Skip to main content

Photoprotection of Photosystem II: Reaction Center Quenching Versus Antenna Quenching

  • Chapter
Photoprotection, Photoinhibition, Gene Regulation, and Environment

Summary

Understanding the role of the xanthophyll cycle and elucidating the mechanisms of antenna quenching through the non-photochemical dissipation of excess absorbed energy in the photoprotection of the photochemical apparatus continues to be a major focus of photosynthetic research. In addition to antenna quenching, there is evidence for the non-photochemical dissipation of excess energy through the PS II reaction center. Hence, this photoprotective mechanism is called reaction center quenching. One technique to assess reaction center quenching is photosynthetic thermoluminescence. This technique represents a simple but powerful probe of PS II photochemistry that measures the light emitted due to the reversal of PS II charge separation through the thermally-dependent recombination of the negative charges stabilized on Q A and Q B on the acceptor side of PS II with the positive charges accumulated in the S2- and S3-states of the oxygen evolving complex. Changes in the temperature maxima for photosynthetic thermoluminescence may reflect changes in redox potentials of recombining species within PS II reaction centers. Exposure of Synechococcussp. PCC 7942, Pinus sylvestrisL., Arabidopsis thaliana, and Chlamydomonas reinhardtii to either lowtemperatures or to high light induces a significant downshift in the temperature maxima for S2Q B and S3Q B recombinations relative to S2Q A and S3Q A recombinations. These shifts in recombination temperatures are indicative of lower activation energy for the S2Q B redox pair recombination and a narrowing of the free energy gap betweenQAandQB electron acceptors. This, in turn, is associated with a decrease in the overall thermoluminescence emission. We propose that environmental factors such as high light and low temperature result in an increased population of reduced QA (Q A), that is, increased excitation pressure, facilitating non-radiative P680+Q A radical pair recombination within the PS II reaction center. The underlying molecular mechanisms regulating reaction center quenching appear to be species dependent. We conclude that reaction center quenching and antenna quenching are complementary mechanisms that may function to photoprotect PS II to different extents in vivo depending on the species as well as the environmental conditions to which the organism is exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams III WW, Demmig-Adams B and Lange OL (1993) Carotenoid composition and metabolism in green and blue algal lichens in the field. Oecologia 94: 576–584

    Google Scholar 

  • Adams IIIWW, Demmig-Adams B, Rosenstiel TN and Ebbert V (2001) Dependence of photosynthesis and energy dissipation upon growth form and light environment during the winter. Photosynth Res 67: 51–62

    PubMed  CAS  Google Scholar 

  • Adams WW III, Demmig-Adams B, Rosenstiel TN, Brightwell AK and Ebbert V (2002) Photosynthesis and photoprotection in overwintering plants. Plant Biol 4: 545–557

    Google Scholar 

  • Adams WW III, Zarter CR, Ebbert V and Demmig-Adams B (2004) Photoprotective strategies of overwintering evergreens. BioScience 54: 41–49

    Google Scholar 

  • Allakhverdiev SI, Klimov VV and Carpentier R (1997) Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: Influence of a new phenolic compound. Biochem 36: 4149–4154

    CAS  Google Scholar 

  • Aspinall-O’Dea M, Wentworth M, Pascal A, Robert B, Ruban A and Horton P (2002) In vitro reconstitution of the activated zeaxanthin state associated with energy dissipation in plants. Proc Natl Acad Sci USA 99: 16331–16335

    PubMed  CAS  Google Scholar 

  • Aro E-M, Virgin I and Andersson B (1993) Photoinhibition of photosystem II: inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113–134

    PubMed  CAS  Google Scholar 

  • Barber J and De Las Rivas J (1993) A functional model for the role of cytochrome b559 in the protection against donor and acceptor side photoinhibition. Proc Natl Acad Sci USA 90:10942–10946

    PubMed  CAS  Google Scholar 

  • Baroli I, Do AD, Yamane T and Niyogi KK (2003) Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. Plant Cell 15: 992–1008

    PubMed  CAS  Google Scholar 

  • Bassi R, Croce R, Cugini D and Sandona D (1999) Mutational analysis of a higher plant antenna protein provides identification of chromophores bound in multiple sites. Proc Natl Acad Sci USA 96: 10056–10061

