Skip to main content

Using the Sediment Quality Triad (Sqt) in ecological risk assessment

  • Chapter
Small-scale Freshwater Toxicity Investigations

Conclusions

The SQT has been accepted internationally as the most comprehensive approach available for assessing contaminated sediments. It has been widely used, not just in North America, but in Europe, Australasia, South America, and the Antarctic. It is extremely cost-effective for the level of information provided when applied in a tiered and iterative fashion. It can be used with all sediment types and can be adapted for use with soils and the water column. It provides information on potential effects of biomagnifying contaminants to the health of humans and wildlife, and can be adapted for use with bacterial contaminants and for human health assessments. It is a framework, not a formula, and thus will continue to be improved and possibly expanded by subsequent investigators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, B.S., Hunt, J.W., Phillips, B.M., Fairey, R., Roberts, C.A., Oakden, J.M., Puckett, H.M., Stephenson, M., Tjeerdema, R.S., Long, E.R., Wilson, C.J. and Lyons, M. (2001) Sediment quality in Los Angeles Harbor, USA: A Triad assessment, Environmental Toxicology and Chemistry 20, 359–370.

    CAS  Google Scholar 

  • Ankley, G.T. and Schubauer-Berigan, M.K. (1995) Background and overview of current sediment toxicity identification evaluation procedures, Journal of Ecosystem Health 4, 133–149.

    Google Scholar 

  • ASTM (American Society for Testing and Materials) (1997) Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Mollusks, Method E724-94, Vol. 11, American Society for Testing and Materials, Philadelphia, PA, USA.

    Google Scholar 

  • Bailer, A.J., Hughes, M.P., See, K., Noble, R. and Schaefer, P. (2002) A pooled response strategy for combining multiple lines of evidence to quantitatively estimate impact, Human and Ecological Risk Assessment 8, 1597–1611.

    Article  Google Scholar 

  • Balthis, W.L., Hyland, J.L., Scott, G.I., Fulton, M.H., Bearden, D.W. and Greene, M.D. (2002) Sediment quality of the Neuse River estuary, North Carolina: an integrated assessment of sediment contamination, toxicity, and condition of benthic fauna, Journal of Aquatic Ecosystem Stress and Recovery 9, 213–225.

    Article  CAS  Google Scholar 

  • Bartell, S.M. (2003) A framework for estimating ecological risks posed by nutrients and trace elements in the Patuxent River, Estuaries 26, 385–397.

    Article  CAS  Google Scholar 

  • Beiras, R., Fernández, N., Bellas, J., Besada, V., González-Quijano, A. and Nunes, T. (2003) Integrative assessment of marine pollution in Galician estuaries using sediment chemistry, mussel bioaccumulation, and embryo-larval toxicity bioassays, Chemosphere 52, 1209–1224.

    Article  CAS  Google Scholar 

  • Borgmann, U., Norwood W. P., Reynoldson, T.B. and Rosa, F. (2001) Identifying cause in sediment assessments: Bioavailability and the Sediment Quality Triad, Canadian Journal of Fisheries and Aquatic Sciences 58, 950–960.

    Article  CAS  Google Scholar 

  • Burgess, R.M., Cantwell, M.G., Pelletier, M.C., Ho, K.T., Serbst, J.R., Cook, H.F. and Kuhn, A. (2000) Development of a toxicity identification evaluation procedure for characterizing metal toxicity in marine sediments, Environmental Toxicology and Chemistry 19, 982–991.

    Article  CAS  Google Scholar 

  • Burgess, R.M., Pelletier, M.C., Ho, K.T., Serbst, J.R., Ryba, S.A., Kuhn, A., Perron, M.M., Raczelowski, P. and Cantwell, M.G. (2003) Removal of ammonia toxicity in marine sediment TIEs: a comparison of Ulva lactuca, zeolite and aeration methods, Marine Pollution Bulletin 46, 607–618.

    Article  CAS  Google Scholar 

  • Burton, G.A. Jr., Chapman, P.M. and Smith, E.P. (2002a) Weight-of-evidence approaches for assessing ecosystem impairment, Human and Ecological Risk Assessment 8, 1657–1673.

