Advertisement

The Contribution of Cosmogenic Nuclides to Unraveling Alpine Paleoclimate Histories

  • John C. Gosse
Part of the Advances in Global Change Research book series (AGLO, volume 23)

Abstract

Moraines are non-continuous short-term records of ice marginal positions. Moraines help provide important paleo-glaciological mass balance information (e.g. glacier surface area, ice volume, terminus elevation, snowline altitudes, longitudinal ice surface gradient below the paleo-snowline) which in part controls the geometry of the glacier and the rate of advance and retreat of an ice margin. Therefore, chronologies on these ancient glacial landforms can be directly tied to local paleo-temperature and paleo-precipitation estimates for specific times during and after a glaciation. In the past two decades, the terrestrial cosmogenic nuclide (TCN) exposure dating method has made a revolutionary contribution to the study of alpine paleo-glacial histories and paleoclimatology. (i) Exposure dating of boulders on moraines provides the time since a boulder was deposited from an ice margin. It directly determines when the glacier reached a measurable mass-balance condition, whereas other chronometers, such as radiocarbon, U-series, and luminescence dating, typically provide only minimum or maximum limiting ages on ice margin positions, (ii) The method can provide a precise estimate of the timing of initial ice retreat. Timing of when an alpine glacier reaches its maximum position is not only a function of local climate but also of numerous glaciological and hydrological conditions. Initial retreat is the most discrete short-lived climate-response event in a moraine record. Unlike the timing of initial retreat, initial advance is not recorded in moraine records because glaciers override their moraines during advance (Gibbons et al. 1984).

