Skip to main content

Part of the book series: Nitrogen Fixation: Origins, Applications, and Research Progress ((NITR,volume 5))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. G. (2002). Cyanobacteria in symbiosis with hornworts and liverworts. In A. N. Rai, B. Bergman, and U. Rasmussen (Eds.), Cyanobacteria in symbiosis (pp. 117-135). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Adams, D. G., and Duggan P. S. (1999). Heterocyst and akinete differentiation in cyanobacteria. New Phytol., 144, 3-33.

    Google Scholar 

  • Ahern, C. P., and Staff I. A. (1994). Symbiosis in cycads: The origin and development of coralloid roots in Macrozamia communis (Cycadaceae). Am. J. Bot., 81, 1559-1570.

    Google Scholar 

  • Albertano, P., Canini, A., and Caiola M. G. (1993). Subcellular distribution of nitrogen compounds in Azolla and Anabaena by ESI and EELS analysis. Protoplasma, 173, 158-169.

    CAS  Google Scholar 

  • Aulfinger, H., Braun-Howland, E. B., Kannaiyan, S., and Nierzwicki-Bauer, S. A. (1991). Ultrastructural changes of the endosymbionts of Azolla microphylla during megaspore germination and early plantlet development. Can. J. Bot., 69, 2489-2496.

    Google Scholar 

  • Bar, E., and Tel-Or, E. (1994). Effects of light and oxygen on nitrogenase activity and dinitrogenase reductase (Fe-protein) content in Azolla-Anabaena association. J. Plant Physiol., 144, 438-443.

    CAS  Google Scholar 

  • Beijerinck, M. B. (1901). Ãœber oligonitrophile Mikroben. Centralblatt Bakteriologie II. Abt. Bd., 7, 561.

    Google Scholar 

  • Bergersen, F. J., Kennedy, G. S., and Wittman W. (1965). Nitrogen fixation in the coralloid roots of Macrozamia communis L. Johnson. Aust. J. Biol. Sci., 18, 1135-1142.

    CAS  Google Scholar 

  • Bergman, B. (2002). The Nostoc-Gunnera symbiosis. In A. N. Rai, B. Bergman, and U. Rasmussen (Eds.), Cyanobacteria in symbiosis (pp. 207-232). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Bergman, B., and Osborne B. (2002). The Gunnera-Nostoc symbiosis. In B. Osborne (Ed.), Commentaries on cyanobacterial symbioses (pp. 35-39). Dublin, Ireland: Royal Irish Academy.

    Google Scholar 

  • Bergman, B., Lindblad, P., and Rai A. N. (1986). Nitrogenase in free-living and symbiotic cyanobacteria: Immunoelectron microscopic localization. FEMS Microbiol. Lett., 35, 75-78.

    CAS  Google Scholar 

  • Bergman, B., Johansson, C., and Söderbäck, E. (1992a). The Nostoc-Gunnera symbiosis. New Phytol., 122, 379-400.

    Google Scholar 

  • Bergman, B., Rai, A. N., Johansson, C., and Söderbäck, E. (1992b). Cyanobacterial-plant symbioses. Symbiosis, 14, 61-81.

    Google Scholar 

  • Bergman, B., Matveyev, A., and Rasmussen U. (1996). Chemical signalling in cyanobacterial-plant symbiosis. Trends Plant Sci., 1, 191-197.

    Google Scholar 

  • Bilger, W., Büdel, B., Mollenhauer, R., and Mollenhauer D. (1994). Photosynthetic activity of two developmental stages of a Nostoc strain (cyanobacteria) isolated from Geosiphon pyriforme(Mycota). J. Phycol., 30, 225-230.

    CAS  Google Scholar 

  • Black, K. G., Parsons, R., and Osborne B. A. (2002). Uptake and metabolism of glucose in the Nostoc-Gunnera symbiosis. New Phytol., 153, 297-305.

    CAS  Google Scholar 

  • Bonnett, H. T., and Silvester W. B. (1981). Specificity in the Nostoc-Gunnera endosymbiosis. New Phytol., 89, 121-128.

    CAS  Google Scholar 

  • Bouilhac, R. (1896). Sur la fixation de l’azote atmosphérique par l’association des algues et des bactéries. C. R. Acad. Sci. Paris, 123, 828.

    CAS  Google Scholar 

  • Braun-Howland, E. B., and Nierzwicki-Bauer, S. A. (1990). Azolla-Anabaena symbiosis: Biochemistry, physiology, ultrastructure and molecular biology. In A. N. Rai (Ed.), Handbook of symbiotic cyanobacteria (pp. 65-177). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Broady P. A. (1979). The Signy Island terrestrial reference site: VII. The ecology of the algae of site 1, a moss turf. B. Antarct. Surv. Bull., 47, 13-29.

    Google Scholar 

  • Buikema, W. J., and Haselkorn R. (1991). Characterization of a gene controlling heterocyst differentiation in the cyanobacterium Anabaena 7120. Gene Dev., 5, 321-330.

    PubMed  CAS  Google Scholar 

  • Caudales, R., Wells, J. M., Antoine, A. D., and Butterfield J. E. (1995). Fatty acid composition of symbiotic cyanobacteria from different host plant (Azolla) species - evidence for coevolution of host and symbiont. Int. J. Syst. Bacteriol., 45, 364-370.

    CAS  Google Scholar 

  • Campbell, E. L., and Meeks J. C. (1989). Characteristics of hormogonia formation by symbiotic Nostoc species in response to the presence of Anthoceros punctatus or its extracellular products. Appl. Environ. Microbiol., 55, 125-131.

    PubMed  Google Scholar 

  • Campbell, E. L., and Meeks J. C. (1992). Evidence for plant-mediated regulation of nitrogenase expression in the Anthoceros-Nostoc symbiotic association. J. Gen. Microbiol., 138, 473-480.

    CAS  Google Scholar 

  • Canini, A., Caiola, M. G., and Mascini M. (1990). Ammonium content, nitrogenase activity and heterocyst frequency within the leaf cavity of Azolla filiculoides Lam. FEMS Microbiol. Lett., 71, 205-210.

    CAS  Google Scholar 

  • Carpenter, E. J., Montoya, J. P., Burns J., Mulholland M. R., Subramanian, A., and Capone D. G. (1999). Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean. Marine Ecol. Prog. Series, 185, 273-283.

    CAS  Google Scholar 

  • Carpenter, E. J., and Janson S. (2000). Intracellular cyanobacterial symbionts in the marine diatom Climacodium frauenfeldianum. J. Phycol., 36, 540-544.

    Google Scholar 

  • Carpenter, E. J., and Foster R. A. (2002). Marine cyanobacterial symbioses. In A. N. Rai, B. Bergman and U. Rasmussen (Eds.), Cyanobacteria in symbiosis(pp. 11-17). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Carrapico, F. (1991). Are bacteria the 3rd partner of the Azolla-Anabaena symbiosis? Plant Soil, 137, 157-160.

