Experimental Evidence for Long-Term Programming Effects of Early Diet

  • M.E. Symonds
  • H. Budge
  • T. Stephenson
  • D.S. Gardner
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 569)


Nutritional manipulation targeted at specific periods of embryo or placental development can result in substantial changes in fetal organ development despite no effects on fetal weight. In particular, kidney and fat mass are greater in nutrient restricted offspring in conjunction with higher mRNA abundance for leptin, insulin-like growth factors I/II and glucocorticoid receptors. As young adults, nutrient restricted offspring exhibit a blunting of the cardiovascular baroreflex. They also demonstrate increased plasma leptin following sympathetic stimulation, not observed in controls, indicating resetting of adipocyte sensitivity to stress. In conclusion, global nutrient restriction confined to periods of early development programmes adult physiology in a manner that may predispose to later disease given the appropriate environmental stimuli.

Key words

fetal development mRNA leptin embryo, stress kidney fat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. M. Law and A. W. Shiell, Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature. 14, 935–941 (1996).Google Scholar
  2. 2.
    D. J. P. Barker, In utero programming of chronic disease. Clin Sci 95, 115–128 (1998).PubMedCrossRefGoogle Scholar
  3. 3.
    G. C. Curhan, W. C. Willett, E. B. Rimm, D. Spiegelman, A. L. Ascherio and M. J. Stampfer, Birth weight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation 94, 3246–3250 (1996).PubMedGoogle Scholar
  4. 4.
    T. J. Roseboom, J. H. P. van der Meulen, C. Osmond, D. J. P. Barker, A. C. J. Ravelli and O. P. Blecker, Plasma lipid profile in adults after perinatal exposure to famine. Am J Clin Nutr 72, 1101–11106 (2000).PubMedGoogle Scholar
  5. 5.
    T. J. Roseboom, J. H. P. van der Meulen, C. Osmond, D. J. P. Barker, A. C. J. Ravelli, S.-T. von Montfrans, G.A., R. P. J. Michels and O. P. Blecker, Coronary heart disease in adults after perinatal exposure to famine. Heart 84, 595–598 (2000).CrossRefPubMedGoogle Scholar
  6. 6.
    M. E. Symonds, S. Pearce, J. Bispham, D. S. Gardner and T. Stephenson, Timing of nutrient restriction and programming of fetal adipose tissue development. Proc Nutr Soc 63, (In press) (2004).Google Scholar
  7. 7.
    M. E. Symonds, D. S. Gardner, S. Pearce and T. Stephenson, in Fetal Nutrition and Adult Disease-Programming of chronic disease through fetal exposure to undernutrition ed. S. C. Langley-Evans 353-380 CAB International, Oxford, (2004).Google Scholar
  8. 8.
    J. Dandrea, V. Wilson, G. Gopalakrishnan, L. Heasman, H. Budge, T. Stephenson and M. E. Symonds, Maternal nutritional manipulation of placental growth and glucose transporter-1 abundance in sheep. Reprod 122, 793–800 (2001).Google Scholar
  9. 9.
    M. E. Symonds, H. Budge, T. Stephenson and I. C. McMillen, Fetal endocrinology and development-manipulation and adaptation to long term nutritional and environmental challenges. Reprod 121, 853–862 (2001).Google Scholar
  10. 10.
    J. E. Hall, The kidney, hypertension, and obesity. 41, 625–633 (2003).Google Scholar
  11. 11.
    S. C. Langley-Evans, Fetal programming of cardiovascular function through exposure to maternal undernutrition. Proc Nutr Soc 60, 505–513 (2001).PubMedCrossRefGoogle Scholar
  12. 13.
    L. Heasman, L. Clarke, J. Dandrea, T. Stephenson and M. E. Symonds, Correlation of fetal number with placental mass in sheep. Cont Rev Obs Gynecol 10, 275–280 (1998).Google Scholar
  13. 14.
