Glacier-Climate Models as Palaeoclimatic Information Sources: Examples from the Alpine Younger Dryas Period

  • Hanns Kerschner
Part of the Advances in Global Change Research book series (AGLO, volume 23)


The regional distribution of precipitation in a mountain range like the European Alps is a good indicator for continental-scale atmospheric circulation patterns. This is particularly true when precipitation is primarily caused by the advection of air masses to the Alps from the North Atlantic or the Mediterranean Sea, as is the case under cold conditions. Alpine precipitation patterns during the Lateglacial period can hence be interpreted in terms of past atmospheric circulation patterns in continental Europe. In this paper, glacier-climate models are used for the reconstruction of Younger Dryas precipitation patterns based on changes in equilibrium line altitudes of Alpine glaciers. This type of research provides important information concerning the range of past precipitation variability against which present climatic changes in the Alps can be assessed. Also, unravelling the spatial patterns of Alpine precipitation allows us to gain a better understanding of forcing mechanisms behind precipitation changes.


Alps Glaciers Glacier-climate models Precipitation Younger Dryas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlmann, H.W:son (1924). Le niveau de glaciation comme fonction de l’accumulation d’humidité sous forme solide. Geografiska Annaler 6, 221–272.Google Scholar
  2. Björck, S., Walker, M. C., Cwynar, L. C., Johnsen, S., Knudsen, K.-L., Lowe, J. J., Wohlfahrt, B., and INTIMATE members (1998). An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: A proposal by the INTIMATE group. Journal of Quaternary Science 13, 283–292.CrossRefGoogle Scholar
  3. Bortenschlager, S. (1984). Beiträge zur Vegetationsgeschichte Tirols I. Inneres Ötztal und unteres Inntal. Berichte des Naturwissenschaftlich-Medizinischen Vereins in Innsbruck 71, 19–56.Google Scholar
  4. Burga, C., and Perret, R. (1998). “Vegetation und Klima der Schweiz seit dem jüngeren Eiszeitalter.” Ott, Thun.Google Scholar
  5. Dahl, S. O., and Nesje, A. (1996). A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: A case study from Hardangerjøkulen, central southern Norway. The Holocene 6, 381–398.CrossRefGoogle Scholar
  6. Frei, Ch., and Schär, Ch. (1998). A precipitation climatology of the Alps from high-resolution rain-gauge observations. Internationaljournal of Climatology 18, 873–900.CrossRefGoogle Scholar
  7. Gross, G., Kerschner, H., and Patzelt, G. (1977). Methodische Untersuchungen über die Schneegrenze in alpinen Gletschergebieten. Zeitschrift für Gletscherkunde und Glazialgeologie 12, 223–251.Google Scholar
  8. Isarin, R. F. B., and Bohncke, S. J. P. (1998). Mean July temperatures during the Younger Dryas in northwestern and central Europe inferred from climate indicator plant species. Quaternary Research 51, 158–173.CrossRefGoogle Scholar
  9. Ivy-Ochs, S., Schlüchter, Ch., Kubik, P., Synal, H.-A., Beer, J., and Kerschner, H. (1996). The exposure age of an Egesen moraine at Julier Pass, Switzerland, measured with the cosmogenic radionuclides 10Be, 26A1 and 36C1. Eclogae Geologicae Helvetiae 89, 1049–1063.Google Scholar
  10. Kaser, G., and Osmaston, H. (2002). “Tropical Glaciers.” Cambridge University Press, Cambridge.Google Scholar
  11. Kerschner, H., Ivy-Ochs, S., and Schlüchter, Ch. (1999). Paleoclimatic interpretation of the early late-glacial glacier in the Gschnitz valley, Central Alps, Austria. Annals of Glaciology 28, 135–140.CrossRefGoogle Scholar
  12. Kerschner, H., Kaser, G., and Sailer, R. (2000). Alpine Younger Dryas glaciers as paleo-precipitation gauges. Annals of Glaciology 31, 80–84.CrossRefGoogle Scholar
