Skip to main content

Part of the book series: Nitrogen Fixation: Origins, Applications, and Research Progress ((NITR,volume 5))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandre, G., and Bally R. (1999). Emergence of a laccase-positive variant of Azospirillum lipoferum occurs via a two-step phenotypic switching process. FEMS Microbiol. Lett., 174, 371-378.

    PubMed  CAS  Google Scholar 

  • Alexandre, G., Jacoud, C., Faure, D., and Bally R. (1996). Population dynamics of a motile and a non-motile Azospirillum lipoferum strain during rice root colonization and motility variation in the rhizosphere. FEMS Microbiol. Ecol, 9, 271-278.

    Google Scholar 

  • Antonyuk, L. P., Fomina, O. R., Galkin, M. A., and Ignatov V. V. (1993). The effect of wheat germ agglutinin on dinitrogen fixation, glutamine synthetase activity and ammonia excretion in Azospirillum brasilense Sp245. FEMS Microbiol. Lett., 110, 285-290.

    CAS  Google Scholar 

  • Antonyuk, L. P., and Ignatov V. V. (2001). The role of wheat germ agglutinin in plant-bacteria interactions, a hypothesis and the evidence in its support. Russ. J. Plant Physiol., 8, 364-369.

    Google Scholar 

  • Arséne, F., Katupitiya, S., Kennedy, I. R., and Elmerich C. (1994). Use of lacZ fusions to study the expression of nif genes of Azospirillum brasilense in association with plants. Mol. Plant Microbe Interact., 7, 748-757.

    Google Scholar 

  • Assmus, B., Hutzler, P., Kirchhof, G., Amann, R., Lawrence, J.R., and Hartmann, A. (1995). In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl. Environ. Microbiol, 1, 1013-1019.

    Google Scholar 

  • Bachhawat, A. K., and Ghosh S. (1987a). Iron transport in Azospirillum brasilense, role of the siderophores spirilobactin. J. Gen. Microbiol., 3, 1759-1765.

    Google Scholar 

  • Bachhawat, A. K., and Ghosh S. (1987b). Isolation and characterization of the outer membrane proteins of Azospirillum brasilense. J. Gen. Microbiol., 3, 1751-1758.

    Google Scholar 

  • Bashan, Y. (1986). Enhancement of wheat roots colonization and plant development by Azospirillum brasilense Cd following temporary depression of the rhizosphere microflora. Appl. Environ. Microbiol., 51, 1067-1071.

    PubMed  Google Scholar 

  • Bashan, Y., and Holguin G. (1997). Azospirillum-plant relationships, environmental and physiological advances (1990-1996). Can. J. Microbiol., 3, 103-121.

    Google Scholar 

  • Bashan, Y., and Levanony H. (1989). Factors affecting adsorption of Azospirillum brasilense Cd to root hairs as compared with root surface of wheat. Can. J. Microbiol., 5, 936-944.

    Google Scholar 

  • Bashan, Y., Levanony H., and Whitmoyer R. E. (1991). Root surface colonization of non-cereal crop plants by pleomorphic Azospirillum brasilense Cd. J. Gen. Microbiol., 2, 3069-3073.

    Google Scholar 

  • Bastarrachea, F., Zamudio, M., and Rivas M. (1987). Non-encapsulated mutants of Azospirillum brasilense and Azospirillum lipoferum. Can. J. Microbiol., 4, 24-29.

    Google Scholar 

  • Bekri, M. A. (1998). Genetic analysis of pectinolytic and cellulolytic activities of Azospirillum irakense KBC1. Thesis, Catholic University Leuven, Belgium.

    Google Scholar 

  • Bekri, M. A., Desair, J., Keijers, V., Proost, P., Searle-VanLeeuwen, M., Vanderleyden, J., and Vande Broek, A. (1999). Azospirillum irakense produces a novel type of pectate lyase. J. Bacteriol., 181, 2440-2447.

    PubMed  CAS  Google Scholar 

  • Bleakley, B. H., Gaskins, M. H., Hubbell, D. H., and Zam S. G. (1988). Floc formation by Azospirillum lipoferum grown on poly-β -hydroxybutyrate. Appl. Environ. Microbiol., 53, 2986-2995.

    Google Scholar 

  • Bothe, H., Klein B., Stephan, M. P., and Döbereiner, J. (1981). Transformations of inorganic nitrogen by Azospirillum spp. Arch. Microbiol., 0, 96-100.

    CAS  Google Scholar 

  • Burdman, S., Dulguerova, G., Okon Y., and Jurkevitch E. (2001). Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots and its involvement in cell aggregation. Mol. Plant Microbe Interact., 4, 555-561.

    Google Scholar 

  • Burdman, S., Jurkevitch, E., De Mot, R., Vanderleyden, J., and Okon Y. (2000a). Identification and characterization of the OmaA gene encoding the major outer membrane protein of Azospirillum brasilense. DNA Sequence, 11, 225-237.

    CAS  Google Scholar 

  • Burdman, S., Jurkevitch, E., Schwartsburd, B., Hampel, M., and Okon Y. (1998). Aggregation in Azospirillum brasilense, effects of chemical and physical factors and involvement of extracellular components. Microbiology, 4, 1989-1999.