    K. Godfrey, S. Robinson, D. J. P. Barker, C. Osmond and V. Cox, Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ 312, 410–414 (1996).PubMedGoogle Scholar
  14. 15.
    M. Daenzer, S. Ortmann, S. Klaus and C. C. Metges, Prenatal high protein exposure decreases energy expenditure and increases adiposity in young rats. 132, 142–144 (2002).Google Scholar
  15. 16.
    W. Y. Kwong, A. E. Wild, P. Roberts, A. C. Willis and T. P. Fleming, Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 127, 4195–4202 (2000).PubMedGoogle Scholar
  16. 17.
    S. E. Ozanne, B. T. Nave, C. L. Wang, P. R. Shepherd, J. Prins and G. D. Smith, Poor fetal growth causes long-term changes in expression of insulin signalling components in adipocytes. Am J Physiol 273, E46–E51 (1997).PubMedGoogle Scholar
  17. 18.
    S. E. Ozanne and C. N. Hales, Lifespan: Catch-up growth and obesity in male mice. 427, 411–412 (2004).Google Scholar
  18. 19.
    M. H. Vickers, B. H. Breier, D. McCarthy and P. D. Gluckman, Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition 285, R271–3 (2003).Google Scholar
  19. 20.
    M. H. Vickers, B. H. Breier, W. S. Cutfield, P. L. Hofman and P. D. Gluckman, Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition 279, E83–7 (2000).Google Scholar
  20. 21.
    M. H. Vickers, S. Reddy, I. B.A. and B. H. Breier, Dysregulation of the adipoinsular axis — a mechanism for the pathogenesis of hyperleptinemia and adipogenic diabetes induced by fetal programming. J. Endocrinol. 170, 323–332 (2001).CrossRefPubMedGoogle Scholar
  21. 22.
    M. H. Vickers, B. A. Ikenasio and B. H. Breier, Adult growth hormone treatment reduces hypertension and obesity induced by an adverse prenatal environment 175, 615–23 (2002).Google Scholar
  22. 23.
    L. Gambling, S. Dunford, D. I. Wallace, G. Zuur, N. Solanky, K. S. Srai and H. J. McArdle, Iron deficiency during pregnancy affects postnatal blood pressure in the rat. 552.2, 603–610 (2003).Google Scholar
  23. 24.
    I. Y. Khan, P. D. Taylor, V. Dekou, P. Seed, L. Lakasing, D. Graham, A. F. Dominiczak, M. A. Hanson and L. Poston, Gender-linked hypertension in offspring of lard fed pregnant rats. 188, 454–460 (2003).Google Scholar
  24. 25.
    M. O. Nwagwu, A. Cook and S. C. Langley-Evans, Evidence of progressive deterioration of renal function in rats exposed to a maternal low-protein diet in utero. Brit J Nutr 83, 79–85 (2000).PubMedGoogle Scholar
  25. 26.
    A. Snoeck, C. Remacle, B. Reusens and J. J. Hoet, Effect of low protein diet during pregnancy on the fetal rat endocrine pancreas. 57, 107–118 (1990).Google Scholar
  26. 27.
    S. Boujendar, E. Arany, D. Hill, C. Remacle and Reusens. B, Taurine supplementation of a low protein diet fed to rat dams normalizes the vascularization of the fetal endocrine pancreas. 133, 2820–2825 (2003).Google Scholar
  27. 28.
    M. Dodic, V. Hantzis, J. Duncan, S. Rees, I. Koukoulas, K. Johnson, E. M. Wintour and K. Moritz, Programming effects of short prenatal exposure to cortisol. FASEB J 16, 1017–1026 (2002).CrossRefPubMedGoogle Scholar
  28. 29.
    E._M. Wintour, D. Alcorn, A. Butkus, M. Congiu, L. Earnest, S. Pompolo and S. J. Potocnik, Ontogeny of hormonal and excretory function of the meso-and metanephros in the ovine fetus Kidney Int. 50, 1624–1633 (1996).PubMedGoogle Scholar
  29. 30.
    A. Peers, V. Hantzis, M. Dodic, I. Koukoulas, A. Gibson, R. Baird, R. Salemi and E. M. Wintour, Functional glucocorticoid recetpors in the mesonephros of the ovine fetus. Kidney Int 59, 425–433 (2001).CrossRefPubMedGoogle Scholar
  30. 31.
    C. E. Bertram, A. R. Trowern, N. Copin, A. A. Jackson and C. B. Whorwood, The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11β-hydroxysteroid dehydrogenase: Potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology 142, 2841–2853 (2001).CrossRefPubMedGoogle Scholar
