Glacier and Climate Variability in the Mountains of the Former Soviet Union during the last 1000 Years

  • Olga N. Solomina
Part of the Advances in Global Change Research book series (AGLO, volume 23)


Pollen analysis, 14C and lichenometric dating of moraines, former elevations of the upper tree limit, and dendroclimatological and limnological data are some of the most relevant proxies for the reconstruction of climate variability and glacier behavior during the last millennium. A considerable number of paleoclimate reconstructions exist for the mountains of the Former Soviet Union. In this paper, we provide a regional overview of these datasets. Only regions with chronologically controlled and, preferably, high-resolution reconstructions will be considered here, namely, the Khibiny, the Urals, the Cherskogo Range, the Putorana Plateau, the Birranga Mountains, the Suntar-Khayata, the Kamchatka, the Caucasus, the Pamir-Alay, the Tien Shan, and the Altay Mountains (Fig. 1). This paper is a brief summary of the glacier and climate history of the last millennium and identifies achievements as well as gaps in our knowledge of paleoclimate in these regions. Ultimately, the identification of regional patterns of past climate changes will allow us to gain a better understanding of the causes behind climate variability on inter-annual to centennial timescales.


Climate Change Former Soviet Union Glacier variations Lichcnometry Little Ice Age Tree-rings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramova, T. A. (1994). Environmental changes of some arid regions of Eurasia during the last two millennia (Izmeneniya prirodnoi sredi nekotorikh aridnikh raionov Evrazii za dva poslednikh tisiachdetiya). Vestnik MGU, Series 5. Geography 5, 59–66 (in Russian).Google Scholar
  2. Butvilovsky, V. V. (1993). “Paleogeography of the last glaciation and Holocene in the Altay” (Paleogeografiya poslednego oledeneniya i Golotsena na Altaye). Tomsk State University Press, Tomsk (in Russian).Google Scholar
  3. Briffa, K. R., Jones, P. D., Schweingruber, F. H., Shiyatov, S. G., and Cook, E. R. (1995). Unusual twentieth-century summer warmth in a 1000-year temperature record from Siberia. Nature 376, 156–158.CrossRefGoogle Scholar
  4. Earle, C. J., Brubaker, L. B., Lozhkin, A. V., and Anderson, P. M. (1994). Summer temperature since 1600 for the Upper Kolyma Region, Northeastern Russia, reconstructed from tree rings. Arctic and Alpine Research 26, 60–65.CrossRefGoogle Scholar
  5. Esper, J., Schweingruber, F. H., and Winiger, M. (2002). 1300 years of climatic history for Western Central Asia. The Holocene 12, 267–277.CrossRefGoogle Scholar
  6. Grippa, S. P. (1999). “Dendro-indication of natural and anthropogenic environmental changes in Fennoscandia” (Dendroindikatsiya prirodnikh i antropogennikh izmenenii prirodnikh uslovii Fennoskandii). Unpublished PhD thesis, Russian State Pedagogic University, Sankt-Petersbourg (in Russian).Google Scholar
  7. Grove, J. M. (1988). “The Little Ice Age.” Methuen, London.CrossRefGoogle Scholar
  8. Hiller, A., Boettger, T., and Kremenetski, C. (2001). Medieval climatic warming recorded by radiocarbon dated alpine tree-line shift on the Kola Peninsula, Russia. The Holocene 11, 491–497.CrossRefGoogle Scholar
  9. Ivanovsky, L. N., Panichev, V. A., and Orlova, L. A. (1982). The age of the moraine stages ‘Aktru’ and ‘Historical’ in the Altay Mts. (Vozrast konechnikh moren stadii ‘Aktru’ i ‘Historicheskoy’ na Altaye. In “Late Pleistocene and Holocene of the South of East Siberia” (Pozdnii Pleistotcen i Golotsen yuga Vostochoi Sibiri). pp. 57–64. Nauka, Novosibirsk (in Russian).Google Scholar
  10. Klimanov, V. A. (1989). Cyclicity and quasi-periodicity of climatic fluctuations in the Holocene. (Tsiklichnost’ i kvaziperiodichnost’ klimaticheskikh kolebanii v golotsene). In “Paleoclimates of the Late Pleistocene and Holocene” (Paleoklimati pozdnelednikov’ia i golotsena). (N. A. Khotinsky, Ed.), 29–33. Nauka, Moscow.Google Scholar
