Skip to main content

Pendulums in The Physics Education Literature: A Bibliography

  • Chapter
Book cover The Pendulum

Abstract

Articles about the pendulum in four journals devoted to the teaching of physics and one general science teaching journal (along with other miscellaneous articles from other journals) are listed in three broad categories — types of pendulums, the contexts in which these pendulums are used in physics teaching at secondary or tertiary levels and a miscellaneous category. A brief description of the sub-categories used is provided.

Paul McColl, a physics teacher from Bundoora Secondary College in Victoria and a doctoral student in science education at Monash University, assisted with the collection of the bibliographical material below and I owe a debt of gratitude to him for his contribution to this project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blackwood, O.H., Kelly, W.C. & Bell, R.M.: 1973, General Physics, 4th edn., Wiley, New York.

    Google Scholar 

  • Gauld, C.: 1998, ‘Solutions to the Problem of Impact in the 17th and 18th Centuries and Teaching Newton’s Third Law Today’, Science and Education 7(1), 49–67.

    Article  Google Scholar 

  • Matthews, M.:2000, Time for Science Education, Kluwer/Plenum, New York.

    Google Scholar 

  • Newton, I.: 1729/1960, The Mathematical Principles of Natural Philosophy, (translated A. Motte, 1729; revised F. Cajori, 1934), University of California Press, Berkeley, CA.

    Google Scholar 

  • Piaget, J.: 1958, The Growth of Logical Thinking, Routledge & Kegan Paul, London.

    Google Scholar 

  • Resnick, R. & Halliday, D.: 1966, Physics, Wiley, New York.

    Google Scholar 

  • Taylor, L.: 1941, Physics: The Pioneer Science, Houghton Mifflin, Boston.

    Google Scholar 

  • Walker, J.: 1977, The Flying Circus of Physics with Answers, Wiley, New York.

    Google Scholar 

Ballistic Pendulum

  • Alt, R.L.: 1940, ‘A Corrupted Ballistic Pendulum’, American Journal of Physics 40(11), 1688–1689.

    Google Scholar 

  • Barnes, G.: 1957, ‘Addition to the Ballistic Pendulum Experiment’, American Journal of Physics 25(7), 452–453.

    Google Scholar 

  • Barton, R.W.: 1964, ‘A Versatile Ballistic Pendulum’, American Journal of Physics 32(3), 229–232.

    Article  Google Scholar 

  • Bayliss, L.T. & Ffolliott, C.F.: 1968, ‘Using a Blowgun with the Ballistic Pendulum’, American Journal of Physics 36(6), 558–559.

    Google Scholar 

  • Christensen, F.E.: 1968, ‘Beck Ball Pendulum’, American Journal of Physics 36(9), 851.

    Google Scholar 

  • Gupta, P.: 1985, ‘Blackwood Pendulum Experiment and the Conservation of Linear Momentum’, American Journal of Physics 53(3), 267–269.

    Article  Google Scholar 

  • Ivey, D.G.: 1956, ‘Modification of the Ballistic Pendulum Experiment’, American Journal of Physics 24(6), 459–460.

    Article  Google Scholar 

  • McCaslin, J.G.: 1984, ‘A Different Blackwood Pendulum Experiment’, The Physics Teacher 22(3), 184–186.

    Google Scholar 

  • Peterson, F.C.: 1983, ‘Timing the Flight of the Projectile in the Classical Ballistic Pendulum Experiment’, American Journal of Physics 51(7), 602–604.

    Article  Google Scholar 

  • Sachs, A.: 1976, ‘Blackwood Pendulum Experiment Revisited’, American Journal of Physics 44(2), 182–183.

    Article  Google Scholar 

  • Sandin, T.R.: 1941, ‘Nonconservation of Linear Momentum in Ballistic Pendulums’, American Journal of Physics 41(3), 426–427.

    Google Scholar 

  • Scheie, C.: 1973, ‘Ballistic Pendulum’, The Physics Teacher 11(7), 426–427.

    Google Scholar 

  • Schramm, R.W.: 1962, ‘An Improved Ballistic Pendulum’, American Journal of Physics 30(5), 386–387.

    Article  Google Scholar 

  • Stoylov, S.P., Nsanzabera, J.C. & Karenzi, P.C.: 1972, ‘A Demonstration of Momentum Conservation Using Bow, Arrow and Ballistic Pendulum’, American Journal of Physics 40(3), 430–432.

    Article  Google Scholar 

  • Strnad, J.: 1970, ‘Trouble with the Ballistic Pendulum’, American Journal of Physics 38(4), 532–534.

    Article  Google Scholar 

  • Wagner, W.: 1985, ‘The Spring Gun Ballistic Pendulum: An Alternative Method for Finding the Initial Velocity’, American Journal of Physics 53(11), 1114–1115.

    Article  Google Scholar 

  • Weltin, H.: 1963, ‘Vertical Ballistic Pendulum Apparatus’, American Journal of Physics 31(9), 719–722.

    Article  Google Scholar 

  • Wicher, E.: 1977, ‘Ballistics Pendulum’, American Journal of Physics 45(7), 681–682.

    Article  Google Scholar 

Bifilar Pendulum

  • Cromer, A.: 1995, ‘Many Oscillations of a Rigid Rod’, American Journal of Physics 63(1), 112–121.

    Google Scholar 

  • Quist, G.M.: 1983, ‘The PET and the Pendulum: An Application of Microcomputers in the Undergraduate Laboratory’, American Journal of Physics 51(2), 145–149.

    Article  Google Scholar 

  • Schery, S.D.: 1976, ‘Design of an Inexpensive Pendulum for Study of Large-angle Motion’, American Journal of Physics 44(7), 666–670.

    Article  Google Scholar 

  • Sutton, R.S.: 1953, ‘An Experimental Encounter with Bifilar Pendula’, American Journal of Physics 21(2), 408.

    Google Scholar 

  • Then, J.W.: 1965, ‘Bifilar Pendulum — An Experimental Study for the Advanced Laboratory’, American Journal of Physics 33(7), 545–547.

    Article  Google Scholar 

  • Then, J.W. & Chiang, K.-R.: 1970, ‘Experimental Determination of Moments of Inertia by the Bifilar Pendulum Method’, American Journal of Physics 38(4), 537–539.

    Article  Google Scholar 

Blackburn Pendulum

  • Bayman, B.F. & Thayer, D.: 1969, ‘A Rotating Two-dimensional Harmonic Oscillator’, American Journal of Physics 37(8), 841–842.

    Article  Google Scholar 

  • Case, W.: 1980, ‘Parametric Instability: An Elementary Demonstration and Discussion’, American Journal of Physics 48(3), 218–221.

    Article  Google Scholar 

  • Crowell, A.D.: 1981, ‘Motion of the Earth as Viewed from the Moon, and the Y-suspended Pendulum’, American Journal of Physics 49(5), 452–454.

    Article  Google Scholar 

  • Fox, J.W.: 1958, ‘Experiments with Modified Form of Simple Pendulum’, American Journal of Physics 26(8), 559–560.

    Article  Google Scholar 

  • Whitaker, R.: 1991, ‘A Note on the Blackburn Pendulum’, American Journal of Physics 59(4), 330–333.

    Article  Google Scholar 

Conical Pendulum

  • Anon: 1963, ‘The Conical Pendulum’, The Physics Teacher 1(5), 238–239.

    Google Scholar 

  • Hilton, W.A.: 1963, ‘Another Version of the Conical Pendulum’, American Journal of Physics 31(1), 58–59.

    Article  Google Scholar 

  • Moses, T. & Adolphi, N.L.: 1998, ‘A New Twist for the Conical Pendulum’, The Physics Teacher 36(6), 372–373.

    Article  Google Scholar 

  • Richards, J.A.: 1956, ‘Conical Pendulum’, American Journal of Physics 24(9), 632.

    Article  Google Scholar 

  • Saitoh, A.: 1986, ‘Winding Motion’, Physics Education 21(2), 98–102.

    Article  Google Scholar 

  • Verwiche, F.: 1964, ‘The Conical Pendulum Paradox’, The Physics Teacher 3(5), 238.

    Google Scholar 

Coupled Pendulums

  • Blair, J.M.: 1971, ‘Laboratory Experiments Involving Two-mode Analysis of Coupled Oscillations’, American Journal of Physics 39(5), 555–557.

    Article  Google Scholar 

  • McKibben, J.L.: 1977, ‘Triple Pendulum as an Analog to Three Coupled Stationary States’, American Journal of Physics 45(11), 1022–1026.

    Article  Google Scholar 

  • Moloney, M.J.: 1978, ‘String-coupled Pendulum Oscillators: Theory and Experiment’, American Journal of Physics 46(12), 1245–1246.

    Article  Google Scholar 

  • Priest, J. & Poth, J.: 1982, ‘Teaching Physics with Coupled Pendulums’, The Physics Teacher 20(2), 80–85.

    Google Scholar 

Damped Pendulum

  • Allen, M. & Saxl, E.J.: 1972, ‘The Period of Damped Simple Harmonic Motion’, American Journal of Physics 40(7), 942–944.

    Article  Google Scholar 

  • Basano, L. & Ottonello, P.: 1991, ‘Digital Damping: The Single-oscillation Approach’, American Journal of Physics 59(11), 1018–1023.

