Advertisement

Holocene Glacier Fluctuations and Winter Precipitation Variations in Southern Norway

  • Atle Nesje
  • Svein Olaf Dahl
  • Øyvind Lie
  • Jostein Bakke
Part of the Advances in Global Change Research book series (AGLO, volume 23)

Abstract

Glacier fluctuations provide important information on climate variations as a result of changes in the mass and energy balance at the Earth’s surface. Variations in glacier mass balance (e.g. Paterson 1994) are the direct reaction of a glacier to climatic variations. Fluctuations in the length of valley and cirque glaciers, on the other hand, are the indirect, filtered, and commonly enhanced response. Available mass balance records are, however, relatively short compared to the longer records of glacier length variations.

Keywords

Glaciers Holocene Southern Norway Winter precipitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., Taylor, K. C., and Clark, P. U. (1997). Holocene climate instability: A prominent, widespread event 8200 yr ago. Geology 25, 483–486.CrossRefGoogle Scholar
  2. Ballantyne, C. K. (1989). The Loch Lomond readvance on the Island of Skye, Scotland: Glacier reconstruction and palaeoclimatic implications. Journal of Quaternary Science 4, 95–108.CrossRefGoogle Scholar
  3. Barber, D. C., Dyke, A., Hillaire-Marcel, C., Jennings, A. E., Andrews, J. T., Kerwin, M. W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M. D., and Gagnon, J.-M. (1999). Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344–348.CrossRefGoogle Scholar
  4. Bond, G., Showers, W., Chesby, M, Lotti, R., Almasi, R., deMenocal, R., Priore, R., Cullen, H., Hajadas, I., and Bonani, G. (1997). A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 1257–1266.CrossRefGoogle Scholar
  5. Dahl, S. O., and Nesje, A. (1992). Paleoclimatic implications based on equilibrium-line altitude depressions of reconstructed Younger Dryas and Holocene cirque glaciers in inner Nordfjord, western Norway. Palaeogeography, Palaeoclimatology, Palaeoecology 94, 87–97.CrossRefGoogle Scholar
  6. Dahl, S. O., and Nesje, A. (1994). Holocene glacier fluctuations at Hardangerjøkulen, central-southern Norway: A high resolution composite chronology from lacustrine and terrestrial deposits. The Holocene 4, 269–277.CrossRefGoogle Scholar
  7. Dahl, S. O., and Nesje, A. (1996). A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: A case study from Hardangerjøkulen, central southern Norway. The Holocene 6, 381–398.CrossRefGoogle Scholar
  8. Dahl, S. O., Nesje, A., Lie, Ø., Fjordheim, K., and Matthews, J. A. (2002). Timing, equilibrium-line altitudes and climatic implications of two early-Holocene glacier readvances during the Erdalen Event at Jostedalsbreen, western Norway. The Holocene 12, 17–25.CrossRefGoogle Scholar
  9. Dahl, S. O., Nesje, A., and Øvstedal, J. (1997). Cirque glaciers as morphological evidence for a thin Younger Dryas ice sheet in east-central southern Norway. Boreas 26, 161–180.CrossRefGoogle Scholar
  10. Grafenstein, U. von, Erlenkeuser, H., Müller, J., Jouzel, J., and Johnsen, S. (1998). The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Climate Dynamics 14, 73–81.CrossRefGoogle Scholar
  11. Haakensen, N. (1989). Akkumulasjon pâ breene i Sør-Norge vinteren 1988–89. Vœret 13, 91–94.Google Scholar
  12. Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 269, 676–679.CrossRefGoogle Scholar
  13. Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M. (2003). An overview of the North Atlantic Oscillation. In “The North Atlantic Oscillation: Climatic significance and environmental impact.” (J. W. Hurrell, Y Kushnir, G. Ottersen, and M. Visbeck, Eds.), Geophysical Monograph 134, 1–35.CrossRefGoogle Scholar
  14. Karlén, W. (1976). Lacustrine sediments and tree-limit variations as indicators of Holocene climatic fluctuations in Lapland: Northern Sweden. Geografiska Annaler 58A, 1–34.CrossRefGoogle Scholar
  15. Karlén, W. (1988). Scandinavian glacier and climatic fluctuations during the Holocene. Quaternary Science Reviews 7, 199–209.CrossRefGoogle Scholar
  16. Karlén, W., Bodin, A., Kuylenstierna, J., and Näslund, J.-O. (1995). Climate of northern Sweden during the Holocene. Holocene Cycles: Climate, Sea Levels, and Sedimentation. Journal of Coastal Research Special Issue 17, 49–54.Google Scholar
  17. Klitgaard-Kristensen, D., Sejrup, H.-P., Haflidason, H., Johnsen, S., and Spurk, M. (1998). A regional 8200 cal. yr BP cooling event in northwest Europe, induced by final stages of the Laurentide ice-sheet deglaciation? Journal of Quaternary Science 13, 165–169.CrossRefGoogle Scholar