    Google Scholar 

  • Cohen, M. F., and Yamasaki H. (2000). Flavonoid-induced expression of a symbiosis-related gene in the cyanobacterium Nostoc punctiforme. J. Bacteriol., 182, 4644-4646.

    PubMed  CAS  Google Scholar 

  • Costa, J-L., and Lindblad P. (2002). Cyanobacteria in symbiosis with cycads. In A. N. Rai, B. Bergman, and U. Rasmussen (Eds.), Cyanobacteria in symbiosis(pp. 195-205). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Costa, J-L, Paulsrud, P., Rikkinen, J., and Lindblad P. (2001). Genetic diversity of Nostoc symbionts endophytically associated with two bryophyte species. Appl. Environ. Microbiol., 67, 4393-4396.

    PubMed  CAS  Google Scholar 

  • Costa, J-L., Paulsrud, P., and Lindblad P. (1999). Cyanobiont diversity within coralloid roots of selected cycad species. FEMS Microbiol. Ecol., 28, 85-91.

    CAS  Google Scholar 

  • Davey, A., and Marchant H. J. (1983). Seasonal variation in nitrogen fixation by Nostoc commune Vaucher at Vestfold Hills, Antarctica. Phycologia, 22, 377-385.

    Google Scholar 

  • De Bary, A. (1872). Die Erscheinung der Symbiose. In Vortrag auf der versammlung der naturforscher und ärtze zu cassel (pp. 1-30). Strassburg, Germany: Verlag von K. J. Trubner.

    Google Scholar 

  • DeYoe, H. R., Lowe, R. L., and Marks J. C. (1992). Effects of nitrogen and phosphorous on the endosymbiont load of Rhopalodia gibba and Epithemia turgida (Bacillariophycaea). J. Phycol., 28, 773-777.

    CAS  Google Scholar 

  • Do, V. C., Watanabe, I., Zimmerman, W. J., Lumpkin, T. A., and de Waha Gaillonville, T. (1989). Sexual hybridisation among Azolla species. Can. J. Bot., 67, 3482-3485.

    Google Scholar 

  • Dodds, K., Gudder, D. A., and Mollenhauer D. (1995). The ecology of Nostoc. J. Phycol., 31, 2-18.

    CAS  Google Scholar 

  • Douglas, S. E. (1994). Chloroplast origin and evolution. In D. A. Bryant (Ed.), The molecular biology of cyanobacteria (pp. 91-118). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Drewes, K. (1928). Ãœber die assimilation des luftstickstoffe durch blaualgen. Zentralblatt für Bakteriologie Parasitenkunde Infektionskrankheiten und Hygiene, II Abteilung - Naturwissenschaftliche - Mikrobiologie der Landwirtschaft der Technologie, 76, 88-101.

    CAS  Google Scholar 

  • Drum, R. W., and Pankratz S. (1965). Fine structure of an unusual cytoplasmic inclusion in the diatom genus Rhopalodia. Protoplasma, 60, 141-149.

    Google Scholar 

  • Duckett, J. G., Prasad, A. K. S. K., Davies, D. A., and Walker S. (1977). A cytological analysis of the Nostoc-bryophyte relationship. New Phytol., 79, 349-362.

    Google Scholar 

  • Enderlin, C. S., and Meeks J. C. (1983). Pure culture and reconstitution of the Anthoceros-Nostoc symbiotic association. Planta, 158, 157-165.

    CAS  Google Scholar 

  • Englund, B. (1977). The physiology of the lichen Peltigera aphthosa, with special reference to the blue-green phycobiont (Nostoc sp.). Physiol. Plant., 41, 298-304.

    CAS  Google Scholar 

  • Feuillée, L. (1725). Histoire des plantes médicinales du Pérou et Chily. Journal des Observations Physiques, Mathématiques et Botaniques faites sur l‘Amérique méridionale et dans les Indes occidentales depuis 1707-12. Griffart, Paris. 3, 426.

    Google Scholar 

  • Floener, L., and Bothe H. (1980). Nitrogen fixation in Rhopalodia gibba, a diatom containing blue-greenish inclusions symbiotically. In W. Schwemmler and H. E. A. Schenk (Eds.), Endo-cytobiology, endosymbiosis and cell biology (Vol. 1, pp. 541-552). Berlin, Germany: Walter de Gruyter and Co.

    Google Scholar 

  • Fogg, G. E. (1942). Studies on nitrogen fixation by blue-green algae. I. Nitrogen fixation by Anabaena cylindrica Lemm. J. Exp. Bot., 19, 78-87.

    CAS  Google Scholar 

  • Forni, C., Haegi, A., Delgallo, M., and Grilli-Caiola, M. (1992a). Production of polysaccharides by Arthrobacter globiformis associated with Anabaena azollae in Azolla leaf cavity. FEMS Microbiol. Lett., 93, 269-274.

    CAS  Google Scholar 

  • Forni, C., Riov, J., Caiola, M. G., and Tel-Or, E. (1992b). Indole-3-acetic acid (IAA) production by Arthrobacter species isolated from Azolla. J. Gen. Microbiol., 138, 377-381.

    CAS  Google Scholar 

  • Frank, B. (1889). Ãœber den experimentellen nachweis der assimilation freien stickstoffs durch erdbodenwohnende algen. Bericht der Deutschen Botanischen Gesellschaft, 7, 24-42.

    Google Scholar 

  • Gantar, M., and Elhai J. (1999). Colonization of wheat para-nodules by the N2-fixing cyanobacterium Nostoc sp. strain 2S9B. New Phytol., 141, 373-379.

    Google Scholar 

  • Gantar, M., Kerby, N. W., Rowell P., and Obreht Z. (1991). Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: I. A survey of soil cyanobacterial isolates forming associations with roots. New Phytol., 118, 477-483.

    Google Scholar 

  • Gantar, M., Kerby, N. W., and Rowell P. (1993). Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: III. The role of a hormogonia-promoting factor. New Phytol., 124, 505-513.

    CAS  Google Scholar 

  • Gantar, M., Kerby, N. W., Rowell P., Obreht, Z., and Scrimgeour C. (1995). Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: IV. Dark nitrogenase activity and effect of cyanobacteria on natural 15N abundance in the plants. New Phytol., 129, 337-343.

    CAS  Google Scholar 

  • Gebhardt, J. S., and Nierzwicki-Bauer, S. A. (1991). Identification of a common cyanobacterial symbiont associated with Azolla spp. through molecular and morphological characterization of free-living and symbiotic cyanobacteria. Appl. Environm. Microbiol., 57, 2141-2146.

    CAS  Google Scholar 

  • Gehrig, H., Schüßler, A., and Kluge M. (1996). Geosiphon pyriforme, a fungus forming endocytosymbiosis with Nostoc (cyanobacteria), is an ancestral member of the Glomales: Evidence by SSU rRNA analysis. J. Mol. Evol., 43, 71-81.