    Article  Google Scholar 

  • Benham, T.A.: 1947, ‘Bessel Functions in Physics: Theory’, American Journal of Physics 15(4), 285–294.

    Article  Google Scholar 

  • Boving, R., Hellemans, J. & de Wilde, R.: 1983, ‘Teaching Damped and Forced Oscillations in the Student Laboratory’, Physics Education 18(6), 275–276.

    Article  Google Scholar 

  • Crawford, F.S.: 1975, ‘Damping of a Simple Pendulum’, American Journal of Physics 43(3), 276–277.

    Article  Google Scholar 

  • McInerney, M.: 1985, ‘Computer-aided Experiments with the Damped Harmonic Oscillator’, American Journal of Physics 53(10), 991–996.

    Article  Google Scholar 

  • Permann, D. & Hamilton, I.: 1992, ‘Self-similar and Erratic Transient Dynamics for the Linearly Damped Simple Pendulum’, American Journal of Physics 60(5), 442–450.

    Article  Google Scholar 

  • Squire, P.: 1986, ‘Pendulum Damping’, American Journal of Physics 54(11), 984–991.

    Article  Google Scholar 

  • Zonetti, L., Camago, A., Sartori, J., de Sousa, D. & Nunes, L. 1999, ‘A Demonstration of Dry and Viscous Damping of an Oscillating Pendulum’, European Journal of Physics 20(2), 85–88.

    Article  Google Scholar 

Double Pendulum

  • Bender, P.: 1985, ‘A fascinating Resonant Double Pendulum’, American Journal of Physics 53(11), 1114.

    Article  Google Scholar 

  • Bueche, F. & Pavelka, C.: 1964, ‘An Undergraduate Laboratory Experiment for Studying the Motion of Coupled Mechanical Systems’, American Journal of Physics 32(3), 226–228.

    Article  Google Scholar 

  • Lee, S.M.: 1970, ‘The Double-Simple Pendulum Problem’, American Journal of Physics 38(4), 536–537.

    Article  Google Scholar 

  • Levien, R. & Tan, S.: 1993, ‘Double Pendulum: An Experiment in Chaos’, American Journal of Physics 61(11), 1038–1044.

    Article  Google Scholar 

  • Romer, R.H.: 1970, ‘A Double Pendulum “Art Machine”’, American Journal of Physics 38(9), 1116–1121.

    Article  Google Scholar 

  • Satterley, J.: 1950, ‘Some Experiments in Dynamics, Chiefly on Vibrations’, American Journal of Physics 18(7), 405–416.

    Google Scholar 

  • Shinbrot, T., Grebogi, C., Wisdom, J. & Yorke, J.: 1992, ‘Chaos in a Double Pendulum’, American Journal of Physics 60(6), 491–499.

    Article  Google Scholar 

Elastic Pendulum

  • Anicin, B., Davidovic, D. & Babovic, V. 1993, ‘On the Linear Theory of the Elastic Pendulum’, European Journal of Physics 14(3), 132–135.

    Article  Google Scholar 

  • Carretero-Gonzalez, R., Numez-Yepez, H.& Salas-Brito, A.: 1994, ‘Regular and Chaotic Behavior in an Extensible Pendulum’, European Journal of Physics 15(3), 139–148.

    Article  Google Scholar 

  • Cayton, T.E.: 1975, ‘The Laboratory Spring-mass Oscillator: An Example of Parametric Instability’, American Journal of Physics 45(8), 723–732.

    Google Scholar 

  • Cuerno, R., Rañada, A. & Ruiz-Lorenzo, J.: 1992, ‘Deterministic Chaos in the Elastic Pendulum: A Simple Laboratory for Nonlinear Dynamics’, American Journal of Physics 60(1), 73–79.

    Article  Google Scholar 

  • Davidovic, D., Anacin, B. & Babovic, V.: 1996, ‘The Libration Limits of the Elastic Pendulum’, American Journal of Physics 64(3), 338–342.

    Google Scholar 

  • Dobrovolskis, A.: 1941, ‘Rubber Band Pendulum’, American Journal of Physics 41(9), 1103–1106.

    Google Scholar 

Foucault Pendulum

  • Brown, W.A.: 1961, ‘Suspension for Foucault Pendulum’, American Journal of Physics 29(9), 646.

    Article  Google Scholar 

  • Crane, H.R.: 1981, ‘Short Foucault Pendulum: A Way to Eliminate Precession Due to Ellipticity’, American Journal of Physics 49(11), 1004–1006.

    Article  Google Scholar 

  • Crane, H.R.: 1990, ‘The Foucault Pendulum as a Murder Weapon and a Physicist’s Delight’, The Physics Teacher 28(5), 264–269.

    Google Scholar 

  • Curott, D.R.: 1972, ‘The Role of the Constraining Force in a Foucault Pendulum’, American Journal of Physics 40(7), 1007–1009.

    Article  Google Scholar 

  • French, A.P.: 1978, ‘The Foucault Pendulum’, The Physics Teacher 16(1), 61–62.

    Google Scholar 

  • Hart, J., Miller, R. & Mills, R.: 1987, ‘A Simple Geometric Model for Visualizing the Motion of a Foucault Pendulum’, American Journal of Physics 55(1), 67–70.

    Article  Google Scholar 

  • Hecht, K.T.: 1983, ‘The Crane Foucault Pendulum: An Exercise in Action-angle Variable Perturbation Theory’, American Journal of Physics 51(2), 110–114.

    Article  Google Scholar 

  • Hilton, W.A.: 1978, ‘The Foucault Pendulum: A Corridor Demonstration’, American Journal of Physics 46(4), 436–438.

    Article  Google Scholar 

  • Horne, J.E.: 1996, ‘Classroom Foucault Pendulum’, The Physics Teacher 34(4), 238–239.

    Google Scholar 

  • Kruglak, H.: 1983, ‘A Very Short, Portable Foucault Pendulum’, The Physics Teacher 21(7), 477–479.

    Google Scholar 

  • Kruglak, H., Oppliger, L., Pittet, R. & Steele, S.: 1978, ‘A Short Foucault Pendulum for a Hallway Exhibit’, American Journal of Physics 46(4), 438–440.

    Article  Google Scholar 

  • Kruglak, H. & Pittet, R.: 1980, ‘Portable, Continuously Operating Foucault Pendulum’, American Journal of Physics 48(5), 419–420.

    Article  Google Scholar 

  • Kruglak, H. & Steele, S.: 1984, ‘A 25cm Continuously Operating Foucault Pendulum’, Physics Education 19(6), 294–296.

    Article  Google Scholar 

  • Kimball, W.S.: 1945, ‘Foucault Pendulum Starpath and the N-leaved Rose’, American Journal of Physics 13(5), 271–277.

    Article  Google Scholar 

  • Leonard, B.E.: 1981, ‘A Short Foucault Pendulum for Corridor Display’, The Physics Teacher 19(6), 421–423.

    Google Scholar 

  • Mackay, R.S.: 1953, ‘Sustained Foucault Pendulums’, American Journal of Physics 21(3), 180–183.

    Article  Google Scholar 

  • Mattila, J.O.: 1991, ‘The Foucault Pendulum as a Teaching Aid’, Physics Education 26(2), 120–123.

    Article  Google Scholar 

  • McClatchey, S. & Flint, N.: 1981, ‘A Sustained Demonstration Foucault Pendulum’, The Physics Teacher 19(2), 134.

    Google Scholar 

  • Miller, D. & Caudill, G.W.: 1966, ‘Driving Mechanism for a Foucault Pendulum’, American Journal of Physics 34(7), 615–616.

    Article  Google Scholar 

  • Noble, W.J.: 1952, ‘Direct Treatment of the Foucault Pendulum’, American Journal of Physics 20(6), 334–336.

    Article  Google Scholar 

  • Opat, G.: 1991, ‘The Precession of a Foucault Pendulum Viewed as a Beat Phenomenon of a Conical Pendulum Subject to a Coriolis Force’, American Journal of Physics 59(9), 822–823.

    Article  Google Scholar 

  • Reynhardt, E., van der Walt, T. & Soskolsky, L.: 1986, ‘A Modified Foucault Pendulum for a Corridor Exhibit’, American Journal of Physics 54(8), 759–761.

    Article  Google Scholar 

  • Romano, J.D.: 1997, ‘Foucault’s Pendulum as a Spirograph’, The Physics Teacher 35(3), 182–183.

    Google Scholar 

  • Schulz-Dubois, E.O.: 1970, ‘Foucault Pendulum Experiment by Kammerlingh Onnes and Degenerate Perturbation Theory’, American Journal of Physics 38(2), 173–188.

    Article  Google Scholar 

  • Weltner, K.: 1979, ‘A New Model of the Foucault Pendulum’, American Journal of Physics 47(4), 365–366.

    Article  Google Scholar 

Inverted Pendulum

  • Alessi, N., Fischer, C. & Gray, C.: 1992, ‘Measurement of Amplitude Jumps and Hysteresis in a Driven Inverted Pendulum’, American Journal of Physics 60(8), 755–756.

    Article  Google Scholar 

  • Blackburn, J., Smith, H. & Grønbich-Jensen, N.: 1992, ‘Stability amd Hopf Bifurcations in an Inverted Pendulum’, American Journal of Physics 60(10), 903–908.

    Article  Google Scholar 

  • Blitzer, L.: 1965, ‘Inverted Pendulum’, American Journal of Physics 33(12), 1076–1078.