  11. Mikhailov, N. N. (1987). Dynamics of the Belukha glaciers (Altay) in historical time (Dinamika lednikov Belukhi (Altay) v istoricheskoye vremia). Vestnik LGU. Geology and Geography 3, 100–103 (in Russian).Google Scholar
  12. Mukhamedshin, K. D. (1977). “Juniper forests of the Tien Shan and their economic significance” (“Archevniki Tian’-Shania i ikh lesokhoziaistvennoye znacheniye”). Frunze, Ilim (in Russian).Google Scholar
  13. Narozhniy, Yu. K. (1986). Mass balance reconstruction and ice formation conditions of Malii Aktru glacier during the last 150 years (Rekonstruktsiya balansa massi i uslovii l’doobrazovaniya lednika Malii Aktru za 150 let). Glaciology of Siberia (Gliatsiologiya Sibiry) 3, 85–104.Google Scholar
  14. Naurzbaev, M. M., Vaganov, E. A., Sidorova, O. V., and Schweinguber, F. H. (2002). Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series. The Holocene 12, 727–736.CrossRefGoogle Scholar
  15. Nekrasov, I. A., Maksimov, E. V., and Klimovsky, I. V. (1973). “Last glaciation and cryolithic zone of the southern Verkhoyaniye” (Poslednee oledeneniye i kriolitozona yuzhnogo Verkhoyania). Yakutsk Yakutskoye Knizhnoye Izdatel’stvo (in Russian).Google Scholar
  16. Okishev, P. A. (1982). “Dynamics of glaciers in the Altay mountains in the Late Pleistocene and Holocene” (Dinamika oledeneniya Altaya v pozdnem pleistotcene i golotsene). Tomsk State University Press, Tomsk (in Russian).Google Scholar
  17. Ovchinnikov, D. B. (2002). “Reconstruction of the climate variations in the Altay Mountains by dendrochronologicalmethods”(RekonstruktsiyaizmeneniiklimatagorAltayadendrokhronologicheskimi metodami). Unpublished PhD thesis, Institute of Geography, Siberian Branch of Russian Academy of Sciences, Irkutsk (in Russian).Google Scholar
  18. Panov, V. D. (1993). “Evolution of the modern glaciation in the Caucasus” (“Evolutsiya sovremennogo oledeneniya na Kavkaze”). Gidrometeoizdat, Sankt-Petersburg (in Russian).Google Scholar
  19. Serebryanny, L. R., Golodkovskaya, N. A., Orlov, E. V., and Maliasova, E. S. (1984). “Glacier variations and moraine accumulation processes in the Central Caucasus” (Kolebaniya lednikov I protsessi morenonakopleniya na Kavkaze). Nauka, Moscow (in Russian).Google Scholar
  20. Shiraiwa, T., Nishio, F, Kameda, T., Takahashi, A., Toyama, Y., Muraviev, Y., and Ovsyannikov, A. (1999). Ice core drilling at Ushkovsky ice cap, Kamchatka, Russia. Seppyo 61, 25–40.Google Scholar
  21. Shiyatov, S. G. (2003). Rates of change in the upper treeline ecotone in the Polar Ural Mountains. PAGES News 11, 8–10.Google Scholar
  22. Solomina, O. N. (1999). “Mountain glaciation of Northern Eurasia in the Holocene” (Gornoye oledeneniye Severnoy Evrazii v Golotsene). Moscow, Nauchniy Mir (in Russian).Google Scholar
  23. Troitsky, L. S., Khodakov, L. S., and Mikhalev, V. I. (1966). “Urals Glaciation” (Oledeneneye Urala). AN SSSR Press. Moscow (in Russian).Google Scholar
  24. Turmanina, V. I. (1971). Prospects of the use of phytoindication in glaciology (Perspektivy primeneniya fitoindikatsionnikh metodov v gliatsiologii). In “Methods of phytoindication in glaciology” (Fitoindikatsionniye metody v gliatsiologii). (G. K. Tushinsky, Ed.), pp. 5–19. Moscow State University Press, Moscow (in Russian).Google Scholar
  25. Vaschalova, T. (1987). “Paleogeographical approach to reconstruct avalanche activity for long-term forecasting (Khibiny example)”. (Paleogeograficheskiy podkhod k rekonstruktsii lavinnoy aktivnosti v tseliakh dolgosrochnogo prognoza (na primere Khibiny). Unpublished PhD thesis, Moscow State University, Moscow (in Russian).Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Olga N. Solomina
    • 1
  1. 1.Institute of GeographyRussian Academy of SciencesMoscowRussia

Personalised recommendations