    PubMed  CAS  Google Scholar 

  • Gorelova, O. A., Baulina, O. I., Shchelmanova, A. G., Korzhenevskaya, T. G., and Gusev, M. V. (1996). Heteromorphism of the cyanobacterium Nostoc sp., a microsymbiont of the Blasia pusilla moss. Microbiology (translation of Mikrobiologiia), 65, 719-726.

    Google Scholar 

  • Granhall, U., and Selander H. (1973). Nitrogen fixation in a subarctic mire. Oikos., 24, 8-15.

    Google Scholar 

  • Grilli-Caiola, M. (1974). A light and electron microscopic study of the blue-green algae living either in the coralloid roots of Macrozamia communis or isolated in culture. Gior. Bot. Ital., 108, 161-173.

    Google Scholar 

  • Grilli-Caiola, M. (1975). A light and electron microscopic study of blue-green algae growing in the coralloid-roots of Encephalartos altenstenii and in culture. Phycologia, 14, 25-33.

    Google Scholar 

  • Grilli-Caiola, M. (1980). On the phycobiont of the cycad coralloid roots. New Phytol., 85, 537-544.

    Google Scholar 

  • Grobbelaar, N., Hattingh, W., and Marshall J. (1986). The occurrence of coralloid roots on the South African species of the Cycadales and their ability to fix nitrogen symbiotically. South African J. Bot., 52, 467-471.

    CAS  Google Scholar 

  • Grobbelaar, N., Scott, W. E., Hattingh, W., and Marshall J. (1987). The identification of the coralloid root endophytes of the southern African cycads and the ability of the isolates to fix dinitrogen. South African J. Bot., 53, 111-118.

    Google Scholar 

  • Grove, T. S., O’Conell, A. M., and Malajczuk N. (1980). Effects of fire on the growth, nutrient content and rate of nitrogen fixation of the cycad Macrozamia riedlei. Aust. J. Bot., 28, 271-281.

    CAS  Google Scholar 

  • Halliday, J., and Pate J. S. (1976). Symbiotic nitrogen fixation by coralloid roots of the cycad Macrozamia riedlei: Physiological characteristics and ecological significance. Aust. J. Plant Physiol., 3, 349-358.

    CAS  Google Scholar 

  • Hill, D. J. (1977). The role of Anabaena in Azolla-Anabaena symbiosis. New Phytol., 78, 611-616.

    Google Scholar 

  • Hill, D. J. (1989). The control of cell cycle in microbial symbionts. New Phytol., 112, 175-184.

    Google Scholar 

  • Janson, S. (2002). Cyanobacteria in symbiosis with diatoms. In A. N. Rai, B. Bergman, and U. Rasmussen (Eds.), Cyanobacteria in symbiosis (pp. 1-10). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Janson, S., Bergman, B., and Rai A. N. (1993). The marine lichen Lichina confinis (O.F. Mull.) C. Ag.: Ultrastructure and localization of nitrogenase, glutamine synthetase, phycoerythrin and ribulose 1,5-bisphosphate carboxylase/oxygenase in the cyanobiont. New Phytol., 124, 149-160.

    CAS  Google Scholar 

  • Janson, S., Rai, A. N., and Bergman B. (1995). The intracellular cyanobiont Richelia intracellularis: Ultrastructure and immuno-localisation of phycoerythrin, nitrogenase, Rubisco and glutamine synthetase, Marine Biol., 124, 1-8.

    CAS  Google Scholar 

  • Johansson, C., and Bergman B. (1992). Early events during the establishment of the Gunnera/Nostoc symbiosis. Planta, 188, 403-413.

    Google Scholar 

  • Johansson, C., and Bergman B. (1994). Reconstitution of the symbiosis of Gunnera manicata Linden: Cyanobacterial specificity. New Phytol., 126, 643-652.

    Google Scholar 

  • Jordan, D. C., McNicol, P. J., and Marshall M. R. (1978). Biological nitrogen fixation in the terrestrial environment of high Arctic ecosystem (Truelove Lowland, Devon Island NWT). Can. J. Microbiol., 24, 643-649.

    PubMed  CAS  Google Scholar 

  • Joseph, C. M., and Meeks J. C. (1987). Regulation of expression of glutamine synthetase in a symbiotic Nostoc strain associated with Anthoceros punctatus. J. Bacteriol., 169, 2471-2475.

    PubMed  CAS  Google Scholar 

  • Jönsson, B. (1894). Studier öfver algparasitism hos Gunnera L. Botaniska Notiser, 1-20.

    Google Scholar 

  • Kar, P., Mishra, S., and Singh D. P. (1999). Influence of gibberellic acid on the sporulation of Azolla caroliniana, Azolla microphylla,and Azolla pinnata. Biol. Fertil. Soils, 29, 424-429.

    CAS  Google Scholar 

  • Kim, J. J. H., Krawczyk, K., Lorentz, W. P., and Zimmerman W. J. (1997). Fingerprinting cyanobionts and hosts of the Azolla symbiosis by DNA amplification. World J. Microbiol. Biotechnol., 13, 97-101.

    CAS  Google Scholar 

  • Kimura, J., and Nakano T. (1990). Reconstitution of a Blasia-Nostoc symbiotic association under axenic conditions. Nova Hedwigia, 50, 191-200.

    Google Scholar 

  • Kistner, C., and Parniske M. (2002). The evolution of signal transduction in intracellular symbioses. Trends Plant Sci., 7, 511-518.

    PubMed  CAS  Google Scholar 

  • Kluge, M., Mollenhauer, D., and Mollenhauer R. (1991). Photosynthetic carbon assimilation in Geosiphon pyriforme(Kützing) v. Wettstein, an endosymbiotic consortium of a fungus and a cyanobacterium, Planta, 185, 311-315.

    CAS  Google Scholar 

  • Kluge, M., Mollenhauer, D., Mollenhauer, R., and Kape R. (1992). Geosiphon pyriforme, an endosymbiotic consortium of a fungus and a cyanobacterium (Nostoc), fixes nitrogen, Bot. Acta, 105, 343-344.

    CAS  Google Scholar 

  • Kluge, M., Mollenhauer, D., Wolf, E., and Schüßler, A. (2002). The Geosiphon/Nostoc endocytobiosis. In A. N. Rai, B. Bergman, and U. Rasmussen (Eds.), Cyanobacteria in symbiosis(pp. 19-30). Dordrecht, The Netheralnds: Kluwer Academic Publishers.

    Google Scholar 

  • Knapp, E. (1933). Ãœber Geosiphon Fr. v. Wettstein, eine intrazelluläre pilz-algen-symbiose, Ber. Dt. Bot. Ges., 51, 210-217.

    Google Scholar 

  • Knight, C. D., and Adams D. G. (1996). A method for studying chemotaxis in nitrogen-fixing cyanobacterium-plant symbioses. Physiol. Molec. Plant Pathol., 49, 73-77.