    Article  Google Scholar 

  • Butikov, E.I.: 2001, ‘On the Dynamic Stabilization of an Inverted Pendulum’, American Journal of Physics 69(7), 755–768.

    Article  Google Scholar 

  • Duchesne, B., Fischer, C., Gray, C. & Jeffrey, K.: 1991, ‘Chaos in the Motion of an Inverted Pendulum: An Undergraduate Laboratory Experiment’, American Journal of Physics 59(11), 987–992.

    Google Scholar 

  • Fenn, J., Bayne, D. & Sinclair, B.: 1998, ‘Experimental Investigation of the ‘Effective Potential’ of an Inverted Pendulum’, American Journal of Physics 66(11), 981–984.

    Article  Google Scholar 

  • Friedman, M.H., Campana, J.E., Kelner, L., Seeliger, E.H. & Yergeny, A.L.: 1982, ‘The Inverted Pendulum: A Mechanical Analog of the Quadrupole Mass Filter’, American Journal of Physics 50(10), 924–931.

    Article  Google Scholar 

  • Grandy, W. & Schöck, M.: 1997, ‘Simulations of Nonlinear Pivot-Driven Pendula’, American Journal of Physics 65(5), 376–381.

    Article  Google Scholar 

  • Jones, H.W.: 1969, ‘A Quick Demonstration of the Inverted Pendulum’, American Journal of Physics 37(9), 941.

    Google Scholar 

  • Kalmus, H.P.: 1970, ‘The Inverted Pendulum’, American Journal of Physics 38(7), 874–878.

    Article  Google Scholar 

  • McInerney, M.: 1985, ‘Computer-aided Experiments with the Damped Harmonic Oscillator’, American Journal of Physics 53(10), 991–996.

    Article  Google Scholar 

  • Michaelis, M.: 1985, ‘Stroboscopic Study of the Inverted Pendulum’, American Journal of Physics 53(11), 1079–1083.

    Article  Google Scholar 

  • Moloney, M.: 1996, ‘Inverted Pendulum Motion and the Principle of Equivalence’, American Journal of Physics 64(11), 1431.

    Article  Google Scholar 

  • Nelson, R. & Olsson, M.: 1986, ‘The Pendulum — Rich Physics from a Simple System’, American Journal of Physics 54(2), 112–121.

    Article  Google Scholar 

  • Ness, D.J.: 1967, ‘Small Oscillations of a Stabilized, Inverted Pendulum’, American Journal of Physics 35(10), 964–967.

    Article  Google Scholar 

  • Phelps, F.M. & Hunter, J.H.: 1965, ‘An Analytical Sopution of the Inverted Pendulum’, American Journal of Physics 33(4), 285–295.

    Article  Google Scholar 

  • Pippard, A. 1987, ‘The Inverted Pendulum’, European Journal of Physics 8(3), 203–206.

    Article  Google Scholar 

  • Priest, J.: 1986, ‘Interfacing Pendulums to a Microcomputer’, American Journal of Physics 54(10), 953–955.

    Article  Google Scholar 

  • Scott, T.A.: 1983, ‘Resonance Demonstration’, The Physics Teacher 21(6), 409.

    Google Scholar 

  • Smith, H. & Blackburn, J.: 1992, ‘Experimental Study of an Inverted Pendulum’, American Journal of Physics 60(10), 909–911.

    Article  Google Scholar 

  • Spencer, R.L. & Robertson, R.D.: 2001, ‘Mode Detuning in Systems of Weakly Coupled Oscillators’, American Journal of Physics 69(11), 1191–1197.

    Article  Google Scholar 

Kater Pendulum

  • Candela, D., Martini, K.M., Krotkov, R.V. & Langley, K.H.: 2001, ‘Bessel’s Improved Kater Pendulum in the Teaching Laboratory’, American Journal of Physics 69(6), 714–720.

    Article  Google Scholar 

  • Crummett, W.: 1990, ‘Measurement of Acceleration due to Gravity’, The Physics Teacher 28(5), 291–295.

    Google Scholar 

  • Jesse, K. & Born, H.: 1972, ‘Possible Sources of Error When Using the Kater Pendulum’, The Physics Teacher 10(8), 466.

    Google Scholar 

  • Jesse, K.E.: 1980, ‘Kater Pendulum Modification’, American Journal of Physics 48(9), 785–786.

    Article  Google Scholar 

  • McCarthy, J.T.: 1950, ‘Use of WWV Signals to Time Pendulums’, American Journal of Physics 18(5), 306–307.

    Article  Google Scholar 

  • Peters, R.: 1997, ‘Automated Kater Pendulum’, European Journal of Physics 18(3), 217–221.

    Article  Google Scholar 

  • Peters, R.D.: 1999, ‘Student-friendly Precision Pendulum’, The Physics Teacher 37(7), 390–393.

    Article  Google Scholar 

Physical Pendulum

  • Armstrong, H.L.: 1985, ‘An Experiment on the Inertial Properties of a Rigid Body’, Physics Education 20(3), 138–141.

    Article  Google Scholar 

  • Bartunek, P.: 1951, ‘A Driver for the Calthrop Resonance Pendulum’, American Journal of Physics 19(1), 57.

    Article  Google Scholar 

  • Basano, L. & Ottonello, P.: 1991, ‘Digital Pendulum Damping: The Single-oscillation Approach’, American Journal of Physics 59(11), 1018–1023.

    Article  Google Scholar 

  • Benenson, R. & Marsh, B.: 1988, ‘Coupled Oscillations of a Ball and a Curved-track Pendulum’, American Journal of Physics 56(4), 345–348.

    Article  Google Scholar 

  • Bulur, E., Aniltürk, S. & Mözer, A.M.: 1996, ‘Computer Analysis of Pendulum Motion: An Alternative Way of Collecting Experimental Data’, American Journal of Physics 64(10), 1333–1337.

    Article  Google Scholar 

  • Butikov, E.: 1999, ‘The Rigid Pendulum-an Antique but Evergreen Physical Model’, European Journal of Physics 20(6), 429–441.

    Article  Google Scholar 

  • Cady, W.M.: 1942, ‘Remarkable Isochronous Pendulum’, American Journal of Physics 10(2), 114–116.

    Article  Google Scholar 

  • Corrado, L.: 1974, ‘The Meter Stick Pendulum’, The Physics Teacher 12(8), 494.

    Google Scholar 

  • Cromer, A.: 1995, ‘Many Oscillations of a Rigid Rod’, American Journal of Physics 63(1), 112–121.

    Google Scholar 

  • Freeman, I.M.: 1954, ‘Rectangular Plate Pendulum’, American Journal of Physics 22(4), 157–158.

    Article  Google Scholar 

  • Giltinan, D., Wagner, D. & Walkiewicz, T.: 1996, ‘The Physical Pendulum on a Cylindrical Support’, American Journal of Physics 64(2), 144–146.

    Article  Google Scholar 

  • Greenslade, T.B. & Owens, A.J.: 1980, ‘Reconstructed Nineteenth-century Experiment with Physical Pendula’, American Journal of Physics 48(6), 487–488.

    Article  Google Scholar 

  • Hinrichsen, P.F.: 1981, ‘Practical Applications of the Compound Pendulum’, The Physics Teacher 19(5), 286–292.

    Google Scholar 

  • Horton, G.: 1966, ‘Some Laboratory Work with Physical Pendulums’, The Physics Teacher 4(2), 78–79.

    Google Scholar 

  • Iona, M.: 1979, ‘The Physical Pendulum’, The Physics Teacher 17(4), 224, 276.

    Google Scholar 

  • Irons, E.J.: 1947, ‘Graphical Treatment of the Physical Pendulum Problem’, American Journal of Physics 15(5), 426.

    Article  Google Scholar 

  • Kannewurf, C.R. & Jensen, H.C.: 1957, ‘Coupled Oscillations’, American Journal of Physics 25(7), 442–445.

    Article  Google Scholar 

  • Katz, E.: 1949, ‘Note on Pendulums’, American Journal of Physics 17(7), 439–441.

    Article  Google Scholar 

  • Kettler, J.: 1995, ‘The Variable Mass Physical Pendulum’, American Journal of Physics 63(11), 1049–1051.

    Article  Google Scholar 

  • Kolodiy, G.O.: 1979, ‘An Experiment with a Physical Pendulum’, ThePhysics Teacher 17(1), 52.

    Google Scholar 

  • Levinson, D.A.: 1975, ‘Natural Frequencies of a Spherical Compound Pendulum’, American Journal of Physics 45(6), 579.

    Google Scholar 

  • Marshall, J.: 1972, ‘Two Compound Pendulums with the Same Period of Oscillation’, School Science Review 54(186), 130–131.

    Google Scholar 

  • McInerney, M.: 1985, ‘Computer-aided Experiments with the Damped Harmonic Oscillator’, American Journal of Physics 53(10), 991–996.

    Article  Google Scholar 

  • Mills, D.S.: 1980, ‘The Physical Pendulum: A Computer-augmented Laboratory Exercise’, American Journal of Physics 48(4), 314–316.

    Article  Google Scholar 

  • Mires, R. & Peters, R.: 1994, ‘Motion of a Leaky Pendulum’, American Journal of Physics 62(2), 137–139.