    PubMed  CAS  Google Scholar 

  • Booij-James IS, Swegle WM, Edelman M and Mattoo AK (2002) Phosphorylation of the D1 Photosystem II reaction center protein is controlled by an endogenous circadian rhythm. Plant Physiol 130: 2069–2075

    PubMed  CAS  Google Scholar 

  • Briantais J-M, Vernotte C, Picaud M and Krause GH (1979) A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim Biophys Acta 548: 128–138

    PubMed  CAS  Google Scholar 

  • Briantais J-M, Ducruet J-M, Hodges M and Krause GH (1992) The effects of low temperature acclimation and photoinhibitory treatments on photosystem 2 studied by thermoluminescence and fluorescence decay kinetics. Photosynth Res 31: 1–10

    CAS  Google Scholar 

  • Bukhov NG, Heber U, Wiese C and Shuvalov VA (2001) Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center? Planta 212: 749–758

    PubMed  CAS  Google Scholar 

  • Butler WG (1978) Energy distribution in the photochemical apparatus of photosynthesis. Ann Rev Plant Physiol 29: 345–378

    CAS  Google Scholar 

  • Campbell D, Zhou G, Gustafsson P, Öquist G and Clarke AK (1995) Electron transport regulates exchange of two forms of photosystem II D1 protein in the cyanobacterium Synechococcus. EMBO J 14: 5457–5466

    PubMed  CAS  Google Scholar 

  • Delrieu MJ (1998) Regulation of thermal dissipation of absorbed excitation energy and violaxanthin deepoxidation in the thylakoids of Lactuca sativa. Photoprotective mechanism of a population of photosystem II centers. Biochim Biophys Acta 1363: 157–173

    PubMed  CAS  Google Scholar 

  • Demeter S, Janda T, Kovacs L, Mende D and Wiessner W (1995) Effects of in vivoCO2-depletion on electron transport and photoinhibition in the green algae Chlamydobotrys stellata and Chlamydomonas reinhardtii. Biochim Biophys Acta 1229: 166–174

    Google Scholar 

  • Demmig-Adams B and Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43: 599–626

    CAS  Google Scholar 

  • Demmig-Adams B and Adams WW III (2002) Antioxidants in photosynthesis and human nutrition. Science 298: 2149–2153

    PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III, Czygan F-C, Schreiber U and Lange OL (1990) Differences in the capacity for radiationless energy dissipation in the photochemical apparatus of green and blue-green algal lichens associated with differences in carotenoid composition. Planta 180: 582–589

    CAS  Google Scholar 

  • Demmig-Adams B, Gilmore AM and Adams WW III (1996) In vivo functions of carotenoids in higher plants. FASEB J 10: 403–412

    PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW, Ebbert V and Logan BA (1999) Ecophysiology of the xanthophyll cycle. In: Frank HA, Young AJ, Britton G and Cogdell RJ (eds) The Photochemistry of Carotenoids, Advances in Photosynthesis, Vol 8, pp 245–269. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Devault D and Govindjee (1990) Photosynthetic glow peaks and their relationship with the free energy changes. Photosynth Res 24: 175–181

    CAS  Google Scholar 

  • Dobrikova A, Taneva SG, Busheva M, Apostolova E and Petkanchin I (1997) Surface electric properties of thylakoid membranes from Arabidopsis thaliana mutants. Biophys Chem 67: 239–244

    PubMed  Google Scholar 

  • Dominici P, Caffarri S, Armenante F, Ceoldo S, Crimi M and Bassi R (2002) Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant. J Biol Chem 277: 22750–22758

    PubMed  CAS  Google Scholar 

  • Dreuw A, Fleming GR and Head-Gordon M (2003a) Chargetransfer state as a possible signature of a zeaxanthinchlorophyll dimmer in the non-photochemical quenching process in green plants. J Phys Chem B 107: 6500–6503

    CAS  Google Scholar 

  • Dreuw A, Fleming GR and Head-Gordon M (2003b) Chlorophyll fluorescence quenching by xanthophylls. Phys Chem Physics 5: 3247–3256