    Google Scholar 

  • Kossowitch, P. (1894). Untersuchungen über di frage, ob die algen freien stickstoff fixiren. Bot. Ztg., 52, 97-116.

    Google Scholar 

  • Lamarck, J. B. (1783) Azolla filiculoides Lam. Encyclopedia méthodique botanique. Paris, France: Panchonke.

    Google Scholar 

  • Lechno-Yossef, S., and Nierzwicki-Bauer, S. A. (2002). Azolla-Anabaena symbiosis. In A. N. Rai, B. Bergman, and U. Rasmussen (eds.), Cyanobacteria in symbiosis (pp. 153-178). Dordrecht, The Netheralnds: Kluwer Academic Publishers.

    Google Scholar 

  • Leonardi, D., Canini, A., and Forni C. (1993). Immunological comparison between Arthrobacter isolates and bacteria living in Azolla filiculoides Lam. Symbiosis, 15, 269-279.

    Google Scholar 

  • Lin, C., Liu, Z. Z., Zheng, D. Y., Tang, L. F., and Watanabe I. (1989). Re-establishment of symbiosis to Anabaena free Azolla. Sci. China Ser. B-Chem., 32, 551-559.

    Google Scholar 

  • Liaimer, A., Matveyev, A., and Bergman B. (2001). Isolation of host plant induced cDNAs from Nostoc sp. strain PCC 9229 forming symbiosis with the angiosperm Gunnera spp. Symbiosis, 31, 293-307.

    CAS  Google Scholar 

  • Lindblad, P., and Bergman B. (1986). Glutamine synthetase: Aactivity and localization in cyanobacteria of the cycads Cycas revoluta and Zamia skinneri. Planta, 169, 1-7.

    CAS  Google Scholar 

  • Lindblad, P., and Bergman B. (1990). The cycad-cyanobacterial symbioses. In A. N. Rai (Ed.), Handbook of symbiotic cyanobacteria (pp. 137-159). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Lindblad, P., Bergman, B, von Hofsten, A., Hällbom, L., and Nylund J.-E. (1985). The cyanobacterium-Zamia symbiosis: An ultrastructural study. New Phytol., 101, 707-716.

    Google Scholar 

  • Lindblad, P., Atkins, C. A., and Pate J. S. (1991). N2-fixation by freshly isolated Nostoc from coralloid roots of the cycad Macrozamia riedlei (Fisch. Ex Gaud) Gardn. Plant Physiol., 95, 753-759.

    PubMed  CAS  Google Scholar 

  • Lumpkin, T. A., and Plucknett D. L. (1982). Azolla as green manure: Use and management in crop production, Series No 15. Boulder, CO: Westview Press.

    Google Scholar 

  • Mague, T. H., Weare, M. M., and Holm-Hansen, O. (1974). Nitrogen fixation in the north Pacific Ocean. Marine Biol., 24, 109-119.

    CAS  Google Scholar 

  • Man, H.-M., and Silvester W. B. (1994). Interaction of H2 and carbon metabolism in moderating nitrogenase activity of the Gunnera/Nostoc symbiosis. Arch. Microbiol., 161, 442-444.

    CAS  Google Scholar 

  • McLuckie, J. (1922). Studies in symbiosis. II. The apogeotropic roots of Macrozamia spiralis and their physiological significance. Proc. Linnean Soc. N. S. Wales, 47, 319-328.

    Google Scholar 

  • Meeks, J. C. (1988). Symbiotic associations. Methods Enzymol., 167, 113-121.

    Google Scholar 

  • Meeks, J. C. (1990). Cyanobacterial-bryophyte associations. In A. N. Rai (Ed.), Handbook of symbiotic cyanobacteria (pp. 43-63). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Meeks, J. C., and Elhai J. (2002). Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol. Mol. Biol. Rev., 66, 94-121.

    PubMed  CAS  Google Scholar 

  • Meeks, J. C., Enderlin, C. S., Joseph, C. M., Chapman, J. S., and Lollar M. W. L. (1985). Fixation of [13N]NH4 + and transfer of fixed nitrogen in the Anthoceros-Nostoc symbiotic association. Planta, 164, 406-414.

    CAS  Google Scholar 

  • Meeks, J. C., Elhai, J., Thiel, T., Potts, M., Larimer, F., Lamerdin, et al. (2001). An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosyn. Res., v70, 85-106.

    Google Scholar 

  • Minerdi, D., Fani, R., Gallo, R., Boarino, A., and Bonfante P. (2001). Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl. Environm. Microbiol., 67, 725-732.

    CAS  Google Scholar 

  • Molisch, H. (1926). Pflanzenbiologie in Japan. Jena, Germany: Gustav Fischer Verlag.

    Google Scholar 

  • Molisch, H. (1940). Symbiose der beiden lebermoose Blasia pusilla L. und Cavicullaria densa St. mit Nostoc. Abhandlungen, Band VI. Jena, Germany: Gustav Fischer Verlag.

    Google Scholar 

  • Mollenhauer, D., and Mollenhauer R. (1988). Geosiphon cultures ahead. Endocytosis Cell Res., 5, 69-73.

    Google Scholar 

  • Mollenhauer, D., Mollenhauer, R., and Kluge M. (1996). Studies on initiation and development of the partner association in Geosiphon pyriforme (Kütz.) v. Wettstein, a unique endocytobiotic system of a fungus (Glomales) and the cyanobacterium Nostoc punctiforme (Kütz.) Hariot. Protoplasma, 193, 3-9.

    Google Scholar 

  • Nash, III, T. H. (1996). Lichen biology. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Nathanielsz, C. P., and Staff I. A. (1975). A mode of entry of blue-green algae into the apogeotrophic roots of Macrozamia communis. Amer. J. Bot., 62, 232-235.

    Google Scholar 

  • Neumann, D. (1977). Ultrastructurelle untersuchungen zur symbiose von cyanophyceen mit cycadeen (Cycas circinalis L., Zamia furfuracea L.). Biochem. Physiol. Pflanzen, 171, 313-322.

    Google Scholar 

  • Nierzwicki-Bauer, S. A. (1990). Azolla-Anabaena symbiosis: Use in agriculture. In A. N. Rai (Ed.), Handbook of symbiotic cyanobacteria (pp. 119-136). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Nierzwicki-Bauer, S. A., Aulfinger, H., and Bruan-Howland, E. B. (1989). Ultrastructural characterization of an inner envelope that confines Azolla endosymbionts to the leaf cavity periphery. Can. J. Bot., 67, 2711-2719.

    Google Scholar 

  • Nilsson, M., Bergman, B., and Rasmussen U. (2000). Cyanobacterial diversity in geographically related and distant host plants of the genus Gunnera. Arch. Microbiol., 173, 97-102.