    Google Scholar 

  • Burdman, S., Jurkevitch, E., Schwartsburd, B., and Okon Y. (1999). Involvement of outer membrane proteins in the aggregation of Azospirillum brasilense. Microbiology, 5, 1145-1152.

    Google Scholar 

  • Burdman, S., Jurkevitch, E., Soria-Diaz, M. E., Gil Serrano, A. M., and Okon, Y. (2000b). Extracellular polysaccharide composition of Azospirillum brasilense and its relation with cell aggregation. FEMS Microbiol. Lett., 189, 259-264.

    CAS  Google Scholar 

  • Burdman, S., Okon, Y., Jurkevitch, E. (2000c). Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Crit. Rev. Microbiol., 6, 91-110.

    Google Scholar 

  • Castañeda, M., Guzmàn, J., Moreno, S., and Espìn, G. (2000). The GacS sensor kinase regulates alginate and poly-beta-hydroxybutyrate production in Azotobacter vinelandii. J. Bacteriol., 182, 2624-2628.

    PubMed  Google Scholar 

  • Castellanos, T., Ascensio, F., and Bashan Y. (1998). Cell-surface lectins of Azospirillum spp. Curr. Microbiol., 6, 241-244.

    Google Scholar 

  • Chaterjee, A. K., Buchanan, G. E., Behrens, M. K., and Starr M. P. (1979). Synthesis and excretion of polygalacturonic acid transeliminase in Erwinia, Yersinia, and Klebsiella species. Can. J. Microbiol., 5, 94-102.

    Google Scholar 

  • Chelius, M. K., and Triplett E. W. (2000). Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniaein association with Zea maysL. Appl. Environ. Microbiol., 66, 783-787.

    PubMed  CAS  Google Scholar 

  • Croes, C. L., Moens, S., Van Bastelaere, E., Vanderleyden, J., and Michiels K. (1993). The polar flagellum mediates Azospirillum brasilense adsorption to wheat roots. J. Gen. Microbiol., 139, 2261-2269.

    CAS  Google Scholar 

  • Croes, C. L., Van Bastelaere, E., De Clercq, E., Eyers, M., Vanderleyden, J., and Michiels K. (1991). Identification and mapping of loci involved in motility, adsorption to wheat roots, colony morphology, and growth in minimal medium on the Azospirillum brasilense Sp7 90-MDa plasmid. Plasmid, 6, 83-93.

    Google Scholar 

  • Danneberg, G., Kronenberg, A., Neuer, G., and Bothe H. (1986). Aspects of nitrogen fixation and denitrification by Azospirillum. Plant Soil, 0, 193-202.

    Google Scholar 

  • Danneberg, G., Kronenberg, A., Neuer, G., and Bothe H. (1989). Energy transduction efficiencies in nitrogenous oxide respirations of Azospirillum brasilense Sp7. Arch. Microbiol., 151, 445-453.

    CAS  Google Scholar 

  • Dawes, E. A. (1986). Microbial energy reserve compounds. In, E. A. Dawes (Ed), Microbial Energetics (. 145-165). Glasgow, UK: Blackie Press.

    Google Scholar 

  • Del Gallo, M., Negi, M., and Neyra C. A. (1989). Calcofluor- and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum. J. Bacteriol., 1, 3504-3510.

    Google Scholar 

  • De Troch, P., Keijers, V., and Vanderleyden J. (1994). Sequence analysis of the Azospirillum brasilense exoB gene, encoding UDP-glucose 4’ epimerase. Gene, 4, 143-144.

    Google Scholar 

  • De Troch, P., Keijers, V., and Vanderleyden J. (1995). Polysaccharide synthesis in Azospirillum brasilense. In I. Fendrik, M. Del Gallo, J. Vanderleyden, and M. de Zamaroczy (Eds.), Azospirillum VI and Related Microorganisms (. 97-103). Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • De Troch, P., Philip-Hollingsworth, S., Orgambide, G., Dazzo, F. B., and Vanderleyden, J. (1992). Analysis of extracellular polysaccharides isolated from Azospirillum brasilensewild type and mutant strains. Symbiosis, 3, 229-241.

    Google Scholar 

  • Delledonne, M., Porcari, R., and Fogher C. (1990). Nucleotide sequence of the nodG gene of Azospirillum brasilense. Nucleic Acids Res., 18, 6435.

    PubMed  CAS  Google Scholar 

  • Demange, P., Bateman, A., Dell, A., and Abdallah M. (1988). Structure of azotobactin D, a siderophore of Azotobacter vinelandii strain D (CCM 289). Biochemistry, 7, 2745-2752.

    Google Scholar 

  • Doneche, B., and Marcantoni G. (1992). The inhibition of Botrytis cinerea by soil bacteria - A new opportunity for biological control of gray rot. C. R. Acad. Sci. III, Life Sciences, 4, 279-283.

    Google Scholar 

  • Döbereiner, J., Baldani, V. L. D., and Reis V. M. (1995). Endophytic occurence of diazotrophic bacteria in non-leguminous crops. In I. Fendrik, M. Del Gallo, J. Vanderleyden, and M. de Zamaroczy (Eds.), Azospirillum VI and Related Microorganisms (. 3-14). Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Döbereiner, J., and Pedrosa F. O. (1987). Nitrogen-fixing bacteria in non-leguminous crop plants. Madison, WI: Science Tech. Publishers and Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Dörr, J., Hurek, T., and Reinhold-Hurek, B. (1998). Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol. Microbiol., 0, 7-17.