    CAS  Google Scholar 

  • Ducruet J-M (2003) Chlorophyll thermoluminescence of leaf discs: simple instruments and progress in signal interpretation open the way to new ecophysiological indicators. J Exp Bot 54: 2419–2430

    PubMed  CAS  Google Scholar 

  • Elrad D, Niyogi KK and Grossman AR (2002) A major light harvesting polypeptide of photosystem II functions in thermal dissipation. Plant Cell 14: 1801–1816

    PubMed  CAS  Google Scholar 

  • Falk S, Samuelsson G and Öquist G (1990) Temperaturedependent photoinhibition and recovery of photosynthesis in the green alga Chlamydomonas reinhardtii acclimated to 12 and 27C. Physiol Plant 78: 173–180

    CAS  Google Scholar 

  • Farineau J (1993) Compared thermoluminescence characteristics of pea thylakoids studied in vitro and in situ (in leaves). The effect of photoinhibitory treatments. Photosynth Res 36: 25–34

    CAS  Google Scholar 

  • Finazzi G, Johnson GN, Dall’Osto L, Joliot P, Wollman F-A and Bassi R (2004) A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. Proc Natl Acad Sci USA 101: 12375–12380.

    PubMed  CAS  Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young A, Gosztola D and Wasielewski MR (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosyn Res 41: 389–395

    CAS  Google Scholar 

  • Funk C (2001) The PsbS protein: a Cab-protein with a function of its own. In: Aro E-M and Andersson B (eds) Regulation of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 11, pp 453–467. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gilmore AM (1997) Mechanistic aspects of xanthophyll cycledependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99: 197–209

    CAS  Google Scholar 

  • Gilmore AM (2000) Mechanistic role of xanthophyll-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99: 197–209

    Google Scholar 

  • Gilmore AM and Ball MC (2000) Protection and storage of chlorophyll in overwintering evergreens. Proc Natl Acad Sci USA 97: 11098–11101

    PubMed  CAS  Google Scholar 

  • Gilmore AM, Matsubara S, Ball MC, Barker DH and Itoh S (2003) Excitation energy flow at 77K in the photosynthetic apparatus of overwintering evergreens. Plant Cell Environ 26: 1021–1034

    Google Scholar 

  • Golden SS, Brussan J and Haselkorn R (1986) Expression of a family of psbA genes encoding a photosystem II polypeptide in the cyanobacterium Anacystsis nidulans R2. EMBO J 5: 2789–2798

    PubMed  CAS  Google Scholar 

  • Govindjee (1993) Bicarbonate reversible inhibition of plastoquinone reduction in photosystem II. Z Naturforsch 48c: 251–258

    Google Scholar 

  • Grasses, T, Pesaresi P, Schiavon F, Varotto C, Salamini F, Jahns P and Leister D (2002) The role of _pH-dependent dissipation of excitation energy in protecting photosystem II against light-induced damage in Arabidopsis thaliana. Plant Physiol Biochem 40: 41–49

    CAS  Google Scholar 

  • Greer DH, Berry J and Björkman O (1986) Photoinhibition of photosynthesis in intact bean leaves: role of light and temperature and requirement of chloroplast-protein synthesis during recovery. Planta 168: 253–260

    CAS  Google Scholar 

  • Harwood JL (1998) Involvement of chloroplast lipids in the reaction of plants submitted to stress. In: Siegenthaler P-A (ed) Lipids in Photosynthesis: Structure, Function and Genetics, Advances in Photosynthesis and Respiration, Vol 6, pp 287–302. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Havaux M and Kloppstech K (2001) The protective functions of carotenoids and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213: 95–966

    Google Scholar 

  • Havaux M and Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 96: 8762–8767

    PubMed  CAS  Google Scholar 

  • Holt NE, Zigmanta D, Valkunas L, Li X-P, Niyogi KK and Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307: 433–436.