    PubMed  CAS  Google Scholar 

  • Nilsson, M., Bhattacharya, J., Rai A. N., and Bergman B. (2002). Colonization of roots of rice (Oryza sativa) by symbiotic Nostoc strains. New Phytol., 156, 517-525.

    Google Scholar 

  • Obukowicz, M., Schaller, M., and Kennedy G. S. (1981). Ultrastructure and phenolic histochemistry of the Cycas revoluta-Anabaena symbiosis. New Phytol., 87, 751-759.

    Google Scholar 

  • Osborne, B. A. (1988). Photosynthetic characteristics of Gunnera tinctoria (Molina) Mirbel. Photosynthetica, 22, 168-178.

    CAS  Google Scholar 

  • Osborne, B. (2002). Commentaries on cyanobacterial symbioses. Proc. Roy. Irish Acad., special volume 102B (1). Dublin, Ireland: Royal Irish Academy.

    Google Scholar 

  • Osborne, B., and Sprent J. (2002). Ecology of the Nostoc-Gunnera symbiosis. In A. N. Rai, B. Bergman and U. Rasmussen (Eds.), Cyanobacteria in symbiosis (pp. 233-251). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Osborne, B., Doris, F., Cullen, A., McDonald, R., Campbell G., and Steer M. (1991). Gunnera tinctoria: An unusual invader. Bioscience, 41, 224-234.

    Google Scholar 

  • Ott, S. (1988). Photosymbiodemes and their development in Peltigera venosa, Lichenologist, 20, 361–368.

    Google Scholar 

  • Ow, M. C., Gantar, M., and Elhai J. (1999). Reconstruction of a cycad-cyanobacterial association. Symbiosis, 27, 125-134.

    Google Scholar 

  • Palmqvist, K. (2002). Cyanolichens: Carbon metabolism. In A. N. Rai, B. Bergman, and U. Rasmussen (Eds.), Cyanobacteria in symbiosis (pp. 73-96). Dordrecht, The Netheralnds: Kluwer Academic Publishers.

    Google Scholar 

  • Pate, J. S., Lindblad, P., and Atkins C. A. (1988). Pathways of assimilation and transfer in coralloid roots of cycad-Nostoc symbioses. Planta, 176, 461-471.

    CAS  Google Scholar 

  • Patra, R. N., and Singh P. K. (1984). Symbiotic algal heterocyst frequency in three species of Azolla. Proc. Indian Natl. Sci. Acad., B50 (1), 128.

    Google Scholar 

  • Paulsrud, P., and Lindblad P. (1998). Sequence variation of the tRNA (Leu) intron as a marker for genetic diversity and specificity of symbiotic cyanobacteria in some lichens. Appl. Environ. Microbiol., 64, 310–315.

    PubMed  CAS  Google Scholar 

  • Paulsrud, P., Rikkinen, J., and Lindblad P. (1998). Cyanobiont specificity in some Nostoc-containing lichens and in a Peltigera aphthosa photosymbiodeme. New Phytol., 139, 517–524.

    CAS  Google Scholar 

  • Paulsrud, P., Rikkinen, J., and Lindblad P. (2000). Spatial patterns of photobiont diversity in some Nostoc-containing lichens. New Phytol., 146, 291–299.

    Google Scholar 

  • Perkins, S. K., and Peters G. A. (1993). The Azolla-Anabaena symbiosis - endophyte continuity in the Azolla life cycle is facilitated by epidermal trichomes. I, Partitioning of the endophytic Anabaena into developing sporocarps. New Phytol., 123, 53-64.

    Google Scholar 

  • Peters, G. A., and Meeks J. C. (1989). The Azolla-Anabaena symbiosis: Basic biology. Ann. Rev. Plant Physiol., 40, 193-210.

    Google Scholar 

  • Plazinski, J., Zheng, Q., Taylor, R., Croft, L., Rolfe, B. G., and Gunning B. E. S. (1990). DNA probes show genetic variation in cyanobacterial symbionts of the Azolla fern and a closer relationship to free-living Nostoc strains than to free-living Anabaena strains. Appl. Environ. Microbiol., 56, 1263-1270.

    PubMed  CAS  Google Scholar 

  • Prantl, K. (1889). Die assimilation freien stickstoffs und der parasitismus von Nostoc. Hedwigia, 28, 135-136.

    Google Scholar 

  • Pringsheim, E. G. (1913). Kulturfersuche mit chlorophyllfürenden mikroorganismen. Zur physiologie der schizophyceen. Beitrag Biologie Pflanzen, 12, 49.

    Google Scholar 

  • Purvis, W. (2000). Lichens. London, UK: Smithsonian Institute Press and Natural History Museum.

    Google Scholar 

  • Rai, A. N. (1990a). Handbook of symbiotic cyanobacteria. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Rai, A. N. (1990b). Cyanobacterial-fungal symbioses: The cyanolichens. In A. N. Rai (Ed.), Handbook of symbiotic cyanobacteria (pp. 9-41). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Rai, A. N. (2002). Cyanolichens: Nitrogen metabolism. In A. N. Rai, B. Bergman, and U. Rasmussen (Eds.), Cyanobacteria in symbiosis (pp. 97-115). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Rai, A. N., Rowell, P., and Stewart W. D. P. (1981). 15N2 incorporation and metabolism in the lichen Peltigera aphthosa Willd. Planta, 152, 544-552.

    CAS  Google Scholar 

  • Rai, A. N., Rowell, P., and Stewart W. D. P. (1983a). Mycobiont-cyanobiont interactions during dark nitrogen fixation by the lichen Peltigera aphthosa. Physiol. Plant., 57, 285-290.

    CAS  Google Scholar 

  • Rai, A. N., Rowell, P., and Stewart W. D. P. (1983b). Interactions between cyanobacterium and fungus during 15N2-incorporation and metabolism in the lichen Peltigera canina. Arch. Microbiol., 134, 136-142.

    CAS  Google Scholar 

  • Rai, A. N., Söderbäck, E., and Bergman B. (2000). Cyanobacterium-plant symbioses. New Phytol., 147, 449-481.

    CAS  Google Scholar 

  • Rai, A. N., Bergman, B., and Rasmussen U. (2002). Cyanobacteria in symbiosis. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Rajini, V. S., and Subramanian G. (1997). The effect of immobilization on carbon flow through Anabaena variabilis and A. azolla. Photosynthetica, 34, 137-139.

    Google Scholar 

  • Ray, T. B., Mayne, B. C., Toia, R. E., and Peters G. A. (1979). Azolla-Anabaena relationship. VIII, Photosynthetic characterisation of the association and individual partners. Plant Physiol., 64, 791-795.

    PubMed  CAS  Google Scholar 

  • Rasmussen, U., and Svenning M. (1998). Fingerprinting of cyanobacteria based on PCR with primers derived from short and long tandemly repeated repetitive sequences. Appl. Environ. Microbiol., 64, 265-272.