    Google Scholar 

  • Dutta Gupta, K., and Ghosh S. (1984). Identification of a phosphoenolpyruvate, fructose 1-phosphotransferase system in Azospirillum brasilense. J. Bacteriol., 160, 1204-1206.

    Google Scholar 

  • Elmerich, C. (1984). Molecular biology and ecology of diazotrophs associated with non-leguminous plants. Biotechnology, 2, 967-978.

    CAS  Google Scholar 

  • Elmerich, C., Zimmer, W., and Vieille C. (1992). Associative nitrogen-fixing bacteria. In G. Stacey, R. H. Burris, and H. J. Evans (Eds.), Biological nitrogen fixation (pp 212-258). New York, NY: Chapman and Hall Inc.

    Google Scholar 

  • Eskew, D. L., Focht, D. D., and Ting I. P. (1977). Nitrogen fixation, denitrification, and pleomorphic growth in highly pigmented Spirillum lipoferum. Appl. Environ. Microbiol., 34, 582-585.

    PubMed  CAS  Google Scholar 

  • Falk, E. C., Döbereiner, J., Johnson, J. L., and Krieg N. L. (2002). Deoxyribonucleic acid homology of Azospirillum amazonense and emendation of the description of the genus Azospirillum. Int. J. Syst. Bacteriol., 5, 117-118.

    Google Scholar 

  • Faure, D., Desair, J., Keijers, V., Bekri, M. A., Proost, P., Henrissat, B., et al. (1999). Growth of Azospirillum irakense KBC1 on the aryl β -glucoside salicin requires either salA or salB. J. Bacteriol., 181, 3003-3009.

    PubMed  CAS  Google Scholar 

  • Fogher, C., Dusha, I., Barbot, P., and Elmerich C. (1985). Heterologous hybridization of Azospirillum DNA to Rhizobium nodand fix genes. FEMS Microbiol. Lett., 0, 245-249.

    CAS  Google Scholar 

  • Fraser, G. M., and Hughes C. (1999). Swarming motility. Curr. Opin. Microbiol., 2, 630-635.

    PubMed  CAS  Google Scholar 

  • Gacesa, P. (1998). Bacterial alginate biosynthesis – recent progress and future prospects. Microbiology, 144, 1133-1143.

    PubMed  CAS  Google Scholar 

  • Goldstein, I. J., Hughes, R. C., Monsigny, M., Osawa, T., and Sharon N. (1980). What should be called a lectin? Nature, 6, 285-291.

    Google Scholar 

  • Haahtela, K., Tarkka, E., and Korhonen T. K. (1985). Type 1 fimbria-mediated adhesion of enteric bacteria to grass roots. Appl. Environ. Microbiol., 49, 1182-1185.

    PubMed  CAS  Google Scholar 

  • Hahn, H. P. (1997). The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa- a review. Gene, 2, 99-108.

    Google Scholar 

  • Hall, P. G., and Krieg N. R. (1984). Application of the indirect immunoperoxidase stain technique to the flagella of Azospirillum brasilense. Appl. Environ. Microbiol., 47, 433-435.

    PubMed  Google Scholar 

  • Hartmann, A., Prabhu, S. R., and Galinski E. A. (1991). Osmotolerance of diazotrophic rhizosphere bacteria. Plant Soil, 7, 105-109.

    Google Scholar 

  • Hartmann, A., and Zimmer W. (1994). Physiology of Azospirillum. In, Y. Okon (Ed.), Azospirillum/plant associations (pp. 15-39). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Higgins, C. F. (1992). ABC transporters, from microorganisms to man. Annu. Rev. Cell Biol., 8, 67-113.

    PubMed  CAS  Google Scholar 

  • Kadouri, D., Burdman, S., Jurkevitch, E., and Okon Y. (2002). Identification and isolation of genes involved in poly-β -hydroxybutyrate (PHB) biosynthesis in Azospirillum brasilense and characterization of a phbC mutant. Appl. Environ. Microbiol., 68, 2943-2949.

    PubMed  CAS  Google Scholar 

  • Kadouri, D., Jurkevitch, E., and Okon Y. (2003). Poly-β -hydroxybutyrate depolymerase (phaZ) in Azospirillum brasilense and characterization of a phaZmutant. Arch. Microbiol., 0, 309-318.

    CAS  Google Scholar 

  • Karpati, E., Kiss, P., Ponyi, T., Fendrik, I., de Zamaroczy, M., and Orosz L. (1999). Interaction of Azospirillum lipoferum with wheat germ agglutinin stimulates nitrogen fixation. J. Bacteriol., 181, 3949-3955.

    PubMed  CAS  Google Scholar 

  • Katupitiya, S., Millet, J., Vesk, M., Viccars, L., Zeman, A., Elmerich, C., et al. (1995). A mutant of Azospirillum brasilense Sp7 impaired in flocculation with a modified colonization pattern and superior nitrogen-fixation in association with wheat. Appl. Environ. Microbiol., 61, 1987-1995.