    PubMed  CAS  Google Scholar 

  • Horton P, Ruban AV and Young AJ (1999) Regulation of the structure and function of the light harvesting complexes of photosystem II by the xanthophyll cycle. In: Frank HA, Young AJ, Britton G and Cogdell RJ (eds) The Photochemistry of Carotenoids, Advances in Photosynthesis , Vol 8, pp 271–291. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Huner NPA, Öquist G, Hurry VM, Król M, Falk S and Griffith M (1993) Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth Res 37: 19–39

    CAS  Google Scholar 

  • Huner NPA, Öquist G and Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3: 224–230

    Google Scholar 

  • Huner NPA, Öquist G and Melis A (2003) Photostasis in plants, green algae and cyanobacteria: the role of light harvesting antenna complexes. In: Green BR and Parson WW (eds) Light Harvesting Antennas in Photosynthesis, Advances in Photosynthesis and Respiration, Vol 13, pp 401–421. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hurry VM, Strand Å, Tobiæson M, Gardeström P and Öquist G (1995) Cold hardening of spring and winter-wheat and rape results in differential-effects on growth, carbon metabolism, and carbohydrate content. Plant Physiol 109: 697–706

    PubMed  CAS  Google Scholar 

  • Hurry VM, Anderson JM, ChowWSand Osmond CB (1997) Accumulation of zeaxanthin in abscisic acid-deficient mutants of Arabidopsis does not affect chlorophyll fluorescence quenching or sensitivity to photoinhibition in vivo. Plant Physiol 113: 639–648

    PubMed  CAS  Google Scholar 

  • Ibelings BW, Kroon BMA and Mur LR (1994) Acclimation of photosystem II in a cyanobacterial photosynthetic apparatus and a eukaryotic green alga to high and fluctuating photosynthetic photon flux densities simulating light regimes induced by mixing in lakes. New Phytol 128: 407–424

    CAS  Google Scholar 

  • Inoue Y (1996) Photosynthetic luminescence as a simple probe of photosystem II electron transport. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis, Advances in Photosynthesis, Vol 3, pp 93–107. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ivanov AG, Sane PV, Zeinalov Y, Malmberg G, Gardeström P, Huner NPA and Öquist G (2001) Photosynthetic electron transport adjustments in overwintering Scots pine (Pinus sylvestris L.). Planta 213: 575–585

    PubMed  CAS  Google Scholar 

  • Ivanov AG, Sane PV, Zeinalov Y, Simidjiev I, Huner NPA and Öquist G (2002) Seasonal responses of photosynthetic electron transport in Scots pine (Pinus sylvestris L.) studied by thermoluminescence. Planta 215: 457–465

    PubMed  CAS  Google Scholar 

  • Ivanov AG, Sane PV, Hurry V, Krol M, Sveshnikov D, Hunter NPA, Öquist G (2003) Low temperature modulation of the redok properties of the acceptor side of photosystem II: Photoprotection through reaction center quenching of excess energy. Physiol Plant 119: 376–383.

    CAS  Google Scholar 

  • Janda T, Szalai G and Páldi E (2000) Thermoluminescence investigation of low temperature stress in maize. Photosynthetica 38: 635–639

    Google Scholar 

  • Ke B (2001) Charge recombination in photosystem II and thermoluminescence. In: Ke B. Photobiochemistry and Photobiophysics, Advances in Photosynthesis, Vol 10, pp 407–418. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Keren N and Ohad I (1998) State transitions and photoinhibition. In: Rochaix J-D, Goldschmidt-Clermont M and Merchant S (eds) Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas, Advances in Photosynthesis, Vol 7, pp 569–598. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Komenda J and Masojidek J (1998) The effect of photosystem II inhibitors DCMU and BNT on the light-induced D1 turnover in two cyanobacterial strains Synechocystis PCC 6803 and Synechococcus PCC 7942. Photosynth Res 57: 193–202

    CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O and Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosyn Res 79: 209–218.

    PubMed  CAS  Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant 74: 566–574

    CAS  Google Scholar 

  • Krause GH and Jahns P (2003) Pulse amplitude modulated chlorophyll fluorometry and its application in plant science. In: Green BR and ParsonWW(eds) Light Harvesting Antennas in Photosynthesis, Advances in Photosynthesis and Respiration, Vol 13, pp 373–399. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Krause GH and Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Ann Rev Plant Physiol Plant Mol Biol 42: 313–349

    CAS  Google Scholar 

  • Krieger-Liszkay A and Rutherford AW (1998) Influence of herbicide binding on the redox potential of the quinone acceptor in photosystem II: relevance to photodamage and phototoxicity. Biochemistry 37: 17339–17344