    Article  Google Scholar 

  • Nicklin, R.C. & Rafert, J.B.: 1984, ‘The Digital Pendulum’, American Journal of Physics 52(7), 632–639.

    Article  Google Scholar 

  • Olssen, M.G.: 1981, ‘Spherical Pendulum Revisited’, American Journal of Physics 49(6), 531–534.

    Google Scholar 

  • Pedersen, N.F. & Soerensen, O.H.: 1975, ‘The Compound Pendulum in Intermediate Laboratories and Demonstrations’, American Journal of Physics 45(10), 994–998.

    Google Scholar 

  • Peters, R.: 1996, ‘Resonance Response of a Moderately Driven Rigid Planar Pendulum’, American Journal of Physics 64(2), 170–173.

    Article  Google Scholar 

  • Peters, R.D.: 1999, ‘Student-friendly Precision Pendulum’, The Physics Teacher 37(7), 390–393.

    Article  Google Scholar 

  • Peters, R. & Pritchett, T.: 1997, ‘The Not-so-simple Harmonic Oscillator’, American Journal of Physics 65(11), 1067–1073.

    Article  Google Scholar 

  • Peters, R. & Shepherd, J.: 1989, ‘A Pendulum with Adjustable Trends in the Period’, American Journal of Physics 57(6), 535–539.

    Article  Google Scholar 

  • Raychowdhury, P.N. & Boyd, J.N.: 1979, ‘Centre of Percussion’, American Journal of Physics 47(12), 1088–1089.

    Article  Google Scholar 

  • Reidl, C.J.: 1996, ‘Moment of Inertia of a Physical Pendulum’, The Physics Teacher 34(2), 114–115.

    Google Scholar 

  • Sherfinski, J.: 1997, ‘A Counter-intuitive Physical Pendulum Lab’, The Physics Teacher 35(4), 252–253.

    Google Scholar 

  • Spradley, J.L.: 1990, ‘Meter-stick Mechanics’, The Physics Teacher 28(5), 312–314.

    Google Scholar 

  • Squire, P.: 1986, ‘Pendulum Damping’, American Journal of Physics 54(11), 984–991.

    Article  Google Scholar 

  • Sutton, R.S.: 1953, ‘An Experimental Encounter with Bifilar Pendula’, American Journal of Physics 21(5), 408.

    Article  Google Scholar 

  • Trilton, D.: 1986, ‘Ordered and Chaotic Motion of a Forced Spherical Pendulum’, European Journal of Physics, 7(3), 162–169.

    Google Scholar 

  • Weltin, H.: 1964, ‘Inexpensive Physical Pendulum Experiment’, American Journal of Physics 32(4), 267–268.

    Article  Google Scholar 

  • Weltner, K., Esperodiao, A., Andrade, R. & Guedes, G.: 1994, ‘Demonstrating Different Forms of the Bent Tuning Curve with a Mechanical Oscillator’, American Journal of Physics 62(1), 56–59.

    Article  Google Scholar 

  • Worrell, F.T. & Correll, M.: 1958, ‘Elementary Experiment in Deriving an Empirical Relationship’, American Journal of Physics 26(9), 607–609.

    Article  Google Scholar 

  • Zilio, S.C.: 1982, ‘Measurement an Analysis of Large-angle Pendulum Motion’, American Journal of Physics 49(5), 450–452.

    Google Scholar 

Ring Pendulum

  • Jensen, H.C. & Haisley, W.E.: 1967, ‘On the Equivalence of Truncated Ring Pendula’, American Journal of Physics 35(10), 971–972.

    Article  Google Scholar 

  • Wagner, D., Walkiewicz, T. & Giltinan, D.: 1995, ‘The Partial Ring Pendulum’, American Journal of Physics 63(11), 1014–1017.

    Article  Google Scholar 

  • Walkiewicz, T.A. & Wagner, D.L.: 1994, ‘Symmetry Properties of a Ring Pendulum’, The Physics Teacher 32(3), 142–144.

    Google Scholar 

  • Willey, D.G.: 1991, ‘Conservation of Mechanical Energy using a Pendulum’, The Physics Teacher 29(9), 567.

    Google Scholar 

Simple Pendulum

  • Abdel-Rahman, A.M.: 1983, ‘The Simple Pendulum in a Rotating Frame’, American Journal of Physics 51(8), 721–724.

    Article  Google Scholar 

  • Alford, W.L.: 1972, ‘Approximation for Horizontal Motion of a Plane Pendulum’, American Journal of Physics 42(5), 417–418.

    Google Scholar 

  • Anderson, J.L.: 1959, ‘Approximations in Physics and the Simple Pendulum’, American Journal of Physics 27(3), 188–189.

    Article  Google Scholar 

  • Armstrong, H.L.: 1976, ‘Effect of the Mass of the Cord on the Period of a Simple Pendulum’, American Journal of Physics 44(6), 564–566.

    Article  Google Scholar 

  • Benham, T.A.: 1947, ‘Bessel Functions in Physics: Theory’, American Journal of Physics 15(4), 285–294.

    Article  Google Scholar 

  • Berg, R.: 1991, ‘Pendulum Waves: A Demonstration of Wave Motion Using Pendula’, American Journal of Physics 59(2), 186–187.

    Article  Google Scholar 

  • Blisard, T.J. & Duursema, C.H.: 1952, ‘A Demonstration of the Transformation of Mechanical Energy for Student Computation’, American Journal of Physics 20(9), 559–561.

    Article  Google Scholar 

  • Blitzer, L.: 1979, ‘Equilibrium and Stability of a Pendulum in an Orbiting Spaceship’, American Journal of Physics 47(3), 241–246.

    Article  Google Scholar 

  • Burns, G.P.: 1950, ‘Simple Pendulum’, American Journal of Physics 18(7), 468–469.

    Article  Google Scholar 

  • Cadwell, L. & Boyko, E.: 1991, ‘Linearization of the Simple Pendulum’, American Journal of Physics 59(11), 979–981.

    Article  Google Scholar 

  • Cook, G. & Zaidens, C.: 1986, ‘The Quantum Point-mass Pendulum’, American Journal of Physics 54(3), 259–261.

    Article  Google Scholar 

  • Crawford, F.S.: 1975, ‘Damping of a Simple Pendulum’, American Journal of Physics 43(3), 276–277.

    Article  Google Scholar 

  • Curtis, R.K.: 1981, ‘The Simple Pendulum Experiment’, The Physics Teacher 19(1), 36.

    Google Scholar 

  • Denman, H.H.: 1959, ‘Amplitude Dependence of Frequency in a Linear Approximation to the Simple Pendulum Equation’, American Journal of Physics 27(7), 524–525.

    Article  Google Scholar 

  • Di Lieto, A., Fenecia, S. & Mancini, P.: 1991, ‘A Computer-Assisted Pendulum for Didactics’, European Journal of Physics 12(1), 51–52.

    Article  Google Scholar 

  • Epstein, S.T. & Olsson, M.G.: 1975, ‘Comment on “Effect of the Mass of the Cord on the period of a Simple Pendulum”’, American Journal of Physics 45(7), 671–672.

    Google Scholar 

  • Erkal, C.: 2000, ‘The Simple Pendulum: A Relativistic Visit’, European Journal of Physics 21(5), 377–384.

    Article  Google Scholar 

  • Fulcher, L.P. & Davis, B.F.: 1976, ‘Theoretical and Experimental Study of the Motion of the Simple Pendulum’, American Journal of Physics 44(1), 51–55.

    Article  Google Scholar 

  • Gleiser, R.J.: 1979, ‘Small Amplitude Oscillations of a Quasi-ideal Pendulum’, American Journal of Physics 47(7), 640–643.

    Article  Google Scholar 

  • Gough, W.: 1983, ‘The Period of a Simple Pendulum is not 2π√(1/g)’, European Journal of Physics 4(1), 53.

    Article  Google Scholar 

  • Grandy, W. & Schöck, M.: 1997, ‘Simulations of Nonlinear Pivot-driven Pendula’, American Journal of Physics 65(5), 376–381.

    Article  Google Scholar 

  • Gupta, M.L.: 1972, ‘The Critical Points of a Simple Pendulum’, American Journal of Physics 40(3), 478–480.

    Article  Google Scholar 

  • Hall, D.E.: 1981, ‘Comments on Fourier Analysis of the Simple Pendulum’, American Journal of Physics 49(8), 792.

    Article  Google Scholar 

  • Haque-Copilah, S.: 1996, ‘Extremely Simple Demonstration of Forced Oscillations’, American Journal of Physics 64(4), 507–508.

    Article  Google Scholar 

  • Head, J.H.: 1995, ‘Building New Confidence with a Classic Pendulum Demonstration’, The Physics Teacher 33(1), 10–15.

    Google Scholar 

  • Helrich, C. & Lehman, T.: 1979, ‘A Rolling Pendulum Bob: Conservation of Energy and Partition of Kinetic Energy’, American Journal of Physics 47(4), 367–368.

    Article  Google Scholar 

  • Hughes, J.V.: 1953, ‘Possible Motions of a Sphere Suspended on a String (the Simple Pendulum)’, American Journal of Physics 21(1), 47–50.

    Article  Google Scholar 

  • Jackson, D.P.: 1996, ‘Rendering the “Not-so-simple” Pendulum Experimentally Accessible’, The Physics Teacher 34(2), 86–89.