    PubMed  CAS  Google Scholar 

  • Khammas, K. M., Ageron, E., Grimont, P. A. D., and Kaiser P. (1989). Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res. Microbiol., 0, 679-693.

    CAS  Google Scholar 

  • Khammas, K. M. and Kaiser, P. (1991). Characterization of a pectinolytic activity of Azospirillum irakense. Plant Soil, 7, 75-79.

    Google Scholar 

  • Knosp, O., von Tigerstrom, M., and Page J. P. (1984). Siderophore mediated uptake of iron in Azotobacter vinelandii. J. Bacteriol., 159, 341-374.

    PubMed  CAS  Google Scholar 

  • Konnova, S. A., Baberdina, I. V., Makarov, O. E., Skvortsov, I. M., and Ignatov, V. V. (1990). Polysaccharide-lipid complex of S-variant of Azospirillum brasilense Sp7 of the surface of cells and culture liquid, complex degradation, fractionation and monosaccharide composition of polysaccharides. Mikrobiol. Zh., 2, 40-46.

    Google Scholar 

  • Konnova, S. A., Makarov, O. E., Skvortsov, I. M., and Ignatov V. V. (1992). Exopolysaccharides of bacteria Azospirillum brasilense Sp245 and Sp107. Mikrobiol. Zh., 4, 31-42.

    Google Scholar 

  • Korhonen, T. K., Tarkka, E., Ranta, H., and Haahtela K. (1983). Type 3 fimbriae of Klebsiella sp., Molecular characterization and role in bacterial adhesion to plant roots. J. Bacteriol., 155, 860-865.

    PubMed  CAS  Google Scholar 

  • Kovtunovych, G., Lar, O., Kamalova, S., Kordyum, V., Kleiner, D., and Kozyrovska, N. (1999). Correlation between pectin lyase activity and ability of diazotrophic Klebsiella oxytoca VN 13 to penetrate into plant tissues. Plant Soil, 5, 1-6.

    Google Scholar 

  • Lalande, R., and Knowles R. (1987). Cytochrome content in Azospirillum brasilense Sp7 grown under aerobic and denitrifying conditions. Can. J. Microbiol., 3, 151-156.

    Google Scholar 

  • Lamm, R. B., and Neyra C. A. (1981). Characterization and cyst production of azospirilla isolated from selected grasses growing in New Jersey and New York. Can. J. Microbiol., 7, 1320-1325.

    Google Scholar 

  • Leigh, J. A., Signer, E. R., and Walker G. C. (1985). Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc. Natl. Acad. Sci. U.S.A., 2, 6231-6235.

    Google Scholar 

  • LeVin, D., Kaplan, M. J., and Greenaway P. J. (1972). The purification and characterization of wheat germ agglutinin. Biochem. J., 9, 847-856.

    Google Scholar 

  • Lifshitz, R., Kloepper, J. W., Scher, F. M., Tipping, E. M., and Lalibertä, M. (1986). Nitrogen-fixingPseudomonas isolated from roots of plants grown in the Canadian high arctic. Appl. Environ. Microbiol., 51, 251-255.

    PubMed  Google Scholar 

  • Lin, J. T., Goldman, B. S., and Stewart V. (1994). The nasFEDCBA operon for nitrate and nitrite assimilation in Klebsiella pneumoniaeM5al. J. Bacteriol., 176, 2551-2559.

    PubMed  CAS  Google Scholar 

  • Lin, J. T., and Stewart V. (1998). Nitrate assimilation in bacteria. Adv. Microb. Physiol., 39, 1-30.

    PubMed  CAS  Google Scholar 

  • Macnab, R. M. (1996). Flagella and motility. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, et al. (Eds.), Escherichia coli and Salmonella, cellular and molecular biology, 2nd edit. (. 123-145). Washington, DC: ASM Press.

    Google Scholar 

  • Madison, L. L., and Huisman G. W. (1999). Metabolic engineering α -poly (3-hydroxyalkanoates), from DNA to plastic. Microbiol. Mol. Biol. Rev., 3, 21-53.

    Google Scholar 

  • Magelhães, F. M., Baldani, J. I., Souto, S. M., Kuykendall, J. R., and Döbereiner, J. (1983). A new acid-tolerant Azospirillum species. An. Acad. Bras. Cienc., 5, 417-429.

    Google Scholar 

  • Manchak, P., and Page W. J. (1994). Control of polyhydroxyalkanoate synthesis in Azotobacter vinelandii strain UWD. Microbiology, 0, 953-963.

    CAS  Google Scholar 

  • Matthysse, A. G., Holmes, K. V., and Gurlitz R. H. G. (1981). Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J. Bacteriol., 145, 583-595.

    PubMed  CAS  Google Scholar 

  • McBride, M. J. (2001). Bacterial gliding motility, multiple mechanisms for cell movement over surfaces. Annu. Rev. Microbiol., 5, 49-75.

    Google Scholar 

  • Michiels, K., Croes, C. L., and Vanderleyden J. (1991). Two different modes of attachment of Azospirillum brasilenseSp7 to wheat roots. J. Gen. Microbiol., 7, 2241-2246.