    PubMed  CAS  Google Scholar 

  • Król M, Ivanov AG, Jansson S, Kloppstech K and Huner NPA (1999) Greening under high light and cold temperature affects the level of xanthophyll-cycle pigments, early light-inducible proteins, and light-harvesting polypeptides in wild-type barley and the Chlorina f2 mutant. Plant Physiol 120: 193–203

    PubMed  Google Scholar 

  • Krupa Z, Öquist G and Gustafsson P (1990) Photoinhibition and recovery of photosynthesis in psbA gene-inactivated strains of the cyanobacterium Anacystsis nidulans. Plant Physiol 93: 1–6

    PubMed  CAS  Google Scholar 

  • Krupa Z, Öquist G and Gustafsson P (1991) Photoinhibition of photosynthesis and growth responses at different light levels in psbA gene mutants of the cyanobacterium Synechococcus. Physiol Plant 82: 1–8

    CAS  Google Scholar 

  • Kruse O, Zheleva D and Barber J (1997) Stabilization of photosystem two dimers by phosphorylation: Implication for the regulation of the turnover of D1 protein. FEBS Lett 408: 276–280

    PubMed  CAS  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    PubMed  Google Scholar 

  • Kulheim C, Agren J and Jansson S (2002) Rapid regulation of light harvesting and plant fitness in the field. Science 297: 91–93.

    PubMed  Google Scholar 

  • Lee H-Y, Hong Y-N and Chow WS (2001) Photoinactivation of photosystem II complexes and photoprotection by nonfunctional neighbors in Capsicum annuum L. leaves. Planta 212: 332–342

    PubMed  CAS  Google Scholar 

  • Li X-P, BjörkmanO, Shin C, Grossman A, Rosenquist M, Jansson S and Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403: 391–395

    PubMed  CAS  Google Scholar 

  • Li X-P, Phippard A, Pasari J and Niyogi KK (2002) Structurefunction analysis of photosystem II subunit S (PsbS) in vivo. Func Plant Biol 29: 1131–1139

    Google Scholar 

  • Lindahl M, Funk C, Webster J, Bingsmark S, Adamska I and Andersson B (1997) Expression of Elips and PsbS protein in spinach during acclimative reduction of the photosystem II antenna in response to increased light intensities. Photosynth Res 54: 227–236

    CAS  Google Scholar 

  • Long SP, Humphries S and Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Ann Rev Plant Physiol Plant Mol Biol 45: 633–662

    CAS  Google Scholar 

  • Los DA and Murata N (2002) Sensing and responses to low temperature in cyanobacteria. In: Storey KB and Storey JM (eds) Sensing, Signalling and Cell Adaptation, pp 139–153. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Ma YZ, Holt NE, Li X-P, Niyogi KK and Fleming GR (2003) Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc Natl Acad Sci USA 100: 4377–4382

    PubMed  CAS  Google Scholar 

  • Mäenpää P, Miranda T, Tyystjarvi E, Govindjee, Ducruet J-M and Kirilovsky D (1995) A mutation in the D-de loop of D1 modifies the stability of the S2Q-A and S2Q-B states in photosystem II. Plant Physiol 107: 187–197

    PubMed  Google Scholar 

  • Masamoto K and Furukawa K (1997) Accumulation of zeaxanthin in cells of the cyanobacterium, Synechococcus sp strain PCC 7942 under high irradiance. J Plant Physiol 151: 257–261

    CAS  Google Scholar 

  • Matsubara S and Chow WS (2004) Populations of photoinactivated photosystem II reaction centers characterized by chlorophill a fluroscence life time in vivo. Proc Natl Acad Sci USA 101: 18234–18239.