    Google Scholar 

  • Jensen, H.C. & Monohan, J.R.: 1968, ‘Air Bearing Support for a Pendulum’, American Journal of Physics 36(5), 459–460.

    Article  Google Scholar 

  • Knauss, H.P. & Zilsel, P.R.: 1951, ‘Magnetically Maintained Pendulum’, American Journal of Physics 19(5), 318–320.

    Article  Google Scholar 

  • Mace, W.: 1972, ‘Isochronism and Hooke’s Law’, School Science Review 53(185), 773–774.

    Google Scholar 

  • Miller, B.J.: 1972, ‘More Realistic Treatment of the Simple Pendulum without Difficult Mathematics’, American Journal of Physics 42(4), 298–303.

    Google Scholar 

  • Molina, M.I.: 1997, ‘Simple Linearization of the Simple Pendulum for any Amplitude’, The Physics Teacher 35(8), 489–490.

    Google Scholar 

  • Montgomery, C.G.: 1978, ‘Pendulum on a Massive Cord’, American Journal of Physics 46(4), 411–412.

    Article  Google Scholar 

  • Pitucco, A.: 1980, ‘An Approximation of a Simple Pendulum’, The Physics Teacher 18(9), 666.

    Google Scholar 

  • Santarelli, V., Carolla, J. & Ferner, M.: 1993, ‘A New Look at the Simple Pendulum’, The Physics Teacher 31(4), 236–238.

    Google Scholar 

  • Schwarz, C.: 1995, ‘The Not-so-simple Pendulum’, The Physics Teacher 33(4), 225–228.

    Google Scholar 

  • Siddons, J.: 1976, ‘Bits and Pieces: A Physics Miscellany’, School Science Review 57(200), 441–453 (esp. 451-453).

    Google Scholar 

  • Simon, R. & Riesz, R.P.: 1979, ‘Large Amplitude Simple Pendulum: A Fourier Analysis’, American Journal of Physics 47(10), 898–899.

    Article  Google Scholar 

  • Zheng, T.F. et al.: 1994, ‘Teaching the Non-linear Pendulum’, The Physics Teacher 32(4), 248–251.

    Google Scholar 

Spring-mass Pendulum

  • Armstrong, H.L.: 1969, ‘The Oscillating Spring and Weight — An Experiment often Misinterpreted’, American Journal of Physics 37(4), 447–448.

    Article  Google Scholar 

  • Blair, J.M.: 1975, ‘Precision Timing Applied to a Driven Mechanical Oscillator’, American Journal of Physics 43(12), 1076–1078.

    Article  Google Scholar 

  • Cayton, T.E.: 1975, ‘The Laboratory Spring-mass Oscillator: An Example of Parametric Instability’, American Journal of Physics 45(8), 723–732.

    Google Scholar 

  • Crawford, H.: 1964, ‘A Space Clock’, The Physics Teacher 2(6), 290.

    Google Scholar 

  • Cushing, J.T.: 1984, ‘The Spring-mass Pendulum Revisited’, American Journal of Physics 52(10), 925–933.

    Google Scholar 

  • Cushing, J.Y.: 1984, ‘The Method of Characteristics Applied to the Massive Spring Problem’, American Journal of Physics 52(10), 933–937.

    Google Scholar 

  • Dewdney, J.W.: 1958, ‘Simple Pendulum Equivalent to Spring-Mass System’, American Journal of Physics 26(5), 340–341.

    Article  Google Scholar 

  • Edwards, T.W. & Hultsch, R.A.: 1972, ‘Mass Distribution and Frequencies of a Vertical Spring’, American Journal of Physics 40(3), 445–449.

    Article  Google Scholar 

  • Erlichson, H.: 1976, ‘The Vertical Spring-Mass System and its Equivalent’, The Physics Teacher 14(9), 573–574.

    Google Scholar 

  • Fyfe, F.M., Stroink, G., March, R.H. & Calkin, M.G.: 1981, ‘Large-scale Spring Experiment’, American Journal of Physics 49(11), 1074–1075.

    Article  Google Scholar 

  • Galloni, E.E. & Kohen, M.: 1979, ‘Influence of the Mass of the Spring on its Static and Dynamic Effects’, American Journal of Physics 47(12), 1076–1078.

    Article  Google Scholar 

  • Glanz, P.K.: 1979, ‘Note on Energy Change in a Spring’, American Journal of Physics 47(12), 1091–1092.

    Article  Google Scholar 

  • Grant, F.: 1986, ‘Energy Analysis of the Conical-spring Oscillator’, American Journal of Physics 54(3), 227–233.

    Article  Google Scholar 

  • Greiner, M.: 1980, ‘Elliptical Motion from a Ball and Spring’, American Journal of Physics 48(6), 488–489.

    Article  Google Scholar 

  • Heard, T.C. & Newby, N.D.: 1975, ‘Behavior of a Soft Spring’, American Journal of Physics 45(11), 1102–1106.

    Google Scholar 

  • Holzworth, D.E. & Malone, J.: 2000, ‘Pendulum Period versus Hanging-spring Period’, The Physics Teacher 38(1), 47.

    Google Scholar 

  • Jalbert, R.: 1963, ‘On Springs and Simple Harmonic Motion’, The Physics Teacher 1(3), 124.

    Google Scholar 

  • Karioris, F. & Mendelson, K.: 1992, ‘A Novel Coupled Oscillation Demonstration’, American Journal of Physics 60(6), 508–513.

    Article  Google Scholar 

  • Lai, H.M.: 1984, ‘On the Recurrence Phenomenon of a Resonant Spring Pendulum’, American Journal of Physics 52(3), 219–223.

    Article  Google Scholar 

  • Lipham, J.G. & Pollak, V.L.: 1978, ‘Constructing a “Misbehaving” Spring’, American Journal of Physics 46(1), 110–111.

    Article  Google Scholar 

  • McDonald, A.: 1980, ‘Deceptively Simple Harmonic Motion: A Mass on a Spiral Spring’, American Journal of Physics 48(3), 189–192.

    Article  Google Scholar 

  • Mills, D.S.: 1981, ‘The Spring and Mass Pendulum: An Exercise in Mathematical Modeling’, The Physics Teacher 19(6), 404–405.

    Google Scholar 

  • Nunes da Silva, J.: 1994, ‘Renormalized Vibrations of a Loaded Spring’, American Journal of Physics 62(5), 423–426.

    Article  Google Scholar 

  • Olsson, M.G.: 1976, ‘Why Does a Mass on a Spring Sometimes Misbehave?’, American Journal of Physics 44(12), 1211–1212.

    Article  Google Scholar 

  • Ouseph, P. & Ouseph, J.: 1987, ‘Electromagnetically Driven Resonance Apparatus’, American Journal of Physics 55(12), 1126–1129.

    Article  Google Scholar 

  • Porta, A. & Sandoval, J.L.: 1982, ‘A Detection System for Mass-Spring Oscillations’, The Physics Teacher 20(3), 186.

    Google Scholar 

  • Rusbridge, M.G.: 1980, ‘Motion of the Spring Pendulum’, American Journal of Physics 48(2), 146–151.

    Article  Google Scholar 

  • Scott, A.: 1985, ‘Transfer of Energy in a Spring-mass Pendulum’, The Physics Teacher 23(6), 356.

    Google Scholar 

  • Sears, F.W.: 1969, ‘A Demonstration of the Spring-Mass Correction’, American Journal of Physics 37(6), 645–648.

    Google Scholar 

  • Walker, J. & Soule, T.: 1996, ‘Chaos in a Simple Impact Oscillation: The Bender Bouncer’, American Journal of Physics 64(4), 397–409.

    Article  Google Scholar 

Torsion Pendulum

  • Abbott, H.: 1983, ‘Torsion Resonance Demonstrator’, The Physics Teacher 21(5), 333.

    Google Scholar 

  • Allen, M. & Saxl, E.J.: 1972, ‘The Period of Damped Simple Harmonic Motion’, American Journal of Physics 40(7), 942–944.

    Article  Google Scholar 

  • Chapmen, S.: 1948, ‘Discovering the Torsion Pendulum Expression in the Freshman Laboratory’, American Journal of Physics 16(5), 308–309.

    Google Scholar 

  • Cromer, A.: 1995, ‘Many Oscillations of a Rigid Rod’, American Journal of Physics 63(1), 112–121.

    Google Scholar 

  • Green, R.E.: 1958, ‘Calibrated Torsion Pendulum for Moment of Inertia Measurements’, American Journal of Physics 26(7), 498–499.

    Article  Google Scholar 

  • Miller, J.S.: 1957, ‘Coupled Torsion Pendulums’, American Journal of Physics 25(9), 649–650.

    Google Scholar 

  • Milotti, E.: 2001, ‘Non-linear Behavior in a Torsion Pendulum’, European Journal of Physics 22(3), 239–248.

    Article  Google Scholar 

  • O’Connell, J.: 2000, ‘Magnetic Torsion Pendulum’, The Physics Teacher 38(6), 377–378.

    Google Scholar 

  • Pollock, R.E.: 1963, ‘Resonant Detection of Light Pressure by a Torsion Pendulum in Air — An Experiment for Underclass Laboratories’, American Journal of Physics 31(12), 901–904.