    Google Scholar 

  • Michiels, K., Verreth, C., and Vanderleyden J. (1990). Azospirillum lipoferum and Azospirillum brasilense surface polysaccharide mutants that are affected in flocculation. J. Appl. Bacteriol., 9, 705-711.

    Google Scholar 

  • Michiels, K. W., Vanderleyden, J., and Van Gool, A. P. (1989). Azospirillum-plant root associations, a review. Biol. Fertil. Soils, 8, 356-368.

    Google Scholar 

  • Michiels, K. W., Vanderleyden, J., Van Gool, A. P., and Signer E. R. (1988). Isolation and characterization of Azospirillum brasilense loci that correct Rhizobium meliloti exoBand exoCmutations. J. Bacteriol., 170, 5401-5404.

    PubMed  CAS  Google Scholar 

  • Milcamps, A., Van Dommelen, A., Stigter J., Vanderleyden J., and de Bruijn, F. J. (1996). TheAzospirillum brasilense rpoN gene is involved in nitrogen fixation, nitrate assimilation, ammonium uptake, and flagellar biosynthesis. Can. J. Microbiol., 42, 467-478.

    PubMed  CAS  Google Scholar 

  • Mishkind, M. L., Palevitz, B. A., and Raikhel N. V. (1983). Localization of wheat germ agglutinin-like lectins in various species of the Gramineae. Science, 220, 1290-1292.

    Google Scholar 

  • Moens, S., Michiels, K., Keijers, V., Van Leuven, F., and Vanderleyden J. (1995a). Cloning, sequencing and phenotypic analysis of laf1, encoding the flagellin of the lateral flagella of Azospirillum brasilense Sp7. J. Bacteriol., 177, 5419-5426.

    CAS  Google Scholar 

  • Moens, S., Michiels, K., and Vanderleyden J. (1995b). Glycosylation of the flagellin of the polar flagellum of Azospirillum brasilense, a gram-negative nitrogen-fixing bacterium. Microbiology, 1, 2651-2657.

    Google Scholar 

  • Moens, S., Schloter, M., and Vanderleyden J. (1996). Expression of the structural gene, laf1, encoding the flagellin of the lateral flagella in Azospirillum brasilense Sp7. J. Bacteriol., 178, 5017-5019.

    PubMed  CAS  Google Scholar 

  • Moreno, S., Nàjera, R., Guzmàn, J., Soberòn-Chàvez, G., and Espìn, G. (1998). Role of alternative σ factor AlgU in encystment of Azotobacter vinelandii. J. Bacteriol., 180, 2766-2769.

    PubMed  CAS  Google Scholar 

  • Neilands, J. B. (1981). Microbial iron compounds. Annu. Rev. Biochem., 0, 715-731.

    CAS  Google Scholar 

  • Neilands, J. B. (1982). Microbial envelope proteins related to iron. Annu. Rev. Microbiol., 36, 285-309.

    PubMed  CAS  Google Scholar 

  • Nùñez, C., Moreno, S., Soberòn-Chàvez, G., and Espìn, G. (1999). The Azotobacter vinelandii response regulator AlgR is essential for cyst formation. J. Bacteriol., 181, 141-148.

    PubMed  Google Scholar 

  • Okon, Y., and Itzigsohn R. (1992). Poly-β -hydroxybutyrate metabolism in Azospirillum brasilenseand the ecological role of PHB in the rhizosphere. FEMS Microbiol. Rev., 103, 131-140.

    CAS  Google Scholar 

  • Oliveira, R. G. B., and Drozdowicz A. (1981). Bacteriocins in the genus Azospirillum. Rev. Microbiol., 2, 42-47.

    Google Scholar 

  • Oliveira, R. G. B., and Drozdowicz A. (1987). Inhibition of producing strains of Azospirillum lipoferum by their own bacteriocin. Zentralbl. Mikrobiol., 142, 387-391.

    Google Scholar 

  • Page, W. J., and Dale P. L. (1986). Stimulation of Agrobacterium tumefaciensgrowth by Azotobacter vinelandii ferrisiderophores. Appl. Environ. Microbiol., 51, 451-454.

    PubMed  Google Scholar 

  • Page, W. J., and Huyer M. (1984). Derepression of the Azotobacter vinelandiisiderophore system, using iron-containing minerals to limit iron repletion. J. Bacteriol., 158, 496-502.

    PubMed  CAS  Google Scholar 

  • Page, W. J., and von Tigerstrom, M. (1988). Aminochelin, a catecholamine siderophore produced by Azotobacter vinelandii. J. Gen. Microbiol., 4, 453-460.

    Google Scholar 

  • Patriquin, D. G., Döbereiner, J., and Jain D. K. (1983). Sites and processes of the association between diazotrophs and grasses. Can. J. Microbiol., 9, 900-915.

    Google Scholar 

  • Penteado Stephan, M., Zimmer, W., and Bothe H. (1984). Denitrification by Azospirillum brasilense Sp7. II. Growth with nitrous oxide as respiratory electron acceptor. Arch. Microbiol., 8, 212-216.

    Google Scholar 

  • Peralta-Gil, M., Segura, D., Guzmàn, J., Servìn-Gonzàlez, L., and Espìn, G. (2002). Expression of the Azotobacter vinelandii poly-β -hydroxybutyrate biosynthetic phbBAC operons is driven by two overlapping promoters and is dependent on the transcriptional activator PhbR. J. Bacteriol., 4, 5672-5677.