Keywords

10Be Exposure dating Glaciers Moraine Paleoclimate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrows, T. T., Stone, J. O., Fifield, L. K., and Cresswell, R. G. (2002). The timing of the last glacial maxima in Australia. Quaternary Science Reviews 21, 159–173.CrossRefGoogle Scholar
  2. Benson, L. V., Burdett, J. W., Kashgarian, M, Lund, S. P., Phillips, F. M., and Rye, R. O. (1996). High-resolution records of climatic and hydrologic change in the Owens Lake Basin and adjacent Sierra Nevada. Science 274, 746–748.CrossRefGoogle Scholar
  3. Clark, P. U., and Bartlein, P. J. (1995). Correlation of late Pleistocene glaciation in the western U.S. with North Atlantic Heinrich events. Geology 23, 483–486.CrossRefGoogle Scholar
  4. Easterbrook, D. J., Pierce, K., Gosse, J. C., Gillespie, A., Evenson, E. B., and Hamblin, K. (2003). Quaternary geology of the western United States. In “Quaternary Geology of the United States.” (D. J. Easterbrook, Ed.), pp. 19–80. Denver, Geological Society of America.Google Scholar
  5. Gibbons, A. B., Megeath, J. D., and Pierce, K. L. (1984). Probability of moraine survival in a succession of glacial advances. Geology 12, 327–330.CrossRefGoogle Scholar
  6. Gillespie, A., and Molnar, P. (1995). Asynchronous maximum advances of mountain and continental glaciers. Reviews of Geophysics 33, 311–364.CrossRefGoogle Scholar
  7. Gosse, J. C., Evenson, E. B., Klein, J., Lawn, B., and Middleton, R. (1995a). Precise cosmogenic 10Be measurements in western North America: Support for a global Younger Dryas cooling event. Geology 23, 877–880.CrossRefGoogle Scholar
  8. Gosse, J. C., Klein, J., Evenson, E. B., Lawn, B., and Middleton, R. (1995b). Beryllium-10 dating of the duration and retreat of the last Pinedale glacial sequence. Science 268, 1329–1333.CrossRefGoogle Scholar
  9. Gosse, J. C., Klein, J., Davis, P. T., Evenson, E. B., Jull, A. J. T., and Burr, G. (2004). Cosmogenic 10Be and 26A1 production rates at mid-latitude high altitude sites for exposures of 10 to 15 kyr. Earth and Planetary Science Letters (submitted).Google Scholar
  10. Gosse, J. C., and Phillips, F. M. (2001). Terrestrial in situ cosmogenic nuclides: Theory and applications. Quaternary Science Reviews 20, 1475–1560.CrossRefGoogle Scholar
  11. Hallet, B., and Putkonen, J. (1994). Surface dating of dynamic landforms: Young boulders on aging moraines. Science 265, 937–940.CrossRefGoogle Scholar
  12. Ivy-Ochs, S., Schlüchter, C., Kubik, P., Synal, H.-A., Beer, J., and Kerschner, H. (1996). The exposure age of an Egesen moraine at Julier Pass, Switzerland, measured with the cosmogenic radionuclides 10Be, 26A1 and 36C1. Eclogae Geologicae Helvetiae 89, 1049–1063.Google Scholar
  13. Jackofsky, D. S. (2001). “Quaternary glacial chronology and climate dynamics in Tierra del Fuego, Chile and at Lago Nahuel Huapi, Argentina.” Masters thesis, University of Kansas, Lawrence.Google Scholar
  14. Licciardi, J. M., Clark, P. U., Brook, E. J., Pierce, K. L., Kurz, M. D., Elmore, D., and Sharma, P. (2001). Cosmogenic 3He and l0Be chronologies of the late Pinedale northern Yellowstone ice cap, Montana, USA. Geology 29, 1095–1098.CrossRefGoogle Scholar
  15. MacDonald, F. (2003). “Glacial geology and geochronology of the Peggy’s Cove region.” Honours Thesis, Dalhousie University, Halifax, CA.Google Scholar
  16. Madole, R. F. (1986). Lake Devlin and Pinedale glacial history. Front Range, Colorado. Quaternary Research 25, 43–54.CrossRefGoogle Scholar
  17. Marquette, G. C., Gray, J. T., Gosse, J. C., Courchesne, F., Stockli, L., Macpherson, G., and Finkel, R. (in press). Felsenmeer persistence through glacial periods in the Torngat and Kaumajet Mountains, Quebec-Labrador, as determined by soil weathering and cosmogenic nuclide exposure dating. Canadian Journal of Earth Sciences.Google Scholar
  18. Marsella, K. A., Bierman, P. R., Davis, P. T., and Caffee, M. W. (2000). Cosmogenic l0Be and 26A1 ages for the last glacial maximum, eastern Baffin Island, Arctic Canada. Geological Society of America Bulletin 112, 1296–1312.CrossRefGoogle Scholar
  19. Masarik, J. and Wieler, R. (2003). Production rates of cosmogenic nuclides in boulders. Earth and Planetary Science Letters 216, 201–208.CrossRefGoogle Scholar
  20. Nishiizumi, K., Kohl, C. P., Arnold, J. R., Klein, J., Fink, D., and Middleton, R. (1991). Cosmic ray produced 10Be and 26A1 in Antarctic rocks: Exposure and erosion history. Earth and Planetary Science Letters 104, 440–454.CrossRefGoogle Scholar
  21. Oerlemans, J. (1994). Quantifying global warming from the retreat of glaciers. Science 264, 243–245.CrossRefGoogle Scholar
  22. Oerlemans, J., and Fortuin, J. P. F. (1992). Sensitivity of glaciers and small ice caps to greenhouse warming. Science 258, 115–117.CrossRefGoogle Scholar
  23. Owen, L. A., Spencer, J. Q., Haizhou, M., Barnard, P. L., Derbyshire, E., Finkel, R. C., Caffee, M. W., and Zeng Yong, N. (2002). Timing of late Quaternary glaciation along the southwestern slopes of the Qilian Shan, Tibet. Boreas 32, 281–291.CrossRefGoogle Scholar
  24. Phillips, F. M., Leavy, B. D., Jannik, N. O., Elmore, D., and Kubik, P. W. (1986). The accumulation of cosmogenic Chlorine-36 in rocks: A method for surface exposure dating. Science 231, 41–43.CrossRefGoogle Scholar
  25. Phillips, F. M., Zreda, M. G., Benson, L. V., Plummer, M. A., Elmore, D., and Sharma, P. (1996). Chronology for fluctuations in Late Pleistocene Sierra Nevada glaciers and lakes. Science 274, 749–751.CrossRefGoogle Scholar
  26. Phillips, F. M., Zreda, M. G., Gosse, J. C., Klein, J., Evenson, E. B., Hall, R. D., Chadwick, O. A., and Sharma, P. (1997). Cosmogenic 36C1 and 10Be ages of Quaternary glacial and fluvial deposits of the Wind River Range, Wyoming. Geological Society of America Bulletin 109, 1453–1463.CrossRefGoogle Scholar
  27. Phillips, W. M., Sloan, V. F., Shroder, J. F., Jr., Sharma, P., Clarke, M. L., and Rendell, H. M. (2000). Asynchronous glaciation at Nanga Parbat, northwestern Himalaya Mountains, Pakistan. Geology 28, 431–434.CrossRefGoogle Scholar
  28. Reasoner, M. A., Osborn, G., and Rutter, N. W. (1994). Age of the Crowfoot advance in the Canadian Rocky Mountains: A glacial event coeval with the Younger Dryas oscillation. Geology 22, 439–442.CrossRefGoogle Scholar
  29. Schaefer, J. M., Tschudi, S., Zao, Z., Wu, X., Ivy-Ochs, S., Wieler, R., Baur, H., Kubik, P. W., and Schluechter, C. (2002). The limited influence of glaciations in Tibet on global climate over the past 170 000 yr. Earth and Planetary Science Letters 194, 287–297.CrossRefGoogle Scholar
  30. Sturchio, N. C., Pierce, K. L., Murrell, M. T., and Sorey, M. L. (1994). Uranium-series ages of travertines and timing of the last glaciation in the northern Yellowstone area, Wyoming-Montana, USA. Quaternary Research 41, 265–277.CrossRefGoogle Scholar
  31. Zimmerman, S. G., Evenson, E. B., Gosse, J. C., and Erskine, C. P. (1994). Extensive boulder erosion resulting from a range fire on the type-Pinedale moraines, Fremont Lake, Wyoming. Quaternary-Research 42, 255–265.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • John C. Gosse
    • 1
  1. 1.Department of Earth SciencesDalhousie UniversityHalifaxCanada

Personalised recommendations