    Article  Google Scholar 

  • Smedt, J. De & Bock, A. De.: 1957, ‘Horizontal Pendulum with Variable Modulus of Torsion (Resonance Curve)’, American Journal of Physics 25(3), 155–156.

    Google Scholar 

  • Taylor, K.N.: 1983, ‘Tinker Toys Have their Moments of Inertia’, The Physics Teacher 21(7), 456–458.

    Google Scholar 

  • Tyagi, S. & Lord, A.E.: 1979, ‘An Inexpensive Torsional Pendulum Apparatus for Rigidity Modulus Determination’, American Journal of Physics 47(7), 632–633.

    Article  Google Scholar 

  • Yu, Y.-T.: 1942, ‘Double Torsion Pendulum in a Liquid’, American Journal of Physics 10(3), 152–153.

    Article  Google Scholar 

Two-dimensional Pendulum

  • Livesey, D.: 1987, ‘The Precession of Simple Pendulum Orbits’, American Journal of Physics 55(7), 618–621.

    Article  Google Scholar 

  • Whitaker, R.J.: 2001, ‘Harmonographs. I. Pendulum Design’, American Journal of Physics 69(2), 162–173.

    Google Scholar 

  • Worland, R.S. & Moelter, M.J.: 2000, ‘Two-dimensional Pendulum Experiments Using a Spark Generator’, The Physics Teacher 38(8), 489–492.

    Article  Google Scholar 

Variable Gravity Pendulums

  • Feliciano, J.: 1998, ‘The Variable Gravity Pendulum’, The Physics Teacher 36(1), 51–52.

    Article  Google Scholar 

  • Kwasnoski, J.B. & Murphy, R.S.: 1984, ‘The Classic Pendulum Experiment — on Jupiter or Saturn’, American Journal of Physics 52(1), 85.

    Article  Google Scholar 

  • Tufilaro, N.B., Abbott, T.A. & Griffiths, D.J.: 1984, ‘Swinging Attwood’s Machine’, American Journal of Physics 52(10), 895–903.

    Google Scholar 

  • Vaquero, J.M. & Gallego, M.: 2000, ‘An Old Apparatus for Physics Teaching’ The Physics Teacher 38(7), 424–425.

    Article  Google Scholar 

Wilberforce Pendulum

  • Berg, R. & Marshall, T.: 1991, ‘Wilberforce Pendulum Oscillations and Normal Modes’, American Journal of Physics 59(1), 32–38.

    Article  Google Scholar 

  • Debowska, E., Jakubowicz, S. & Mazur, Z.: 1999, ‘Computer Visualization of the Beating of a Wilberforce Pendulum’, European Journal of Physics 20(2) 89–95.

    Article  Google Scholar 

  • Köpf, U.: 1990, ‘Wilberforce’s Pendulum Revisited’, American Journal of Physics 58(9), 833–837.

    Google Scholar 

  • Whitaker, R.J.: 1988, ‘L.R. Wilberforce and the Wilberforce Pendulum’, The Physics Teacher 26(1), 37–39.

    Google Scholar 

  • Williams, J. & Keil, R.: 1983, ‘A Wilberforce Pendulum’, The Physics Teacher 21(4), 257–258.

    Google Scholar 

Pendulum Contexts

  • Alessi, N., Fischer, C. & Gray, C.: 1992, Measurements of Amplitude Jumps and Hysteresis in a Driven Inverted Pendulum’, American Journal of Physics 60(8), 755–756.

    Article  Google Scholar 

  • Baker, G.: 1995, ‘Control of the Chaotic Driven Pendulum’, American Journal of Physics 63(9), 832–838.

    Article  Google Scholar 

  • Berdahl, J.P. & Lugt, K.V.: 2001, ‘Magnetically Driven Chaotic Pendulum’, American Journal of Physics 69(9), 1016–1019.

    Article  Google Scholar 

  • Blackburn, J. & Baker, G.: 1998, ‘A Comparison of Commercial Chaotic Pendulums’, American Journal of Physics 66(9), 821–830.

    Article  Google Scholar 

  • Blackburn, J., Smith, H. & Grønbich-Jensen, N.: 1992, ‘Stability and Hopf Bifurcations in an Inverted Pendulum’, American Journal of Physics 60(10), 903–908.

    Article  Google Scholar 

  • Carretero-Gonzalez, R., Numez-Yepez, H. & Salas-Brito, A. 1994, ‘Regular and Chaotic Behavior in an Extensible Pendulum’, European Journal of Physics 15(3), 139–148.

    Article  Google Scholar 

  • Cohen, Y., Katz, S., Peres, A., Santo, E. & Yitzhaki, R.: 1988, ‘Stroboscopic Views of Regular and Chaotic Orbits’, American Journal of Physics 56(11), 1042.

    Article  Google Scholar 

  • Cuerno, R., Rañada, A. & Ruiz-Lorenzo, J.: 1992, ‘Deterministic Chaos in the Elastic Pendulum: A Simple Laboratory for Non-linear Dynamics’, American Journal of Physics 60(1), 73–79.

    Article  Google Scholar 

  • De Jong, M.L.: 1992, ‘Chaos and the Simple Pendulum’, The Physics Teacher 30(2), 115–121.

    Google Scholar 

  • Duchesne, B., Fischer, C., Gray, C. & Jeffrey, K.: 1991, ‘Chaos in the Motion of an Inverted Pendulum: An Undergraduate Laboratory Experiment’, American Journal of Physics 59(11), 987–992.

    Google Scholar 

  • Irons, F.: 1990, ‘Concerning the Non-Linear Behaviour of the Forced Spherical Pendulum including the Dowsing Pendulum’, European Journal of Physics 11(2), 107–115.

    Article  Google Scholar 

  • Kautz, R.: 1993, ‘Chaos in a Computer-Animated Pendulum’, American Journal of Physics 61(5), 407–415.

    Article  Google Scholar 

  • Levien, R. & Tan, S.: 1993, ‘Double Pendulum: An Experiment in Chaos’, American Journal of Physics 61(11), 1038–1044.

    Article  Google Scholar 

  • Marega, E., Ioriatti, L. & Zilio, S.: 1991, ‘Harmonic Generation and Chaos in an Electromechanical Pendulum’, American Journal of Physics 59(9), 858–859.

    Google Scholar 

  • Martin, S.J. & Ford, P.J.: 2001, ‘A Simple Experimental Demonstration of Chaos in a Driven Spherical Pendulum’, Physics Education 36(2), 108–114.

    Article  Google Scholar 

  • Mendelson, K. & Karioris, F.: 1991, ‘Chaoticlike Motion of a Linear Dynamical System’, American Journal of Physics 59(3), 221–224.

    Article  Google Scholar 

  • Oliver, D.: 1999, ‘A Chaotic Pendulum’, The Physics Teacher 37(3), 174.

    Article  Google Scholar 

  • Pemann, D. & Hamilton, I.: 1992, ‘Self-similar and Erratic Transient Dynamics for the Linearly Damped Simple Pendulum’, American Journal of Physics 60(5), 442–450.

    Google Scholar 

  • Peters, R.: 1995, ‘Chaotic Pendulum Based on Torsion and Gravity in Opposition’, American Journal of Physics 63(12), 1128–1136.

    Article  Google Scholar 

  • Shew, W., Coy, H. & Lindner, J.: 1999, ‘Taming Chaos with Disorder in a Pendulum Array’, American Journal of Physics 67(8), 703–708.

    Article  Google Scholar 

  • Shinbrot, T., Grebogi, C., Wisdom, J. & Yorke, J.: 1992, ‘Chaos in a Double Pendulum’, American Journal of Physics 60(6), 491–499.

    Article  Google Scholar 

  • Taylor, M.: 2001, ‘Pendumonium’, Physics Education 36(5), 425.

    Google Scholar 

  • Trilton, D.: 1986, ‘Ordered and Chaotic Motion of a Forced Spherical Pendulum’, European Journal of Physics 7(3), 162–169.

    Google Scholar 

  • Walker, J. & Soule, T.: 1996, ‘Chaos in a Simple Impact Oscillation: The Bender Bouncer’, American Journal of Physics 64(4), 397–409.

    Article  Google Scholar 

Galileo and the Pendulum

  • Ball, M.: 1985, ‘Galileo Galilei and Christiaan Huygens: Addendum’, Antiquarian Horology 15, 373–374.

    Google Scholar 

  • Bjelic, D.: 1996, ‘Lebenswelt Structures of Galilean Physics: The Case of Galileo’s Pendulum’, Human Studies 19, 409–432.

    Article  Google Scholar 

  • Dobson, R.: 1985, ‘Galileo Galilei and Christiaan Huygens’, Antiquarian Horology 15, 261–270.

    Google Scholar 

  • Drake, S.: 1986, ‘Galileo’s Physical Measurements’, American Journal of Physics 54(4), 302–306.

    Article  Google Scholar 

  • Erlichson, H.: 1997, ‘Galileo to Newton — a Liberal Arts Physics Course’, The Physics Teacher 35(9), 532–535.

    Google Scholar 

  • Erlichson, H.: 1999, ‘Galileo’s Pendulum’, The Physics Teacher 37(8), 478–479.

    Article  Google Scholar 

  • Matthews, M.R.: 1990, ‘Galileo and the Pendulum: A Case for History and Philosophy in the Classroom’, Australian Science Teachers Journal 36(1), 7–13.