    PubMed  CAS  Google Scholar 

  • Rasmussen, U., and Svenning M. (2001). Characterization by genotypic methods of symbiotic Nostoc strains isolated from five species of Gunnera. Arch. Microbiol., 176, 204-210.

    PubMed  CAS  Google Scholar 

  • Rasmussen, U., and Nilsson M. (2002). Cyanobacterial diversity and specificity in plant symbioses. In A. N. Rai, B. Bergman, and U. Rasmussen (Eds.), Cyanobacteria in symbiosis (pp. 313-328). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Rasmussen, U., Johansson, C., Renglin, A., Petersson, C., and Bergman B. (1996). A molecular characterization of the Gunnera-Nostoc symbiosis: Comparison with Rhizobium and Agrobacterium plant interactions. New Phytol., 133, 391-398.

    CAS  Google Scholar 

  • Rasmussen, U., Johansson, C., and Bergman B. (1994). Early communication in the Gunnera-Nostoc symbiosis: Plant–induced cell differentiation and protein synthesis in the cyanobacterium. Mol. Plant-Microbe Interact., 7, 696-702.

    CAS  Google Scholar 

  • Raven, J. A. (2002a). The evolution of cyanobacterial symbioses. In A. N. Rai, B. Bergman, and U. Rasmussen (Eds.), Cyanobacteria in symbiosis (pp. 329-346). Dordrecht, The Netheralnds: Kluwer Academic Publishers.

    Google Scholar 

  • Raven, J. A. (2002b). The evolution of cyanobacterial symbioses. In B. Osborne (Ed.), Commentaries on cyanobacterial symbioses (pp. 3-6). Dublin, Ireland: Royal Irish Academy.

    Google Scholar 

  • Reinke, J. (1872). Parasitische Anabaena in wurtseln der cycadeen. Göttingen Nachrichten, 57, 107.

    Google Scholar 

  • Reinke, J. (1873). Untersuchungen über die morphologie der vegetationsorgane von Gunnera. In J. Reinke (Ed.), Morphologische abhandlungen (pp. 45-123). Leipzig, Germany: Verlag W. Engelman.

    Google Scholar 

  • Renzaglia, K. S. (1982). A comparative developmental investigation of the gametophyte generation in the Metzgeriales (Hepatophyta). Bryophytorum Bibliotheca, 24, 1-238.

    Google Scholar 

  • Rikkinen, J. (2002). Cyanolichens: An evolutionary overview. In A. N. Rai, B. Bergman, and U. Rasmussen (Eds.), Cyanobacteria in symbiosis (pp. 31-72). Dordrecht, The Netheralnds: Kluwer Academic Publishers.

    Google Scholar 

  • Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., and Stanier R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol., 111, 1-61.

    Google Scholar 

  • Rodgers, G. A., and Stewart W. D. P. (1974). Physiological interactions of the blue-green alga Nostoc with the liverworts Anthoceros and Blasia. British Phycol. J., 9, 223.

    Google Scholar 

  • Rodgers G. A., and Stewart W. D. P. (1977). The cyanophyte-hepatic symbiosis I. Morphology and physiology. New Phytol., 78, 441-458.

    Google Scholar 

  • Rowell, P., Rai, A. N., and Stewart W. D. P. (1985). Studies on the nitrogen metabolism of the lichens Peltigera aphthosa and Peltigera canina. In D. H. Brown (Ed.), Lichen physiology and cell biology (pp. 145-160). London, UK: Plenum Press.

    Google Scholar 

  • Schacht, H. (1853). Beitrage zur entwicklungs-geschichte der wurtzel. Flora, 17, 257.

    Google Scholar 

  • Schaede, R. (1944). Ãœber die korallenwurzeln der cycadeen und ihre symbiose. Planta, 34, 98-124.

    Google Scholar 

  • Schaede, R. (1951). Ãœber die blaualgensymbiose von Gunnera. Planta, 39, 154-170.

    Google Scholar 

  • Schenk, H. E. A. (1992). Cyanobacterial symbioses. In A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (Eds.), The prokaryotes (vol. IV, pp. 3819-3854). New York, NY: Springer-Verlag.

    Google Scholar 

  • Schlösing, T., and Laurent E. (1892). Fixation de l’azote libre par les plantes. Ann. Inst. Pasteur Paris, 6, 824-840.

    Google Scholar 

  • Schüßler, A., and Kluge M. (2001). Geosiphon pyriforme, an endosymbiosis between fungus and cyanobacteria, and its meaning as a model for arbuscular mycorrhiza research. In B. Hock (Ed.), The mycota IX (pp. 151-161). Berlin, Germany: Springer Verlag.

    Google Scholar 

  • Schüßler, A., Bonfante, P., Schnepf, E., Mollenhauer, D., and Kluge M. (1996). Characterization of the Geosiphon pyriforme symbiosome by affinity techniques: Cconfocal laser scanning microscopy (CLSM) and electron microscopy. Protoplasma, 190, 53-67.

    Google Scholar 

  • Schüßler, A., Meyer, T., Gehrig, H., and Kluge M. (1997). Variations of lectin binding sites in extracellular glycoconjugates during the life cycle of Nostoc punctiforme, a potentially endosymbiotic cyanobacterium. European J. Phycol., 32, 233-239.

    Google Scholar 

  • Schüßler, A., Gehrig, H., Scharzott, D., and Walker C. (2001a). Analysis of partial Glomales SSU rRNA genes: Implications for primer design and phylogeny. Mycol. Res., 105, 5-15.

    Google Scholar 

  • Schüßler, A., Schwarzott, D., and Walker C. (2001b). A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycol. Res., 103, 1413-1421.

    Google Scholar 

  • Sergeeva, E., Liaimer, A., and Bergman B. (2002). Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta, 215, 229-238.

    PubMed  CAS  Google Scholar 

  • Serrano, R., Carrapico, F., and Vidal R. (1999). The presence of lectins in bacterial associated with the Azolla-Anabaena symbiosis. Symbiosis, 27, 169-178.

    Google Scholar 

  • Shannon, B. Y., Gates, J. E., and McCowen S. M. (1993). DNA base composition of eubacteria isolated from 4 species of Azolla. Symbiosis, 15, 165-175.

    CAS  Google Scholar 

  • Silvester, W. B. (1976). Endophyte adaptation in Gunnera-Nostoc symbiosis. In P. S. Nutman (Ed.), Symbiotic nitrogen fixation in plants. (pp. 521-541). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Silvester, W. B., and Smith D. R. (1969). Nitrogen fixation by Gunnera-Nostoc symbiosis. Nature, 224, 1231.

    CAS  Google Scholar 

  • Silvester, W. B., and McNamara P. J. (1976). The infection process and ultrastructure of the Gunnera-Nostoc symbiosis. New Phytol., 77, 135-141.