    PubMed  CAS  Google Scholar 

  • Mattoo AK, Elich TD, Ghirardi ML, Callahan FE and Edelman M (1993) Post-translational modification of chloroplast proteins and the regulation of protein turnover. In: Battey NH, Dickinson HG and Hetherington AM (eds) Post-translational Modification in Plants, Society for Experimental Biology Seminar Series, Vol 53, pp 65–78. Cambridge University Press, Cambridge UK

    Google Scholar 

  • Mayes SR, Dubbs JM, Vass I, NagyLand Barber J (1993) Further characterization of the psbH locus of Synechocystis sp PCC 6803: inactivation of psbH impairsQA toQB electron transport in photosystem 2. Biochemistry 32: 1454–1465

    CAS  Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts:what modulates the rate of photodamage in vivo? Trends Plant Sci 4: 130–135

    PubMed  Google Scholar 

  • Melis A and Homann PH (1976) Heterogeneity of the photochemical centers in system II chloroplasts. Photochem Photobiol 23: 343–350

    PubMed  CAS  Google Scholar 

  • Meyer G and Kloppstech K (1984) A rapidly light-induced chloroplast protein with high turnover coded for by pea nuclear DNA. Eur J Biochem 138: 201–207

    PubMed  CAS  Google Scholar 

  • Milligan G, Parenti M and Magee AI (1995) The dynamic role of palmitoylation in signal transduction. Trends Biochem Sci 20: 181–185

    PubMed  CAS  Google Scholar 

  • Minagawa J, Narusaka Y, Inoue Y and Satoh K (1999) Electron transfer between QA and QB in photosystem II is thermodynamically perturbed in phototolerant mutants of Synechocystis sp. PCC 6803. Biochemistry 38: 770–775

    PubMed  CAS  Google Scholar 

  • Montane M-H and Kloppstech K (2000) The family of lightharvesting- related proteins (LHCs, ELIPs, HLIPs): was the harvesting of light their primary function? Gene 258: 1–8

    PubMed  CAS  Google Scholar 

  • Nield J, Orlova E, Morris E, Cowen B, Van Heel M and Barber J (2000a) 3D map of the plant photosystem two supercomplex obtained by cryoelectron microscopy and single particle analysis. Nature Struct Biol 7: 44–47

    CAS  Google Scholar 

  • Nield J, Funk C and Barber J (2000b) Supramolecular structure of photosystem II and location of the PsbS protein. Phil Trans Royal Soc B 355: 1337–1343

    CAS  Google Scholar 

  • Nishida I and Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Ann Rev Plant Physiol Plant Mol Biol 47: 541–568

    CAS  Google Scholar 

  • Nixon PJ, Komenda J, Barber J, Deak ZS, Vass I and Diner BA (1995) Deletion of the PEST-like region of photosystem two modifies the QB–binding pocket but does not prevent rapid turnover of D1. J Biol Chem 270: 14919–14927

    PubMed  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approach. Annu Rev Plant Physiol Plant Mol Biol 50: 333–359

    PubMed  CAS  Google Scholar 

  • Niyogi KK, Li X-P, Rosenberg V and Jung H-S (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56: 375–382.

    PubMed  CAS  Google Scholar 

  • Norén H, Svensson P, Stegmark R, Funk C, Adamska I and Andersson B (2003) Expression of the early light-induced protein but not the PsbS protein is influenced by low temperature and depends on the developmental stage of the plant in field-grown cultivars. Plant Cell Environ 26: 245–253

    Google Scholar 

  • Ohad I and Hirschberg J (1992) Mutations in the D1 subunit of photosystem II distinguish between quinone and herbicide binding sites. Plant Cell 4: 273–282

    PubMed  CAS  Google Scholar 

  • Ohad I, Koike H, Shochat S and Inoue Y (1988) Changes in the properties of reaction center II during the initial stages of photoinhibition as revealed by thermoluminescence measurements. Biochim Biophys Acta 933: 288–298

    CAS  Google Scholar 

  • Öquist G and Huner N PA (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54: 329–355

    Google Scholar 

  • Öquist G and Martin B (1980) Inhibition of photosynthetic electron transport and formation of inactive chlorophyll in winterstressed Pinus sylvestris. Physiol Plant 48: 33–38

    Google Scholar 

  • Öquist G, Chow WS and Anderson JM (1992) Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosynthesis. Planta 186: 450–460

    Google Scholar 

  • Ort DR (2001) When there is too much light. Plant Physiol 125: 29–32

    PubMed  CAS  Google Scholar 

  • Peterson RB and Havir EA (2001) Photosynthetic properties of an Arabidopsis thaliana mutant possessing a defective PsbS gene. Planta 214: 142–152