    Google Scholar 

  • Pereg-Gerk, L., Paquelin, A., Gounon, A., Kennedy, I. R., and Elmerich C. (1998). A transcriptional regulator of the LuxR-UhpA family, FlcA, controls flocculation and wheat root surface colonization by Azospirillum brasilense Sp7. Mol. Plant Microbe Interact., 1, 177-187.

    Google Scholar 

  • Pettinari, M. J., Vàzquez, G. J., Silberschmidt, D., Rehm, B., Steinbüchel, A., and Mèndez, B. S. (2001). Poly (3-Hydroxybutyrate) synthesis genes in Azotobacter sp. strain FA8. Appl. Environ. Microbiol., 67, 5331-5334.

    PubMed  CAS  Google Scholar 

  • Pleier, E., and Schmitt R. (1991). Expression of two Rhizobium meliloti flagellin genes and their contribution to the complex filament structure. J. Bacteriol., 173, 2077-2085.

    PubMed  CAS  Google Scholar 

  • Rai, R. (1991). Strain-specific salt tolerance and chemotaxis of Azospirillum brasilense and the associative nitrogen-fixation with finger millet in saline calcareous soil. Plant Soil, 7, 55-60.

    Google Scholar 

  • Raina, S., Raina, R., Venkatesh, T. V., and Das H. K. (1995). Isolation and characterization of a locus from Azospirillum brasilenseSp7 that complements the tumorigenic defect of Agrobacterium tumefaciens chvB mutant. Mol. Plant Microbe Interact., 8, 322-326.

    PubMed  CAS  Google Scholar 

  • Ramos, F., Blanco, G., Gutièrrez, J.-C., Luque, F., and Tortolero M. (1993). Identification of an operon involved in the assimilatory nitrate-reducing system of Azotobacter vinelandii. Mol. Microbiol., 8, 1145-1153.

    PubMed  CAS  Google Scholar 

  • Ramos, H. J., Roncato-Maccari, L. D., Souza, E. M., Soares-Ramos, J. R., Hungria, M., and Pedrosa F. O. (2002). Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. J. Biotechnol., 7, 243-52.

    Google Scholar 

  • Rediers, H., Bonnecarrére, V., Rainey, P. B., Hamonts, K., Vanderleyden, J., and De Mot R. (2003). Development and application of a dapB-based in vitro expression technology system to study colonization of rice by the endophytic nitrogen-fixing bacterium Pseudomonas stutzeri A15. Appl. Environ. Microbiol., 9, 6864-6874.

    Google Scholar 

  • Reinhold-Hurek, B., Hurek, T., Claeyssens, M., and Montagu M. (1993). Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp., a root-invading diazotroph. J. Bacteriol., 175, 7056-7065.

    PubMed  CAS  Google Scholar 

  • Reinhold, B., Hurek, T., Fendrik, I., Pot, B., Gilllis, M., Kersters, K., et al.(1987). Azospirillum halopraeferens sp. nov. a nitrogen-fixing organism associated with roots of kallar grass (Leptchloa fusca(L.). Kunth). Int. J. Syst. Bacteriol., 7, 43-51.

    Google Scholar 

  • Reinhold, B., Hurek, T., Niemann, E.-G., and Fendrik I. (1986). Close association of Azospirillum and diazotrophic rods with different root zones of Kallar grass. Appl. Environ. Microbiol., 53, 520-526.

    Google Scholar 

  • Reinhold-Hurek, B., and Hurek T. (1998). Life in grasses, diazotrophic endophytes. Trends Microbiol., 6, 139-144.

    PubMed  CAS  Google Scholar 

  • Richardson, D.J. (2000). Bacterial respiration, a flexible process for a changing environment. Microbiol., 6, 551-571.

    Google Scholar 

  • Riou, N., and Le Rudulier, D. (1990). Osmoregulation in Azospirillum brasilense. Glycine betaine transport enhances growth and nitrogen fixation under salt stress. J. Gen. Microbiol., 136, 1455-1461.

    CAS  Google Scholar 

  • Rösch, C., Mergel, A., and Bothe H. (2002). Biodiveristy of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl. Environ. Microbiol., 68, 3818-3829.

    PubMed  Google Scholar 

  • Sadasivan, L., and Neyra C. A. (1985). Flocculation in Azospirillum brasilenseand Azospirillum lipoferum, exopolysaccharides and cyst formation. J. Bacteriol., 163, 716-723.

    PubMed  CAS  Google Scholar 

  • Sadasivan, L., and Neyra C. A. (1987). Cyst production and brown pigment formation in aging cultures of Azospirillum brasilense ATCC 29145. J. Bacteriol., 169, 1670-1677.

    PubMed  CAS  Google Scholar 

  • Sadoff, H. L. (1975). Encystment and germination in Azotobacter vinelandii. Bacteriol. Rev., 9, 516-539.

    Google Scholar 

  • Saxena, B., Modi, M., and Modi V. V. (1986). Isolation and characterization of siderophore from Azospirillum lipoferum D2. J. Gen. Microbiol., 2, 2219-2224.