    Article  Google Scholar 

  • Burton, G.A. Jr., Batley, G.E., Chapman, P.M., Forbes, V.E., Smith, E.P., Reynoldson, T., Schlekat, C., den Besten, P.J., Bailer, A.J., Green, A.S. and Dwyer, R.L. (2002b) A weight-of-evidence framework for assessing sediment (or other) contamination: improving certainty in the decision-making process, Human and Ecological Risk Assessment 8, 1675–1696.

    Article  Google Scholar 

  • Castro, B.B., Guilhermo, L. and Ribeiro, R. (2003) In situ bioassay chambers and procedures for assessment of sediment toxicity with Chironomus riparius, Environmental Pollution 125, 325–335.

    Article  CAS  Google Scholar 

  • Chapman, P.M. (1986) Sediment quality criteria from the Sediment Quality Triad — an example, Environmental Toxicology and Chemistry 5, 957–964.

    CAS  Google Scholar 

  • Chapman, P.M. (1990) The Sediment Quality Triad approach to determining pollution-induced degradation, Science of the Total Environment 97/98, 815–825.

    Article  Google Scholar 

  • Chapman, P.M. (1996) Presentation and interpretation of Sediment Quality Triad data, Ecotoxicology 5, 327–339.

    Google Scholar 

  • Chapman, P.M. (2000) The Sediment Quality Triad: then, now and tomorrow, International Journal of Environment and Pollution 13, 351–356.

    Article  CAS  Google Scholar 

  • Chapman, P.M., Dexter, R.N. and Long, E.R. (1987) Synoptic measures of sediment contamination, toxicity and infaunal community structure (the Sediment Quality Triad), Marine Ecology Progress Series 37, 75–96.

    CAS  Google Scholar 

  • Chapman, P.M., Anderson, B., Carr, S., Engle, V., Green, R., Hameedi, J., Harmon, M., Haverland, P., Hyland, J., Ingersoll, C., Long, E., Rodgers J. Jr., Salazar, M., Sibley, P.K., Smith, P.J., Swartz, R.C., Thompson, B. and Windom, H. (1997) General guidelines for using the Sediment Quality Triad, Marine Pollution Bulletin 34, 368–372.

    CAS  Google Scholar 

  • Chapman, P.M., McDonald, B.G. and Lawrence, G.S. (2002) Weight of evidence issues and frameworks for sediment quality (and other) assessments, Human and Ecological Risk Assessment 8, 1489–1515.

    Google Scholar 

  • Chapman, P.M., Wang, F., Janssen, C., Goulet, R.R. and Kamunde, C.N. (2003) Conducting ecological risk assessments of inorganic metals and metalloids — Current status, Human and Ecological Risk Assessment 9, 641–697.

    CAS  Google Scholar 

  • DeWitt, T.H., Ditsworth G.H. and Swartz, R.C. (1988) Effects of natural sediment features on survival of the phoxocephalid amphipod, Rhepoxynius abronius, Marine Environmental Research 25, 99–124.

    Google Scholar 

  • DeWitt, T.H., Hickey, C.W., Morrisey, D.J., Nipper, M.G., Roper, D.S., Williamson, B., Van Dam, L. and Williams, E.K. (1999) Do amphipods have the same concentration-response to contaminated sediment in situ as in vitro?, Environmental Contamination and Toxicology 18, 1026–1037.

    Google Scholar 

  • Environment Canada (1992) Biological Test Method: Acute Test for Sediment Toxicity Using Marine or Estuarine Amphipods, EPS 1/RM/26, Environment Canada, Conservation and Protection Branch, Ottawa, ON, Canada.

    Google Scholar 

  • Environment Canada (1995) Interim Sediment Quality Guidelines, Ecosystem Conservation Directorate, Guidelines Branch, Ottawa, ON, Canada.

    Google Scholar 

  • Forbes, V.E. and Calow, P. (2004) A systematic approach to weight of evidence in sediment quality assessments: challenges and opportunities, Journal of Aquatic Ecosystem Health and Management 7, 339–350.