    PubMed  CAS  Google Scholar 

  • Peterson RB and Havir EA (2003) Contrasting modes of regulation of PSII light utilization with changing irradiance in normal and PsbS mutant leaves of Arabidopsis thaliana. Photosynth Res 75: 57–70

    PubMed  CAS  Google Scholar 

  • Polivka T, Herek JL, Zigmantis D and Åkerlund H-E (1999) Direct observation of the (forbidden) S1 state in carotenoids. Proc Natl Acad Sci USA 96: 4914–4917

    PubMed  CAS  Google Scholar 

  • Polivka Zigmantis D and Sundström V (2002) Carotenoid S1 state in a recombinant light-harvesting complex of photosystem II. Biochemistry 41: 439–450

    Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35: 15–44

    CAS  Google Scholar 

  • Prasil O, Kolber Z, Berry JA and Falkowski PG (1996) Cyclic electron flow around photosystem II in vivo. Photosynth Res 48: 395–410

    CAS  Google Scholar 

  • Rintamäki E and Aro E M (2001) Phosphorylation of photosystem II proteins. In: Aro E-M and Andersson B (eds), Regulation of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 11, pp 395–418. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ruban AV, Pascal AA, Robert B and Horton P (2002) Activation of zeaxanthin is an obligatory event in the regulation of photosynthetic light harvesting. J Biol Chem 277: 7785–7789

    PubMed  CAS  Google Scholar 

  • Sakurai I, Hagio M, Gombos Z, Tyystjarvi T, Paakkarinen V, Aro E-M and Wada H(2003) Requirement of phosphatidylglycerol for maintenance of photosynthetic machinery. Plant Physiol 133: 1376–1384

    Google Scholar 

  • Sane PV and Rutherford AW (1986) Thermoluminescence from Photosynthetic Membranes. In: Govindjee, Amesz J and Fork DC (eds) Light Emission by Plants and Bacteria, pp 329–360. Academic Press, Orlando

    Google Scholar 

  • Sane PV, Ivanov AG, Sveshnikov D, Huner NPA and Öquist G (2002) A transient exchange of the photosystem II reaction center protein D1:1 with D1:2 during low temperature stress of Synechococcus sp. PCC 7942 in the light lowers the redox potential of QB. J Biol Chem 277: 32739–32745

    PubMed  CAS  Google Scholar 

  • SanePV, Ivanov AG, Hurry VM, Huner NPA and Öquist G (2003) Changes in the redox potential of QB confer increased resistance against photoinhibition in low temperature acclimated Arabidopsis thaliana. Plant Physiol 132: 2144–2151

    Google Scholar 

  • Savitch LV, Massacci A, Gray GR and Huner NPA (2000) Acclimation to low temperature or high light mitigates sensitivity to photoinhibition: roles of the Calvin cycle and the Mehler reaction. Aust J Plant Physiol 27: 253–264

    CAS  Google Scholar 

  • Savitch LV, Barker-Aström J, Ivanov AG, Hurry VM, Öquist G and Gardeström P (2001) Cold acclimation of Arabidopsis thaliana results in complete recovery of photosynthetic capacity and is associated with reduction of the chloroplast stroma. Planta 214: 295–303

    Article  PubMed  CAS  Google Scholar 

  • Schaefer MR and Golden S (1989) Differential expression of members of a cyanobacterial psbA gene family in response to light. J Bacteriol 17: 3973–3981

    Google Scholar 

  • Schatz GH, Brock H and Holzwarth AR (1988) Kinetic and energetic model for the primary processes in photosystem II. Biophys J 54: 397–405

    Article  CAS  PubMed  Google Scholar 

  • Selstam E (1998) Development of thylakoid membranes with respect to lipids. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, Advances in Photosynthesis and Respiration, Vol 6, pp 209–224. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Somersalo S and Krause GH (1990) Reversible photoinhibition of unhardened and cold-acclimated spinach leaves at chilling temperatures. Planta 180: 181–187

    CAS  Google Scholar 

  • Stewart DH and Brudvig GW (1998) Cytochrome b559 of photosystem II. Biochim Biophys Acta 1367: 63–87

    PubMed  CAS  Google Scholar 

  • Stitt M and Hurry VM (2002) A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opinion Plant Biol 5: 199–206

