stoll A (1913) Die Wirkungen der Chlorophyllase. In Untersuchungen über Chlorophyll, pp 172–187. Springer, Berlin

    Google Scholar 

  • Wittenbach VA, Lin W and Herbert RR (1982) Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. Plant Physiol 69: 98–102

    PubMed  CAS  Google Scholar 

  • Witty M, Wallace-Cook ADM, Albrecht H, Spano AJ, Michel H, Shabanowitz J, Hunt DF, Timko MP and Smith AG (1993) Structure and expression of chloroplast-localized porphobilinogen deaminase from pea (Pisum sativum L.) isolated by redudant polymerase chain reaction. Plant Physiol 103: 139– 147

    PubMed  CAS  Google Scholar 

  • Woo HR, Chung KM, Park J-H, Oh SA, Ahn T, Hong SH, Jang SK and Nam HG (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13: 1779–1790

    PubMed  CAS  Google Scholar 

  • Wüthrich KL, Bovet L, Hunziker PE, Donnison IS and Hörtensteiner S (2000) Molecular cloning, functional expression and characterisation ofRCCreductase involved in chlorophyll catabolism. Plant J: 189–198

    Google Scholar 

  • Xiang C and Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10: 1539–1550

    PubMed  CAS  Google Scholar 

  • Xie Z and Chen Z (1999) Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. Plant Physiol 120: 217– 226

    PubMed  CAS  Google Scholar 

  • Yang HQ, Tang RH and Cashmore AR (2001) The signalling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13: 2573–2587

    PubMed  CAS  Google Scholar 

  • Yang M, Wardzala E, Johal G and Gray J (2004) The woundinducible Lls1 gene from maize is an ortholog of the Arabidopsis acd1 gene, and the LLS1 protein is present in nonphotosynthetic tissues. Plant Mol Biol 54: 1765–1791

    Google Scholar 

  • Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T and Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109: 181–191

    PubMed  CAS  Google Scholar 

  • Yoshida S (2003) Molecular regulation of leaf senescence. Curr Opin Plant Biol 6: 79–84

    PubMed  CAS  Google Scholar 

  • Yoshida T and Minamikawa T (1996) Successive amino-terminal proteolysis of large subunit of ribulose-1.5-bisphosphate carboxylase/ oxygenase by vacuolar enzymes from French bean leaves. Eur J Biochem 238: 317–324

    PubMed  CAS  Google Scholar 

  • Yoshida S, Ito M, Callis J, Nishida I and Watanabe A (2002) A delayed leaf senescence mutant is defective in arginyltRNA: protein arginyltransferase, a component of the N-end rule pathway in Arabidopsis. Plant J 32: 129–137

    PubMed  CAS  Google Scholar 

  • Yuan X-M, LiW, Dalen H, Lotem J, Kama R, Sachs S and Brunk UT (2002) Lysosomal destabilization in p53-induced apoptosis. Proc Natl Acad Sci USA 99: 6286–6291

    Google Scholar 

  • Zhao M, Eaton JW and Brunk UT (2001) Bcl-2 phosphorylation is required for inhibition of oxidative stress-induced lysosomal leak and ensuing apoptosis. FEBS Lett 509: 405–412

    PubMed  CAS  Google Scholar 

  • Zheng B, Halperin T, Hruskova-Heidingsfeldova O, Adam Z and Clarke AK (2002) Characterization of chloroplast Clp proteins in Arabidopsis: localization, tissue specificity and stress responses. Physiol Plant 114: 92–101

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Reinbothe, C., Reinbothe, S. (2008). 21. In: Demmig-Adams, B., Adams, W.W., Mattoo, A.K. (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration, vol 21. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3579-9_21

Download citation

Publish with us

Policies and ethics