    CAS  Google Scholar 

  • Garrett, C.L. and Shrimpton, J.A. (1997) Organotin Compounds in the British Columbia Environment, Regional Program Report No. 98-03, Environment Canada, Environmental Protection Service, Pacific and Yukon Region, Vancouver, BC, Canada.

    Google Scholar 

  • Grapentine, L., Anderson, J., Boyd, D., Burton, G.A., DeBarros, C., Johnson, G., Marvin, C., Milani, D., Painter, S., Pascoe, T., Reynoldson, T., Richman, L., Solomon, K. and Chapman, P.M. (2002) A decision making framework for sediment assessment developed for the Great Lakes, Human and Ecological Risk Assessment 8, 1641–1655.

    Google Scholar 

  • Hatch, A.C. and Burton, G.A. Jr. (1999) Sediment toxicity and stormwater runoff in a contaminated receiving system: consideration of different bioassays in the laboratory and field, Chemosphere 39, 1001–1007.

    Article  CAS  Google Scholar 

  • Hill, R.A., Chapman, P.M., Mann, G.L. and Lawrence, G.S. (2000) Level of detail in ecological risk assessments, Marine Pollution Bulletin 40, 471–477.

    Article  CAS  Google Scholar 

  • Ho, K.T., Burgess, R.M., Pelletier, C., Serbst, J.R., Ryba, S.A., Cantwell, M.G., Kuhn, A. and Raczelowski, P. (2002) An overview of toxicant identification in sediments and dredged materials, Marine Pollution Bulletin 44, 286–293.

    Article  CAS  Google Scholar 

  • Hollert, H., Dürr, M., Olsman, H., Halldin, K., van Bavel, B., Brack, W., Tysklind, M., Engwall, M. and Braunbeck, T. (2002a) Biological and chemical determination of dioxin-like compounds in sediments by means of a Sediment Triad approach in the catchment area of the River Neckar, Ecotoxicology 11, 323–336.

    CAS  Google Scholar 

  • Hollert, H., Heise, S., Pudenz, S., Brüggemann, R., Ahlf, W. and Braunbeck, T. (2002b) Application of a Sediment Quality Triad and different statistical approaches (Hasse diagrams and fuzzy logic) for the comparative evaluation of small streams, Ecotoxicology 11, 311–321.

    CAS  Google Scholar 

  • Hunt, J. W., Anderson, B.S., Phillips, B.M., Tjeerdema, R.S., Taberski, K.M., Wilson, C.J., Puckett, H.M., Stephenson, M., Fairey, R. and Oakden, J. (2001) A large-scale categorization of sites in San Francisco Bay, USA, based on the Sediment Quality Triad, toxicity identification evaluations, and gradient studies, Environmental Toxicology and Chemistry 20, 1252–1265.

    CAS  Google Scholar 

  • Lahr, J., Maas-Diepeveen, J.L., Stuijfzand, S.C., Leonards, P.E. G., Drüke, J.M., Lüker, S., Espeldoorn, A., Kerkum, L.C.M., van Stee, L.L.P. and Hendriks, A.J. (2003) Responses in sediment bioassays used in the Netherlands: can observed toxicity be explained by routinely monitored priority pollutants?, Water Research 37, 1691–1710.

    Article  CAS  Google Scholar 

  • Legendre, P. and Fortin, M.J. (1989) Spatial pattern and ecological analysis, Vegetatio 80, 107–138.

    Article  Google Scholar 

  • Llanso, R.J., Dauer, D.M., Vølstad, J. and Scott, L. (2003) Application of the benthic index of biotic integrity to environmental monitoring in Chesapeake Bay, Environmental Monitoring and Assessment 81, 164–174.

    Google Scholar 

  • Long, E.R. and Chapman, P.M. (1985) A sediment quality triad: measures of sediment contamination, toxicity and infaunal community composition in Puget Sound, Marine Pollution Bulletin 16, 405–415.

    Article  CAS  Google Scholar 

  • McPherson, C.A. and Chapman, P.M. (2000) Copper effects on potential sediment test organisms: the importance of appropriate sensitivity, Marine Pollution Bulletin 40, 656–665.