    Google Scholar 

  • Schwedock, J. S., Liu, C., Leyh, T. S., and Long S.R. (1994). Rhizobium meliloti nodP and nodQ form a multifunctional sulfate-activating complex requiring GTP for activity. J. Bacteriol., 176, 7055-7064.

    PubMed  CAS  Google Scholar 

  • Segura, D., and Espìn, G. (1998). Mutational inactivation of a gene homologous to Escherichia coli ptsP affects poly-beta-hydroxybutyrate accumulation and nitrogen fixation in Azotobacter vinelandii. J. Bacteriol., 180, 4790-4798.

    PubMed  CAS  Google Scholar 

  • Segura, D., Vargas, E., and Espìn, G. (2000). Beta-ketothiolase genes in Azotobacter vinelandii. Gene, 260, 113-120.

    PubMed  CAS  Google Scholar 

  • Senior, P. J., and Dawes E. A. (1973). Regulation of poly-β -hydroxybutyrate metabolism in Azotobacter beijerinckia. Biochem. J., 4, 225-238.

    Google Scholar 

  • Shah, S., Karkhanis, V., and Desai A. (1992). Isolation and characterization of siderophore, with antimicrobial activity, from Azospirillum lipoferum M. Curr. Microbiol., 5, 347-351.

    Google Scholar 

  • Skorupska, A., Brzezinska, M., Choma, A., Kulinska, D., and Lorkiewics D. (1985). Physiological characterization, plasmid, and bacteriocinogenicity of Azospirillum. Microbios, 4, 243-251.

    Google Scholar 

  • Smit, G., Kijne, J. W., and Lugtenberg J. J. (1987). Both cellulose fibrils and a Ca2+-dependent adhesin are involved in the attachment of Rhizobium leguminosarum to pea root hair tips. J. Bacteriol., 169, 4294-4301.

    PubMed  CAS  Google Scholar 

  • Somers, E., Keijers, V., Ptacek, D., Halverson Ottoy, M., Srinivasan, M., Vanderleyden, J., et al. (2000). The salCAB operon of Azospirillum irakense, required for growth in salicin, is repressed by SalR, a transcriptional regulator that belongs to the LacI/GalR family. Mol. Gen. Genet., 3, 1038-1046.

    Google Scholar 

  • Steenhoudt, O. (2000). Nitrate metabolism in Azospirillum brasilense, a molecular approach for the identification of the assimilatory and dissimilatory pathways. Thesis, Catholic University Leuven, Belgium.

    Google Scholar 

  • Steenhoudt, O., and Vanderleyden J. (2000). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses; Genetic, biochemical and ecological aspects. FEMS Microbiol. Rev., 4, 487-506.

    Google Scholar 

  • Steenhoudt, O., Keijers, V., Okon, Y., and Vanderleyden J. (2001). Identification and characterization of a periplasmic nitrate reductase inAzospirillum brasilense Sp245. Arch. Microbiol., 5, 344-352.

    Google Scholar 

  • Stevenson, L. H., and Socolofsky M. D. (1966). Cyst formation and poly-β -hydroxybutyric acid accumulation in Azotobacter. J. Bacteriol., 91, 304-310.

    PubMed  CAS  Google Scholar 

  • Strom, M. S. and Lory, S. (1993). Structure-function and biogenesis of the type IV pili. Annu. Rev. Microbiol., 7, 565-596.

    Google Scholar 

  • Sun, X. Y., Griffith, M., Pasternak, J. J., and Glick B. R. (1995). Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putidaGR12-2. Can. J. Microbiol., 1, 776-784.

    Google Scholar 

  • Sun, J., Peng, X., Van Impe, J., and Vanderleyden J. (2000). ThentrBand ntrC genes are involved in the regulation of poly-3-hydroxybutyrate biosynthesis by ammonia in Azospirillum brasilense Sp7. Appl. Environ. Microbiol., 66, 113-117.

    PubMed  CAS  Google Scholar 

  • Sun, J., Van Dommelen, A., Van Impe, J., and Vanderleyden J. (2002). Involvement of glnB, glnZ and glnDgenes in the regulation of poly-3-hydroxybutyrate biosynthesis by ammonia in Azospirillum brasilense Sp7. Appl. Environ. Microbiol., 8, 985-988.

    Google Scholar 

  • Tal, S., and Okon Y. (1985). Production of the reserve material poly-β -hydroxybutyrate and its function in Azospirillum brasilense Cd. Can. J. Microbiol., 1, 608-613.

    Google Scholar 

  • Tal, S., Smirnoff, P., and Okon Y. (1990). The regulation of poly-β -hydroxybutyrate metabolism during balanced growth and starvation. J. Clin. Microbiol., 136, 1191-1196.

    CAS  Google Scholar 

  • Tapia-Hernàndez, A., Mascarua-Esperza, M. A., and Caballero-Mellado, J. (1990). Production of bacteriocins and siderophore-like activity by Azospirillum brasilense. Microbios, 4, 73-83.

    Google Scholar 

  • Tarrand J. J., Krieg, N. R., and Döbereiner, J. (1978). A taxonomic study of the Spirillum lipoferum group with description of a new genus. Azospirillum gen. nov. and two species Azospirillum lipoferum (Beijerinck). comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol., 24, 967-980.