    CAS  Google Scholar 

  • Stowell MHB, McPhillips TM, Rees DC, Soltis SM, Abresch E and Feher G (1997) Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science 276: 812–816

    PubMed  CAS  Google Scholar 

  • Strand Å, Hurry VM, Gustafsson P and Gardeström P (1997) Development of Arabidopsis thaliana leaves at low temperature releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates. Plant J 12: 605–614

    PubMed  CAS  Google Scholar 

  • Strand Å, Foyer CH, Gustafsson P, Gardeström P and Hurry VM (2003) Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at lowtemperatures and the development of freezing tolerance. Plant Cell Environ 26: 523–535

    CAS  Google Scholar 

  • Strand M and Öquist G (1985) Inhibition of photosynthesis by freezing temperatures and high light levels in cold-acclimated seedlings of Scots pine (Pinus silvestris). I. Effects of the lightlimited and light saturated rates of CO2 assimilation. Physiol Plant 64: 425–430

    CAS  Google Scholar 

  • Swiatek M, Kuras R, Sokolenko A, Higgs D, Olive J, Cinque G, Müller B, Eichacker LA, Stern DB, Bassi R, Herrmann RG and Wollman F-A (2001) The chloroplast gene ycf9 encodes a photosystem II (PSII) core subunit, PsbZ, that participates in PSII supramolecular architecture. Plant Cell 13: 1347–1367

    PubMed  CAS  Google Scholar 

  • Telfer A, DeLas Rivas J and Barber J (1991) Beta-carotene within the isolated photosystem-II reaction center –photooxidation and irreversible bleaching of this chromophore by oxidized P680. Biochim Biophys Acta 1060: 106–114

    CAS  Google Scholar 

  • Trémolières A and Siegenthaler P-A (1998) Reconstitution of photosynthetic structures and activities with lipids. In: Siegenthaler P-A (ed) Lipids in Photosynthesis: Structure, Function and Genetics, Advances in Photosynthesis and Respiration, Vol 6, pp 175–189. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • van Wijk KJ and van Hasselt PR (1993) Kinetic resolution of different recovery phases of photoinhibited photosystem II in cold-acclimated and non-acclimated spinach leaves. Physiol Plant 87: 187–198

    Google Scholar 

  • Vass I and Govindjee (1996) Thermoluminescence from the photosynthetic apparatus. Photosynth Res 48: 117–126

    CAS  Google Scholar 

  • Vass I, Styring S, Hundal T, Koivuniemi A, Aro E-M and Andersson B (1992) Reversible and irreversible intermediates during photoinhibition of photosystem II: Stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci USA 89: 1408–1412

    PubMed  CAS  Google Scholar 

  • Vavilin DV and Vermass WFJ (2000) Mutations in the CD-loop region of the D2 protein in Synechocystis sp. PCC 6803 modify charge recombination pathways in photosystem II in vivo. Biochemistry 39: 14831–14838

    PubMed  CAS  Google Scholar 

  • Vijayan P, RoutaboulJMand Browse J (1998) Agenetic approach to investigating membrane lipid structure and photosynthetic function. In: Siegenthaler P-A (ed) Lipids in Photosynthesis: Structure, Function and Genetics, Advances in Photosynthesis and Respiration, Vol 6, pp 263–285. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • WaltersRGand Horton P (1993) Theoretical assessment of alternative mechanisms for non-photochemical quenching of PSII fluorescence in barley leaves. Photosynth Res 36: 119–139

    Google Scholar 

  • Weis E and Berry JA (1987) Quantum efficiency of photosystem II in relation to energy-dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 894: 198–208

    CAS  Google Scholar 

  • Wentworth M, Ruban AV and Horton P (2003) Thermodynamic investigation into the mechanism of the chlorophyll fluorescence quenching in isolated photosystem II light harvesting complexes. J Biol Chem 278: 21845–21850

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Huner, N.P. et al. (2008). Photoprotection of Photosystem II: Reaction Center Quenching Versus Antenna Quenching. In: Demmig-Adams, B., Adams, W.W., Mattoo, A.K. (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration, vol 21. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3579-9_11

Download citation

Publish with us

Policies and ethics