  13. Khodakov, V. G. (1975). Glaciers as water resource indicators of the glacial areas of the USSR. International Association of Hydrological Sciences Publication 104, 22–29.Google Scholar
  14. Krenke, A. N. (1975). Climatic conditions of present-day glaciation in Soviet Central Asia. International Association of Hydrological Sciences Publication 104, 30–41.Google Scholar
  15. Kuhn, M. (1981). Climate and glaciers. International Association of Hydrological Sciences Publication 131, 3–20.Google Scholar
  16. Kuhn, M. (1989). The response of the equilibrium line altitude to climatic fluctuations: Theory and observations. In “Glacier fluctuations and climatic change,” (J. Oerlemans, Ed.), pp. 407–417. Kluwer, Dordrecht.CrossRefGoogle Scholar
  17. Kull, C., and Grosjean, M. (2000). Late Pleistocene climate conditions in the north Chilean Andes drawn from a climate-glacier model. Journal of Glaciology 46, 622–632.CrossRefGoogle Scholar
  18. Lotter, A. F., Birks, H. J. B., Eicher, U., Hofmann, W., Schwander, J., and Wick, L. (2000). Younger Dryas and Alleröd summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 159, 349–361.CrossRefGoogle Scholar
  19. Maisch, M. (1982). Zur Gletscher- und Klimageschichte des alpinen Spätglazials. Geographica Helvetica 37, 93–104.CrossRefGoogle Scholar
  20. Maisch, M., and Haeberli, W. (1982). Interpretation geometrischer Parameter von Spätglazialgletschern im Gebiet Mittelbünden, Schweizer Alpen. In „Beiträge zur Quartärforschung in der Schweiz,“ (Physische Geographie 1, M. Gamper, Ed.), pp. 111–126. Geographisches Institut der Universität, Zürich.Google Scholar
  21. Ohmura, A. (2001). Physical basis for the temperature-based melt-index method. Journal of Applied Meteorology 40, 753–761.CrossRefGoogle Scholar
  22. Ohmura, A., Kasser, P., and Funk, M. (1992). Climate at the equilibrium line of glaciers. Journal of Glaciology 38, 397–411.Google Scholar
  23. Renssen, H., and Isarin, R. F. B. (1998). Surface temperature in NW Europe during the Younger Dryas: AGCM simulation compared with temperature reconstructions. Climate Dynamics 14, 33–44.CrossRefGoogle Scholar
  24. Renssen, H., Isarin, R. F. B., Jacob, D., Podzun, R., and Vandenberghe, J. (2001). Simulation of the Younger Dryas climate in Europe using a regional climate model nested in an AGCM: Preliminary results. Global and Planetary Change 30, 41–57.Google Scholar
  25. Sailer, R., and Kerschner, H. (2000). Equilibrium line altitudes and rock glaciers in the Ferwall-Group (Western Tyrol, Austria) during the Younger Dryas cooling event. Annals of Glaciology 28, 141–145.CrossRefGoogle Scholar
  26. Schwalb, A., Lister, G. S., and Kelts, K. (1994). Ostracode carbonate d18O- and d13C-signatures of hydrological and climatic changes affecting Lake Neuchâtel, Switzerland, since the late Pleistocene. Journal of Paleolimnology 11, 3–17.CrossRefGoogle Scholar
  27. Shi, Y, Zheng, B., and Li, S. (1992). Last glaciation and maximum glaciation in the Qinghai-Xizang (Tibet) Plateau: A controversy to M. Kuhle’s ice sheet hypothesis. Zeitschrift für Geomorphologie N.F., Supplementband 84, 19–35.Google Scholar
  28. Tobolski, K., and Ammann, B. (2000). Macrofossils as records of plant responses to rapid Late Glacial climatic changes at three sites in the Swiss Alps. Palaeogeography, Palaeoclimatology, Palaeoecology 159, 251–259.CrossRefGoogle Scholar
  29. Wick, L. 2000. Vegetational response to climatic changes recorded in Swiss Late Glacial lake sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 159, 231–250.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Hanns Kerschner
    • 1
  1. 1.Institut für GeographieUniversität InnsbruckInnsbruckAustria

Personalised recommendations