    Google Scholar 

  • Silvester, W. B., Parsons, R., and Watt P. W. (1996). Direct measurement of release and assimilation of ammonia in the Gunnera-Nostoc symbiosis. New Phytol., 132, 617-625.

    CAS  Google Scholar 

  • Simon, R. D. (1987) Inclusion bodies in the cyanobacteria. In P. Fay and C. van Baalen (Eds.), The Cyanobacteria (pp. 199-225). Amsterdam, The Netheralands: Elsevier Science Publishers.

    Google Scholar 

  • Singh, P., and Singh D. (1997). Azolla-Anabaena symbiosis. In K. Ddarwal (Ed.), Biotechnological approaches in soil microorganisms for sustainable crop production (pp 93-107). Jodphur, India: Scientific Press.

    Google Scholar 

  • Solheim, B., and Zielke M. (2002). Associations between cyanobacteria and mosses. In A. N. Rai, B. Bergman, and U. Rasmussen (Eds.), Cyanobacteria in symbiosis (pp. 137-152). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Solheim, B., Endal, A., and Vigstad H. (1996). Nitrogen fixation in Arctic vegetation and soils from Svalbard, Norway. Polar Biology, 16, 35-40.

    Google Scholar 

  • Söderbäck, E., and Bergman B. (1992). The Nostoc-Gunnera magellanica symbiosis: Phycobiliproteins, carboxysomes and Rubisco in the microsymbiont. Physiol. Plant., 8, 425-432.

    Google Scholar 

  • Söderbäck, E., and Bergman B. (1993). The Nostoc-Gunnera symbiosis: Carbon fixation and translocation. Physiol. Plant., 89, 125-132.

    Google Scholar 

  • Söderbäck, E., Lindblad, P., and Bergman B. (1990). Developmental patterns related to nitrogen fixation in the Nostoc-Gunnera magellanica Lam. Symbiosis. Planta, 182, 355-362.

    Google Scholar 

  • Spiller, H., and Gunasekaran M. (1990). Ammonia-excreting mutant strain of the cyanobacterium Anabaena variabilis supports growth of wheat. Appl. Microbiol. Biotechnol., 33, 477-480.

    CAS  Google Scholar 

  • Spiller, H., Stallings, Jr., W., Woods, T., and Gunasekaran M. (1993). Requirements for direct association of ammonia-excreting Anabaena variabilis mutant (SA-1) with roots for maximal growth and yield of wheat. Appl. Microbiol. Biotechnol., 40, 557-566.

    CAS  Google Scholar 

  • Steinberg, N. A., and Meeks J. C. (1989). Photosynthetic CO2 fixation and ribulose biphosphate carboxylase/oxygenase activity of Nostoc sp. Strain UCD 7801 in symbiotic association with Anthoceros punctatus. J. Bacteriol., 171, 6227-6233.

    PubMed  CAS  Google Scholar 

  • Steinberg, N. A., and Meeks J. C. (1991). Physiological sources of reductant for nitrogen fixation activity in Nostoc sp. Strain 7801 in symbiotic association with Anthoceros punctatus. J. Bacteriol. 173, 7324-7329.

    PubMed  CAS  Google Scholar 

  • Stewart, W. D. P., and Rowell P. (1975). Effects of L-methionine-DL-sulphoximine on the assimilation of newly fixed NH3, acetylene reduction and heterocyst production in Anabaena cylindrica. Biochem. Biophys. Res. Comm., 65, 846-856.

    PubMed  CAS  Google Scholar 

  • Stewart, W. D. P., and Rogers G. A. (1977). The cyanophyte-hepatic symbiosis. II, Nitrogen fixation and the interchange of nitrogen and carbon. New Phytol., 78, 459-471.

    CAS  Google Scholar 

  • Stewart, W. D. P., and Rowell P. (1977). Modification of nitrogen fixing algae in lichen symbioses. Nature, 265, 371-372.

    CAS  Google Scholar 

  • Stewart, W. D. P., Fitzgerald, G. P., and Burris R. H. (1968). Acetylene reduction by blue-green algae. Arch. Microbiol., 62, 336-348.

    CAS  Google Scholar 

  • Stock, P. A., and Silvester W. B. (1994). Phloem transport of recently fixed nitrogen in the Gunnera-Nostoc symbiosis. New Phytol., 126, 259-266.

    CAS  Google Scholar 

  • Strasburger, E. (1873). Ãœber Azolla. (pp. 1-86). Jena, Leipzig, Germany: Herman Davis Verlag.

    Google Scholar 

  • Sutherland, J. M., Herdman, M., and Stewart W. D. P. (1979). Akinetes of the cyanobacterium Nostoc PCC 7524: Macromolecular composition, structure and control of differentiation. J. Gen. Microbiol., 115, 273-287.

    Google Scholar 

  • Svircev, Z., Tamas, I., Nenin, P., and Drobac A. (1997). Co-cultivation of N2-fixing cyanobacteria and some agriculturally important plants in liquid and sand cultures. Appl. Soil Ecol., 6, 301-308.

    Google Scholar 

  • Taylor, T. N., Hass, H., and Kerp H. (1997). A cyanolichen from the lower Devonian Rhynie chert. Am. J. Bot., 84, 992-1004.

    Google Scholar 

  • Towata, E. M. (1985). Morphometric and cytochemical ultrastructural analyses of the Gunnera kaalensis/Nostoc symbiosis. Bot. Gaz., 146, 293-301.

    Google Scholar 

  • Uheda, E., and Kitoh S. (1991). Electron microscopic observations of the envelopes of isolated algal packets of Azolla. Can. J. Bot., 69, 1418-1419.

    Google Scholar 

  • Uheda, E., and Nakamura S. (2000). Abscission of Azolla branches induced by ethylene and sodium azide. Plant Cell Physiol., 41, 1365-1372.

    PubMed  CAS  Google Scholar 

  • Uheda, E. and Silvester, W. B. (2001). The role of papillae during the infection process in the Gunnera-Nostoc symbiosis. Plant Cell Physiol., 42, 780-783.

    PubMed  CAS  Google Scholar 

  • Van Coppenolle, B., Watanabe, I., Van-Hove, C., Second, G., Huang, N., and McCouch, S. R. (1993). Genetic diversity and phylogeny analysis of Azolla based on DNA amplification by arbitrary primers. Genome, 36, 686-693.

    PubMed  Google Scholar 

  • Van Coppenolle, B., McCouch, S. R., Watanabe, I., Huang, N., and Van-Hove, C. (1995). Genetic diversity and phylogeny analysis of Anabaena azollae based on RFLP detected in Azolla-Anabaena azollae DNA complexes using nif gene probes. Theor. Appl. Gen., 91, 589-597.

    Google Scholar 

  • Veys, P., Lejeune, A., and Van Hove, C. (2000). The pore of the leaf cavity of Azolla: Interspecific morphological differences and continuity between the cavity envelopes. Symbiosis, 29, 33-47.