    Google Scholar 

  • Naylor, R.: 1974, ‘Galileo’s Simple Pendulum’, Physis: Rivista Internazionale di Storia della Scienza 16, 23–46.

    Google Scholar 

  • Naylor, R.: 1977, ‘Galileo’s Need for Precision: The “point” of the Fourth Day Pendulum Experiment’, Isis 68, 97–103.

    Article  Google Scholar 

  • Wood, H.T.: 1994, ‘The Interrupted Pendulum’, The Physics Teacher 32(7), 422–423.

    Google Scholar 

  • Yamazaki, M.: 1993, ‘Galileo and the Laws of Pendulum and Fall’, Journal of History of Science 32, 12–18.

    Google Scholar 

Historical Contexts

  • Conlin, M.: 1999, ‘The Popular and Scientific Reception of the Foucault Pendulum in the United States’, Isis 90(2), 181–204.

    Article  Google Scholar 

  • Edwardes, E.: 1980, ‘The Suspended Foliot and New Light on Early Pendulum Clocks’, Antiquarian Horology 12, 614–626.

    Google Scholar 

  • Foley, V.: 1988, ‘Besson, da Vinci, and the Evolution of the Pendulum: Some Findings and Observations’, History and Technology 6, 1–43.

    Google Scholar 

  • Garcia-Diego, J.: 1988, ‘On a Mechanical Problem of Lanz’, History and Technology 5, 301–313.

    Google Scholar 

  • Gauld, C.: 1998, ‘Solutions to the Problem of Impact in the 17th and 18th Centuries and Teaching Newton’s Third Law Today’, Science and Education 7(1), 49–67.

    Article  Google Scholar 

  • Hall, B.: 1978, ‘The Scholastic Pendulum’, Annals of Science 35, 441–462.

    Google Scholar 

  • King, D.: 1979, ‘Ibn Yunus and the Pendulum: A History of Errors’, Archives Internationale d’Histoire des Sciences 29, 35–52.

    Google Scholar 

  • Sheynin, O.: 1994, ‘Ivory’s Treatment of Pendulum Observations’, Historica Mathematica 21, 174–184.

    Google Scholar 

Investigating the Motion of the Simple Pendulum

  • Araki, T.: 1994, ‘Measurement of Simple Pendulum Motion Using Flux-gate Magnetometer’, American Journal of Physics 62(6), 569–571.

    Article  Google Scholar 

  • Burris, J.A. & Hargrave, W.J.: 1944, ‘Simple Pendulum Energy Experiment’, American Journal of Physics 12(4), 215–217.

    Article  Google Scholar 

  • Chinn, L.: 1979, ‘Demonstration of the Conservation of Mechanical Energy’, The Physics Teacher 17(6), 385.

    Google Scholar 

  • Crummett, W.: 1990, ‘Measurement of Acceleration due to Gravity’, The Physics Teacher 28(5), 291–295.

    Google Scholar 

  • Curtis, R.K.: 1981, ‘The Simple Pendulum Experiment’, The Physics Teacher 19(1), 36.

    Google Scholar 

  • Curzon, F., Locke, A., Lefrançois & Novick, K.: 1995, ‘Parametric Instability of a Pendulum’, American Journal of Physics 63(2), 132–136.

    Article  Google Scholar 

  • Denardo, B. & Masada, R.: 1990, ‘A Not-so-obvious Pendulum Experiment’, The Physics Teacher 28(1), 51–52.

    Google Scholar 

  • Dix, F.: 1975, ‘A Pendulum Counter-timer Using a Photocell Gate’, American Journal of Physics 43(3), 280.

    Article  Google Scholar 

  • Hall, D.E. & Shea, M.J.: 1977, ‘Large-amplitude Pendulum Experiment: Another Approach’, American Journal of Physics 45(4), 355–357.

    Article  Google Scholar 

  • Lewowski, T. & Wozmiak, K.: 2002, ‘Period of a Pendulum at Large Amplitudes: A Laboratory Experiment’, European Journal of Physics 23(5), 461–464.

    Article  Google Scholar 

  • Li, S.-P. & Feng, S.-Y.: 1967, ‘Precision Measurement of the Period of a Pendulum Using an Oscilloscope’, American Journal of Physics 35(11), 1071–1073.

    Article  Google Scholar 

  • Matous, G. & Matolyak, J.: 1991, ‘Teaching Important Procedures with Simple Experiments’, The Physics Teacher 29(8), 541–542.

    Google Scholar 

  • McCormick, W.W.: 1939, ‘A Pendulum Timer for the Elementary Laboratory’, American Journal of Physics 7(6), 260.

    Google Scholar 

  • Santarelli, V., Carolla, J. & Ferner, M.: 1993, ‘A New Look at the Simple Pendulum’, The Physics Teacher 31(4), 236–238.

    Google Scholar 

  • Smith, M.K.: 1964, ‘Precision Measurement of Period vs. Amplitude for a Pendulum’, American Journal of Physics 32(8), 632–633.

    Article  Google Scholar 

Pendulum Collisions

  • Becchetti, F.D. & Cockerill, A.: 1984, ‘Collision Balls and Coupled Pendulums for the Overhead Projector’, The Physics Teacher 22(4), 258–259.

    Google Scholar 

  • Chapman, S.: 1960, ‘Misconception Concerning the Dynamics of the Impact Ball Apparatus’, American Journal of Physics 28(8), 705–711.

    Article  Google Scholar 

  • Domenech, A. & Domenech, T.: 1988, ‘Relationships between Scattering Angles in Pendulum Collisions’, European Journal of Physics 9(2), 116–122.

    Article  Google Scholar 

  • Erlich, R.: 1996, ‘Experiments with “Newton’s Cradle”’, The Physics Teacher 34(3), 181–183.

    Google Scholar 

  • Erlichson, H.: 2001, ‘A Proposition Well Known to Geometers’, The Physics Teacher 39(3), 152–153.

    Article  Google Scholar 

  • Gauld, C.F.: 1998, ‘Colliding Pendulum’, Conservation of Momentum and Newton’s Third Law’, Australian Science Teachers Journal 44(3), 37–38.

    Google Scholar 

  • Gauld, C.F.: 1999, ‘Using Colliding Pendulums to Teach Newton’s Third Law’, The Physics Teacher 37(2), 42–45.

    Article  Google Scholar 

  • Gavenda, J.D. & Edington, J.R.: 1997, ‘Newton’s Cradle and Scientific Explanation’, The Physics Teacher 35(7), 411–417.

    Google Scholar 

  • Gupta, P.: 1985, ‘Blackwood Pendulum Experiment and the Conservation of Linear Momentum’, American Journal of Physics 53(3), 267–269.

    Article  Google Scholar 

  • Hecht, K.: 1961, ‘Collision Experiments in Shadow Projection’, American Journal of Physics 29(9), 636–639.

    Article  Google Scholar 

  • Herrmann, F. & Schmālzle, P.: 1981, ‘Simple Explanation of a Well-known Collision Experiment’, American Journal of Physics 49(8), 761–764.

    Article  Google Scholar 

  • McCaslin, J.G.: 1984, ‘A Different Blackwood Pendulum Experiment’, The Physics Teacher 22(3), 184–186.

    Google Scholar 

  • Satterly, J.: 1945, ‘Ball Pendulum Impact Experiments’, American Journal of Physics 13, 170.

    Google Scholar 

  • Siddons, J.: 1969, ‘Swinging Spheres’, School Science Review 51(174), 152–153.

    Google Scholar 

Pendulum Resonance

  • Abbott, H.:1983, ‘Torsion Resonance Demonstrator’, The Physics Teacher 21(5), 333.

    Google Scholar 

  • Bruns, D.G.: 1988, ‘Synchronized Swinging’, The Physics Teacher 26(4), 220–221.

    Google Scholar 

  • Edge, R.D.: 1981, ‘Coupled and Forced Oscillations’, The Physics Teacher 19(7), 485–488.

    Google Scholar 

  • Fajans, J. & Friedland, L.: 2001, ‘Autoresonant (Nonstationary) Excitation of Pendulums, Plutinos, Plasmas and Other Nonlinear Oscillators’, American Journal of Physics 69(10), 1096–1102.

    Article  Google Scholar 

  • Grosu, T. & Ursu, D.: 1982, ‘Simple Apparatus for Obtaining Parametric Resonance’, American Journal of Physics 50(6), 561.

    Article  Google Scholar 

  • Lai, H.M.: 1984, ‘On the Recurrence Phenomenon of a Resonant Spring Pendulum’, American Journal of Physics 52(3), 219–223.

    Article  Google Scholar 

  • Olsen, L.O.: 1945, ‘Coupled Pendulums: An Advanced Laboratory Experiment’, American Journal of Physics 13(5), 321–324.

    Article  Google Scholar 

  • Ouseph, p. & Ouseph, J.: 1987, ‘Electromagnetically Driven Resonance Apparatus’, American Journal of Physics 55(12), 1126–1129.

    Article  Google Scholar 

  • Peters, R.: 1996, ‘Resonance Response of a Moderately Driven Rigid Planar Pendulum’, American Journal of Physics 64(2), 170–173.

    Article  Google Scholar 

  • Pinto, F.: 1993, ‘Parametric Resonance: An Introductory Experiment’, The Physics Teacher 31(6), 336–346.