    PubMed  CAS  Google Scholar 

  • Umali-Garcia, M., Hubbell, D. H., Gaskins, M. H., and Dazzo F. B. (1980). Association of Azospirillum with grass roots. Appl. Environ. Microbiol., 39, 219-226.

    PubMed  Google Scholar 

  • Vanbleu, E. (2001). Proteïnen betrokken in de adhesie van Azospirillum brasilense aan plantenwortels. Thesis, Catholic University Leuven, Belgium.

    Google Scholar 

  • Van Bastelaere, E. (1996). Isolation and characterization of plant-inducible genes in Azospirillum brasilense Sp7. Thesis, Catholic University Leuven, Belgium.

    Google Scholar 

  • Van Bastelaere, E., Lambrecht, M., Vermeiren, H., Van Dommelen, A., Keijers, V., Proost, P., and Vanderleyden J. (1999). Characterization of a sugar-binding protein from Azospirillum brasilense by using Tn5-lacZ. Appl. Environ. Microbiol., 6, 990-996.

    Google Scholar 

  • Van Rhijn, P., Vanstockem, M., Vanderleyden, J., and De Mot, R. (1990). Isolation of behavioral mutants of Azospirillum brasilenseby using Tn5-lacZ. Appl. Environ. Microbiol., 4, 990-996.

    Google Scholar 

  • Vande Broek, A., Lambrecht, M., and Vanderleyden J. (1998). Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense. Microbiology, 4, 2599-2606.

    Google Scholar 

  • Vande Broek, A., Michiels, J., Van Gool, A. P., and Vanderleyden J. (1993). Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifHgene during association. Mol. Plant Microbe Interact., 6, 592-600.

    Google Scholar 

  • Vande Broek, A., and Vanderleyden J. (1995). The role of bacterial motility, chemotaxis, and attachment in Bacteria-Plant interactions. Mol. Plant Microbe Interact., 8, 800-810.

    CAS  Google Scholar 

  • Vieille, C., and Elmerich C. (1990). Characterization of two Azospirillum brasilenseSp7 plasmid genes homologous to Rhizobium meliloti nodPQ. Mol. Plant Microbe Interact., 3, 389-400.

    PubMed  CAS  Google Scholar 

  • Vieille, C., and Elmerich C. (1992). Characterization of an Azospirillum brasilense Sp7 gene homologous to Alcaligenes eutrophus phbB and Rhizobium meliloti nodG. Mol. Gen. Genet., 1, 375-384.

    Google Scholar 

  • Waelkens, F., Maris, M., Verreth, C., and Vanderleyden J. (1987). Azospirillum DNA shows homology with Agrobacterium chromosomal virulence genes. FEMS Microbiol. Lett., 3, 241-246.

    Google Scholar 

  • Wall, D., and Kaiser D. (1999). Type IV pili and cell motility. Mol. Microbiol., 32, 1-10.

    PubMed  CAS  Google Scholar 

  • Wootton, J. C., Nicolson, R. E., Cock, J. M., Walters, D. E., Burke, J. F., Doyle, W. A., et al. (1991). Enzymes depending on the pterin molybdenum cofactor, sequence families, spectroscopic properties of molybdenum and possible cofactor-binding domains. Biochim. Biophys. Acta, 7, 157-185.

    Google Scholar 

  • Wu, G. H., Moir, A. J. G., Sawers, G., Hill, S., and Poole R. K. (2001). Biosynthesis of poly-beta-hydroxybutyrate (PHB) is controlled by CydR (Fnr) in the obligate aerobe Azotobacter vinelandii. FEMS Microbiol.Lett., 4, 215-220.

    Google Scholar 

  • Xu, H., Griffith, M., Patten, C. L., and Glick B. R. (1998). Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol., 4, 64-73.

    Google Scholar 

  • Zhu, G.-Y., Dobbelaere, S., and Vanderleyden J. (2002). Use of green fluorescent protein to visualize rice root colonization by Azospirillum irakense and A. brasilense. Funct. Plant. Biol., 29, 1279-1285.

    Google Scholar 

  • Zhulin, I. B., and Armitage J. P. (1993). Motility, chemotaxis and methylation-independent chemotaxis in Azospirillum brasilense. J. Bacteriol., 175, 952-958.

    PubMed  CAS  Google Scholar 

  • Zimmer, W., Kloos, K., Hundeshagen, E., Niederau, E., and Bothe H. (1995). Auxin biosynthesis and denitrification in plant growth promoting bacteria. In I. Fendrik, M. Del Gallo, J. Vanderleyden, and M. de Zamaroczy (Eds.), Azospirillum VI and related microorganisms, genetics, physiology and ecology (. 121-128). Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Zimmer, W., Penteado Stephan, M., and Bothe H. (1984). Denitrification by Azospirillum brasilense Sp7. I. Growth with nitrite as respiratory electron acceptor. Arch.Microbiol., 8, 206-211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Vanbleu, E., Vanderleyden, J. (2007). Molecular Genetics of Rhizosphere and Plant-Root Colonization. In: Elmerich, C., Newton, W.E. (eds) Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3546-2_5

Download citation

Publish with us

Policies and ethics