    Google Scholar 

  • Veys, P., Lejeune, A., and Van Hove, C. (2002). The pore of the leaf cavity of Azolla: Teat-cell differentiation and cell wall projections. Protoplasma, 219, 31-42.

    PubMed  CAS  Google Scholar 

  • Villareal, T. A. (1989). Division cycles in the nitrogen-fixing Rhizosolenia (Bacillariophyceae)-Richelia (Nostocaceae) Symbiosis. British Phycol. J., 24, 357-365.

    Google Scholar 

  • Villareal, T. A. (1990). Laboratory culture and preliminary characterization of the nitrogen-fixing Rhizosolenia-Richelia symbiosis. Marine Ecol., 11, 117-132.

    CAS  Google Scholar 

  • Villareal, T. A. (1992). Marine nitrogen-fixing diatom-cyanobacteria symbioses. In E. J. Carpenter, D. G. Capone, and J. Rueter (Eds.), Marine pelagic cyanobacteria: Trichodesmium and other diazotrophs (pp. 163-175). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Viterbo, A., Matveyev, A., Rasmussen, U., and Bergman B. (1999). Characterization of the nodM/glmS homologous gene in the symbiotic cyanobacterium Nostoc PCC 9229. Symbiosis, 26, 237-246.

    CAS  Google Scholar 

  • Wanntorp, L., Wanntorp, H-E., Oxelman, B., and Källersjö, M. (2001). Phylogeny of Gunnera. Plant Syst. Evol, 226, 85-107.

    CAS  Google Scholar 

  • Watanabe, I. (1982). Azolla-Anabaena symbiosis - its physiology and use in tropical agriculture. In Y. R. Dommergues and H. G. Diems (Eds), Microbiology of tropical soils and plant productivity. (pp. 169-185). The Hague, The Netherlands: Martinus Nijhoff.

    Google Scholar 

  • Watanabe, I. (1994). Genetic enhancement and Azolla collection problems in applying Azolla-Anabaena symbiosis. In N. A. Hegazi, M. Fayez, and M. Monib (Eds.), Nitrogen fixation with non-legumes (pp. 437-450). Cairo, Egypt: The American University in Cairo Press.

    Google Scholar 

  • Watanabe, I., and Van Hove, C. (1996). Phylogenetic, molecular, and breeding aspects of Azolla-Anabaena symbiosis. In J. M. Camus, M. Gibby, and R. J. Jones (Eds.), Pteridology in perspective (pp. 611-619). Kew, UK: Royal Botanic Gardens.

    Google Scholar 

  • Watanabe, I., and Kiyohara T. (1963). Symbiotic blue-green algae in lichens, liverworts and cycads. In Studies on microalgae and photosynthetic bacteria (pp. 189-196). Plant Cell Physiol., special volume. Tokyo: Japanese Society of Plant Physiologists.

    Google Scholar 

  • Watanabe, I. Lapis-Tenorio, M. T., Ventura, T. S., and Padre B. C. (1993). Sexual hybrids of Azolla filiculoides with A. microphylla. Soil Sci. Plant Nutr., 39, 669-676.

    Google Scholar 

  • Watts, S. D., Knight, C. D., and Adams D. G. (1999). Characterization of plant exudates inducing chemotaxis in nitrogen-fixing cyanobacteria. In G. A. Peschek, W. Löffenhardt, and G. Schmetterer (Eds.), The Phototrophic-prokaryotes (pp. 679-684). New York, NY: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Weare, N. M., Azam, F., Mague, T. H., and Holm-Hansen, O. (1974). Microautoradiographic studies of the marine phycobionts Rhizosolenia and Richelia. J. Phycol., 10, 369-371.

    CAS  Google Scholar 

  • Wei, W. X., Jin, G. Y., Zhang, N., and Chen J. (1988). Studies of hybridization in Azolla. In K. H. Sing and K. U. Kramer (Eds.), Proc. international symp. systematic pteridology (pp. 135-139). Beijing, P.R. China: China Science and Techology Press.

    Google Scholar 

  • West, N., and Adams D. G. (1997). Phenotypic and genotypic comparison of symbiotic and free-living cyanobacteria from a single field site. Appl. Environ. Microbiol., 63, 4479-4484.

    PubMed  CAS  Google Scholar 

  • Winter, G. (1935). Ãœber die assimilation der luftstickstoffs durch endophytische blaualgen. Beiträge zur Biologie der Pflanzen., 23, 295-334.

    CAS  Google Scholar 

  • Wittman, W., Bergersen, F. J., and Kennedy G. S. (1965). The coralloid roots of Macrozamia communis L. Johnson. Aust. J. Biol. Sci., 18, 1129-1134.

    Google Scholar 

  • von Wettstein, F. (1915). Geosiphon Fr. v. Wettst., eine neue interessante siphonee. Österreich Botan. Zeit., 65, 145-156.

    Google Scholar 

  • Wouters, J., Janson, S., and Bergman B. (2000). The effects of exogenous carbohydrates on nitrogen fixation and hetR expression in Nostoc PCC 9229 forming symbiosis with Gunnera. Symbiosis, 28, 63-76.

    CAS  Google Scholar 

  • Wouters, J., Bergman, B., and Janson S. (2003). Cloning and expression of a putative cyclodextrine glucosyltransferase from the symbiotically competent cyanobacterium Nostoc sp. PCC 9229. FEMS Microbiol. Lett., 219, 181-185.

    PubMed  CAS  Google Scholar 

  • Yoon, H.-S., and Golden J. W. (1998). Heterocyst pattern formation controlled by a diffusible peptide. Science, 282, 935-938.

    PubMed  CAS  Google Scholar 

  • Zheng, W. W., Nilsson, M., Bergman, B., and Rasmussen U. (1999). Genetic diversity and classification of cyanobacteria in different Azolla species by the use of PCR fingersprinting. Theor. Appl. Gen., 99, 1187-1193.

    CAS  Google Scholar 

  • Zheng, W. W., Song, W., Bergman, B., and Rasmussen U. (2002). High cyanobacterial diversity in corraloid roots of cycads revealed by PCR fingerprinting. FEMS Microbiol. Ecol., 40, 215-222.

    CAS  Google Scholar 

  • Zielke, M., Ekker, A. S., Olsen, R. A., Spjelkavik, S., and Solheim B. (2002). The influence of abiotic factors on biological nitrogen fixation in different types of vegetation in the High Arctic, Svalbard. Artic Antarctic Alpine Res., 34, 293-299.

    Google Scholar 

  • Zimmerman, W. J., Watanabe, I., Ventura, T., Payawal, P., and Lumpkin T. A. (1991). Aspects of the genetic and botanical status of neotropical Azolla species. New Phytol., 119, 561-566.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Bergman, B., Rai, A., Rasmussen, U. (2007). Cyanobacterial Associations. In: Elmerich, C., Newton, W.E. (eds) Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3546-2_12

Download citation

Publish with us

Policies and ethics