  31. 32.
    K. Moritz, K. Johnson, R. Douglas-Denton, E. M. Wintour and M. Dodic, Maternal glucocorticoid treatment programs alterations in the renin-angiotensin system ovine fetal kidney. Endocrinology 143, 4455–4463 (2002).PubMedGoogle Scholar
  32. 33.
    S. McMullen, D. S. Gardner and S. C. Langley-Evans, Prenatal programming of angiotensinogen type II receptor expression in the rat. 91, 133–140 (2004).Google Scholar
  33. 34.
    S. C. Langley-Evans, G. J. Phillips, R. Benediktsson, D. S. Gardner, C. R. W. Edwards, A. A. Jackson and J. R. Seckl, Protein intake in pregnancy, placental glucocorticoid metabolism and the programming of hypertension. Placenta 17, 169–172 (1996).PubMedGoogle Scholar
  34. 35.
    L. L. Woods, J. R. Ingelfinger, J. R. Nyengaard and R. Rasch, Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. 49, 460–467 (2001).Google Scholar
  35. 36.
    J. Bispham, G. S. Gopalakrishnan, J. Dandrea, V. Wilson, H. Budge, D. H. Keisler, F. Broughton Pipkin, T. Stephenson and M. E. Symonds, Maternal endocrine adaptation throughout pregnancy to nutritional manipulation: consequences for maternal plasma leptin and cortisol and the programming of fetal adipose tissue development Endocrinology 144, 3575–3585 (2003).CrossRefPubMedGoogle Scholar
  36. 37.
    C. B. Whorwood, K. M. Firth, H. Budge and M. E. Symonds, Maternal undernutrition during early-to mid-gestation programmes tissue-specific alterations in the expression of the glucocorticoid receptor, 11β-hydroxysteroid dehydrogenase isoforms and type 1 angiotensin II receptor in neonatal sheep. Endocrinology 142, 1778–1785 (2001).CrossRefGoogle Scholar
  37. 38.
    L. Passingham, L. O. Kurlak, G. Gopalakrishnan, H. Budge, S. M. Rhind, M. T. Rae, C. E. Kyle, T. Stephenson and M. E. Symonds, The effect of maternal nutrient restriction during early to mid-gestation on the enzyme activity of 11 beta hydroxysteroid dehydrogenase type 2 in sheep kidneys of 3 year old offspring. Early Hum Dev, (In press) (2004).Google Scholar
  38. 39.
    D. S. Gardner, S. Pearce, J. Dandrea, R. M. Walker, M. M. Ramsey, T. Stephenson and M. E. Symonds, Peri-implantation undernutrition programs blunted angiotensin II evoked baroreflex responses in young adult sheep. 43, 1–7 (2004).Google Scholar
  39. 40.
    G. Gopalakrishnan, D. S. Gardner, S. M. Rhind, M. T. Rae, C. E. Kyle, A. N. Brooks, R. M. Walker, M. M. Ramsay, D. H. Keisler, T. Stephenson and M. E. Symonds, Programming of adult cardiovascular function after early maternal undernutrition in sheep. 287, R12–20 (2004).Google Scholar
  40. 41.
    H. Budge, L. J. Edwards, I. C. Mcmillen, A. Bryce, K. Warnes, S. Pearce, T. Stephenson and M. E. Symonds, Nutritional manipulation of fetal adipose tissue deposition and uncoupling protein 1 abundance in the fetal sheep; differential effects of timing and duration. Biol Reprod, (In press) (2004).Google Scholar
  41. 42.
    L. Clarke, L. Heasman, D. T. Juniper and M. E. Symonds, Maternal nutrition in early-mid gestation and placental size in sheep. Brit J Nutr 79, 359–364 (1998).CrossRefPubMedGoogle Scholar
  42. 43.
    L. Clarke, D. S. Buss, D. S. Juniper, M. A. Lomax and M. E. Symonds, Adipose tissue development during early postnatal life in ewe-reared lambs. Exp Physiol 82, 1015–1017 (1997).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • M.E. Symonds
    • 1
  • H. Budge
    • 1
  • T. Stephenson
    • 1
  • D.S. Gardner
    • 1
  1. 1.Centre for Reproduction and Early Life, Institute of Clinical ResearchUniversity HospitalNottinghamUK

Personalised recommendations