  18. Laumann, T., and Reeh, N. (1993). Sensitivity to climate change of the mass balance of glaciers in southern Norway. Journal of Glaciology 39, 656–665.Google Scholar
  19. Lie, Ø., Dahl, S. O., and Nesje, A. (2003a). A theoretical approach to glacier equilibrium-line altitudes sing meteorological data and glacier mass-balance records from southern Norway. The Holocene 13, 365–372.CrossRefGoogle Scholar
  20. Lie, Ø., Dahl, S. O., and Nesje, A. (2003b). Theoretical equilibrium-line altitudes and glacier buildup sensitivity in southern Norway based on meteorological data in a geographical information system. The Holocene 13, 373–380.CrossRefGoogle Scholar
  21. Matthews, J. A., Dahl, S. O., Nesje, A., Berrisford, M., and Andersson, C. (2000). Holocene glacier variations in central Jotunheimen, southern Norway based on distal glaciolacustrine sediment cores. Quaternary Science Reviews 19, 1625–1647.CrossRefGoogle Scholar
  22. Nesje, A., and Dahl, S. O. (2000). “Glaciers and environmental change”. Arnold, London.Google Scholar
  23. Nesje, A., and Dahl, S. O. (2001). The Greenland 8200 cal. yr BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences. Journal of Quaternary Science 16, 155–166.CrossRefGoogle Scholar
  24. Nesje, A., Johannessen, T., and Birks, H. J. B. (1995). Briksdalsbreen, western Norway: Climatic effects on the terminal response of a temperate glacier between AD 1901 and 1994. The Holocene 5, 343–347.CrossRefGoogle Scholar
  25. Nesje, A., Kvamme, M, Rye, N., and Løvlie, R. (1991). Holocene glacial and climate history of the Jostedalsbreen region, western Norway; evidence from lake sediments and terrestrial deposits. Quaternary Science Reviews 10, 87–114.CrossRefGoogle Scholar
  26. Nesje, A., Dahl, S. O., Andersson, C., and Matthews, J. A. (2000a). The lacustrine sedimentary sequence in Sygneskardvatnet, western Norway: A continuous, high-resolution record of the Jostedalsbreen ice cap during the Holocene. Quaternary Science Rewiews 19, 1047–1065.CrossRefGoogle Scholar
  27. Nesje, A., Lie, Ø., and Dahl, S. O. (2000b). Is the North Atlantic Oscillation reflected in Scandinavian glacier mass balance records? Journal of Quaternary Science 15, 587–601.CrossRefGoogle Scholar
  28. Nesje, A., Matthews, J. A., Dahl, S. O., Berrisford, M. S., and Andersson, C. (2001). Holocene glacier fluctuations of Flatebreen and winter precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine records. The Holocene 11, 267–280.CrossRefGoogle Scholar
  29. Paterson, W. S. B. (1994). “The physics of glaciers.” Elsevier Science, London.Google Scholar
  30. Reichert, B. K., Bengtsson, L., and Oerlemans, J. (2001). Mid latitude forcing mechanisms for glacier mass balance investigated using general circulation models. Journal of Climate 14, 3767–3784.CrossRefGoogle Scholar
  31. Sissons, J. B. (1979). Palaeoclimatic inferences from former glaciers in Scotland and the Lake District. Nature 278, 518–521.CrossRefGoogle Scholar
  32. Six, D., Reynaud, L., and Letréguilly, A. (2001). Bilans de masse des glaciers alpins et Scandinaves, leurs relations avec l’oscillation du climat de l’Atlantique nord. Earth and Planetary Sciences 333, 693–698.Google Scholar
  33. Snowball, I., Sandgren, P., and Petterson, G. (1999). The mineral magnetic properties of an annually laminated Holocene lake sediment sequence in northern Sweden. The Holocene 9, 353–362.CrossRefGoogle Scholar
  34. Sutherland, D. G. (1984). Modern glacier characteristics as a basis for inferring former climates with particular reference to the Loch Lomond Stadial. Quaternary Science Reviews 3, 291–309.CrossRefGoogle Scholar
  35. Velle, G. (1998). “A palaeoecological study of chironomids (Insecta: Diptera) with special reference to climate.” Unpublishd thesis, Museum of Zoology, University of Bergen.Google Scholar
  36. Willemse, N. W., and Törnquist, T. E. (1999). Holocene century-scale temperature variability from West Greenland lake records. Geology 27, 580–584.CrossRefGoogle Scholar
  37. Winkler, S., Matthews, J. A., Shakesby, R. A., and Dresser, P. Q. (2003). Glacier variations in Breheimen, southern Norway: Dating Little Ice Age moraine sequences at seven low-altitude glaciers. Journal of Quaternary Science (in press).Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Atle Nesje
    • 1
    • 3
  • Svein Olaf Dahl
    • 2
    • 3
  • Øyvind Lie
    • 3
  • Jostein Bakke
    • 2
    • 3
  1. 1.Department of Earth ScienceUniversity of BergenBergenNorway
  2. 2.Department of GeographyUniversity of BergenBergenNorway
  3. 3.Bjerknes Centre for Climate ResearchBergenNorway

Personalised recommendations