    Article  CAS  Google Scholar 

  • Nagpal, N.K. (1995) Approved and Working Criteria for Water Quality, 1995, BC Ministry of Environment, Lands and Parks, Water Quality Branch, Victoria, BC, Canada.

    Google Scholar 

  • Pittinger, C.A., Brennan, T.H., Badger, D.A., Hakkinen, P.J. and Fehrenbacker, M.C. (2003) Aligning chemical assessment tools across the hazard-risk continuum, Risk Analysis 23, 529–535.

    Article  Google Scholar 

  • PSEP (Puget Sound Estuary Program) (1995) Recommended Guidelines for Conducting Laboratory Bioassays on Puget Sound Sediments, Puget Sound Estuary Program, Olympia, WA, USA.

    Google Scholar 

  • Reynoldson, T.B., Day, K.E. and Norris, R.H. (1995) Biological guidelines for freshwater sediment based on BEnthic Assessment of SedimenT (BEAST) using a multivariate approach for predicting biological state, Australian Journal of Ecology 20, 198–219.

    Google Scholar 

  • Reynoldson, T.B., Smith, E. and Bailer, A.J. (2002a) Comparison of three weight of evidence approaches for integrating sediment contamination data within and across lines of evidence, Human and Ecological Risk Assessment 8, 1613–1624.

    Google Scholar 

  • Reynoldson, T.B., Thompson, S.P. and Milani, D. (2002b) Integrating multiple toxicological endpoints in a decision-making framework for contaminated sediments, Human and Ecological Risk Assessment 8, 1569–1584.

    Google Scholar 

  • Riba, I.R., Forja, J.M., Gómez-Parra, A. and DelValls, A. (2004) Sediment quality in littoral ecosystems from the Gulf of Cádiz: A Triad approach to address influence of mining activities, Environmental Pollution 132, 341–353.

    Article  CAS  Google Scholar 

  • Root, D.H. (2003) Bacon, Boole, the EPA, and scientific standards, Risk Analysis 23, 663–668.

    Article  Google Scholar 

  • Sasson-Brickson, G. and Burton, G.A. Jr. (1991) In situ and laboratory sediment toxicity testing with Ceriodaphnia dubia, Environmental Toxicology and Chemistry 10, 201–207.

    CAS  Google Scholar 

  • Schmidt, T.S., Soucek, D.J. and Cherry, D.S. (2002) Modification of an ecotoxicological rating to bioassess small acid mine drainage-impacted watersheds exclusive of benthic macroinvertebrate analysis, Environmental Toxicology and Chemistry 21, 1091–1097.

    CAS  Google Scholar 

  • Smith, E., Lipkovich, P.I. and Ye, K. (2002) Weight of evidence: quantitative estimation of probability derived from odds ratio, Human and Ecological Risk Assessment 8, 1585–1596.

    Google Scholar 

  • Stronkhorst, J., Schot, M.E., Dubbeldam, M.C. and Ho, K.T. (2003) A toxicity identification evaluation of silty marine harbor sediments to characterize persistent and non-persistent constituents, Marine Pollution Bulletin 46, 56–64.

    Article  CAS  Google Scholar 

  • Suter, G.W. III. (1997) Overview of the ecological risk assessment framework, in C.G. Ingersoll, T. Dillon and G.R. Biddinger (eds.), Ecological Risk Assessment of Contaminated Sediments, SETAC Press, Pensacola, FL, USA, pp. 1–6.

    Google Scholar 

  • U.S. EPA (U.S. Environmental Protection Agency) (1986) Test Methods for Evaluating Solid Waste — Physical/Chemical Methods, SQ-846, 3rd Edition, Washington, DC, USA.

    Google Scholar 

  • U.S. EPA (U.S. Environmental Protection Agency) (1998) Guidelines for ecological risk assessment, EPA/600/R-95/002F, Washington DC, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Chapman, P.M., McDonald, B.G. (2005). Using the Sediment Quality Triad (Sqt) in ecological risk assessment. In: Blaise, C., Férard, JF. (eds) Small-scale Freshwater Toxicity Investigations. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3553-5_11

Download citation

Publish with us

Policies and ethics