    Google Scholar 

  • Priest, J. & Poth, J.: 1982, ‘Teaching Physics with Coupled Pendulums’, The Physics Teacher 20(2), 80–85.

    Google Scholar 

  • Scott, T.A.: 1983, ‘Resonance Demonstration’, The Physics Teacher 21(6), 409.

    Google Scholar 

  • Stockman, H.E.: 1960, ‘Pendulum Parametric Amplifier’, American Journal of Physics 28(5), 506–507.

    Article  Google Scholar 

Student Conceptions of the Pendulum

  • Czudkova, L. & Musilova, J.: 2000, ‘The Pendulum: A Stumbling Block of Secondary School Mechanics’, Physics Education 35(6), 428–435.

    Google Scholar 

  • Wolman, W.: 1984, ‘Models and Procedures: Teaching for Transfer of Pendulum Knowledge’, Journal of Research in Science Teaching 21(4), 399–415.

    Google Scholar 

Swinging and the Pendulum

  • Anon.: 1966, ‘A Child’s Swing’, The Physics Teacher 4(7), 307.

    Google Scholar 

  • Anon.: 1966, ‘A Child’s Swing’, The Physics Teacher 4(8), 374–375.

    Google Scholar 

  • Burns, J.A.: 1970, ‘More on Pumping on a Swing’, American Journal of Physics 38(7), 920–922.

    Article  Google Scholar 

  • Case, W.: 1996, ‘The Pumping of a Swing from the Standing Position’, American Journal of Physics 64(3), 215–220.

    Article  Google Scholar 

  • Case, W. & Swanson, M.: 1990, ‘The Pumping of a Swing from the Seated Position’, American Journal of Physics 58(5), 463–467.

    Article  Google Scholar 

  • Curry, S.M.: 1976, ‘How Children Swing’, American Journal of Physics 44(10), 924–926.

    Article  Google Scholar 

  • Gore, B.F.: 1970, ‘The Child’s Swing’, American Journal of Physics 38(3), 378–379.

    Article  Google Scholar 

  • Gore, B.F.: 1971, ‘Starting a Swing from Rest’, American Journal of Physics 39(3), 347.

    Article  Google Scholar 

  • Hesketh, R.V.: 1975, ‘How to Make a Swing Go’, Physics Education 10(5), 367–369.

    Article  Google Scholar 

  • McMullan, J.: 1940, ‘On Initiating Motion in a Swing’, American Journal of Physics 40(5), 764–766.

    Google Scholar 

  • Mellen, W.R.: 1994, ‘Spring String Swing Thing’, The Physics Teacher 32(2), 122–123.

    Google Scholar 

  • Sanmartin, J.R.: 1984, ‘O Botafumeiro: Parametric Pumping in the Middle Ages’, American Journal of Physics 52(10), 937–945.

    Google Scholar 

  • Siegman, A.F.: 1969, ‘Comments on Pumping on a Swing’, American Journal of Physics 37(8), 843–844.

    Article  Google Scholar 

  • Tea, P.L. & Falk, H.: 1968, ‘Pumping on a Swing’, American Journal of Physics 36(12), 1165–1166.

    Article  Google Scholar 

Time Measurement and the Pendulum

  • Aked, C.: 1994, ‘The First Free Pendulum Clock’, Bulletin of the Scientific Instrument Society 41, 20–23.

    Google Scholar 

  • Bazin, M. & Lucie, P.: 1981, ‘The Pendulum Reborn: Time Measurements in the Teaching Laboratory’, American Journal of Physics 49(8), 758–761.

    Article  Google Scholar 

  • Bensky, T.J.: 2001, ‘Measuring g with a Joystick Pendulum’, The Physics Teacher 39(2), 88–89.

    Article  Google Scholar 

  • Carlson, J.E.: 1991, ‘The Pendulum Clock’, The Physics Teacher 29(1), 8–11.

    Google Scholar 

  • Crawford, H.: 1964, ‘A Space Clock’, The Physics Teacher 2(6), 290.

    Google Scholar 

  • Crook, A.: 2001, ‘A Tale of a Clock’, European Journal of Physics 22(5), 549–560.

    Article  Google Scholar 

  • Denny, M.: 2002, ‘The Pendulum Clock’, European Journal of Physics 23(4), 449–458.

    Article  Google Scholar 

  • Dobson, R.: 1979, ‘Huygens, the Secret in the Coster-Fromanteel “Contract”, the Thirty-hour Clock’, Antiquarian Horology 12, 193–196.

    Google Scholar 

  • Edwardes, E.: 1983, ‘The Fromanteels and the Pendulum Clock’, Antiquarian Horology 14, 250–265.

    Google Scholar 

  • Kesteven, M.: 1978, ‘On the Mathematical Theory of Clock Escapements’, American Journal of Physics 46(2), 125–129.

    Article  Google Scholar 

  • Lee, R.: 1978, ‘Early Pendulum Clocks’, Antiquarian Horology 11, 146–160.

    Google Scholar 

  • Ments, M.v.: 1956, ‘Synchronization of Pendulum Clocks with the Help of Signals Taken from a Quartz-Crystal Clock’, American Journal of Physics 24(7), 489–495.

    Article  Google Scholar 

  • Mills, A.: 1993, ‘The Earl of Meath’s ‘Free Pendulum’ Water-driven Clock: An Incredible Scientific Instrument’, Bulletin of the Scientific Instrument Society 39, 3–6.

    Google Scholar 

Walking and the Pendulum

  • Bachman, C.H.: 1976, ‘Some Observations on the Process of Walking’, The Physics Teacher 14, 360.

    Google Scholar 

  • Dumont, A. & Waltham, C.: 1997, ‘Walking’, The Physics Teacher 35(6), 372–376.

    Google Scholar 

  • Prigo, R.: 1976, ‘Walking Resonance’, The Physics Teacher 14, 360.

    Google Scholar 

  • Sutton, R.M.: 1955, ‘Two Notes on the Physics of Walking’, American Journal of Physics 23(7), 490–491.

    Google Scholar 

Miscellaneous

  • Asano, K.: 1975, ‘On the Theory of an Electrostatic Pendulum Oscillator’, American Journal of Physics 43(5), 423–427.

    Article  Google Scholar 

  • Bartunek, P.: 1956, ‘Some Interesting Cases of Vibrating Systems’, American Journal of Physics 24(5), 369–373.

    Article  Google Scholar 

  • Berg, R.: 1991, ‘Pendulum Waves: A Demonstration of Wave Motion Using Pendula’, American Journal of Physics 59(2), 186–187.

    Article  Google Scholar 

  • Chapman, A.: 1993, ‘The Pit and the Pendulum: G.B. Airy and the Determination of Gravity’, Antiquarian Horology 21, 70–78.

    Google Scholar 

  • Doyle, W.T. & Gibson, R.: 1979, ‘Demonstration of Eddy Current Forces’, American Journal of Physics 47(5), 470–471.

    Article  Google Scholar 

  • Dupré, A. & Janssen, J.: 2000, ‘An Accurate Determination of the Acceleration of Gravity in the Undergraduate Laboratory’, American Journal of Physics 68(8), 704–711.

    Google Scholar 

  • Flaten, J.A. & Parendo, K.A.: 2001, ‘Pendulum Waves: A Lesson in Aliasing’, American Journal of Physics 69(7), 778–782.

    Article  Google Scholar 

  • Grøn, Ø.: 1983, ‘A Tidal Force Pendulum’, American Journal of Physics 51(5), 429–431.

    Google Scholar 

  • Hageseth, G.T.: 1987, ‘The Liquid Pendulum’, The Physics Teacher 25(7), 427.

    Google Scholar 

  • Morgan, B.H.: 1982, ‘Polarization Effects with Pendulums’, The Physics Teacher 20(8), 541–542.

    Google Scholar 

  • Pollock, R.E.: 1963, ‘Resonant Detection of Light Pressure by a Torsion Pendulum in Air — An Experiment for Underclass Laboratories’, American Journal of Physics 31(12), 901–904.

    Article  Google Scholar 

  • Schmidt, V.H. & Childers, B.R.: 1984, ‘Magnetic Pendulum Apparatus for Analog Demonstration of First-order and Second-order Phase Transitions and Tricritical Points’, American Journal of Physics 52(1), 39–43.

    Article  Google Scholar 

  • Sheppard, D.M.: 1970, ‘Using One Pendulum and a Rotating Mass to Measure the Universal Gravitational Constant’, American Journal of Physics 38(3), 380.

    Article  Google Scholar 

  • Sleator, W.W.: 1948, ‘Demonstration Experiments with Pendulumsv, American Journal of Physics 16(2), 93–496.

    Article  Google Scholar 

  • Southwell, W.H.: 1967, ‘Using Pendulums to Measure the Universal Gravitational Constant’, American Journal of Physics 35(12), 1160–1161.

    Article  Google Scholar 

  • Van den Akker, J.A.: 1935, ‘Electrostatic Pendulumv, American Journal of Physics 3(2), 72–74.

    Google Scholar 

  • Wilkening, G. & Hesse, J.: 1981, ‘Electrical Pendulum for Educational Purposes’, American Journal of Physics 49(1), 90–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Gauld, C. (2005). Pendulums in The Physics Education Literature: A Bibliography. In: Matthews, M.R., Gauld, C.F., Stinner, A. (eds) The Pendulum. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3526-8_32

Download citation

Publish with us

Policies and ethics