Advertisement

The Role of Mid-latitude Mountains in the Carbon Cycle: Global Perspective and a Western US Case Study

  • David Schimel
  • B. H. Braswell
Part of the Advances in Global Change Research book series (AGLO, volume 23)

Abstract

The International Geosphere Biosphere Program report on mountain ecosystems stresses the potential role of mountainous regions in the Earth’s geophysical cycles (Becker and Bugmann 2001). However, mountain environments have rarely been addressed specifically in studies of terrestrial carbon dynamics. Although it was first suggested that the US carbon sink was localized in eastern US forests (Fan et al. 1998), more recent studies that partition the US sink into specific regions suggest that a significant fraction is located in the western US (Schimel et al. 2000; Pacala et al. 2001 ; Schimel et al. 2002). As increasing development puts pressure on arable lands in North America and Temperate Asia, forests and other high carbon storage ecosystems are increasingly relegated to mountain landscapes. Inspection of recent land cover databases (e.g. IGBP or DeFries et al. 2000) shows clearly that in Temperate North America, Europe and China, a large fraction of forested landscapes is found in major and minor mountain ranges. Figure 1 shows an index of carbon uptake in forests based on forest cover from satellite observations (Defries et al. 2000) and growing season length (with longer growing seasons indicating a higher carbon uptake potential). Growing season lengths are scaled to eddy covariance estimates of carbon uptake per growing season day (Falge et al. 2002). Since the majority of current terrestrial sinks are found in the Northern Hemisphere mid-latitudes, montane forests have the potential to contribute significantly to current carbon sinks.

Keywords

Carbon Ecosystem models Eddy covariance GPP Remote sensing Water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, A., and Bugmann, H., Eds. (2001). Global change and mountain regions: The Mountain Research Initiative. IGBP Report No. 49. Stockholm, Sweden.Google Scholar
  2. Belward, A. S., Estes, J. E., and Kline, K. D. (1999). The IGBP-DIS 1-km land-cover data set DISCover: A project overview. Photogrammetric Engineering and Remote Sensing 65, 1013–1020.Google Scholar
  3. Cernusca, A., Bahn, M., Chemini, C., Graber, W., Siegwolf, R., Tappeiner, U., and Tenhunen, J. (1998). ECOMONT: A combined approach of field measurements and process-based modelling for assessing effects of land-use changes in mountain landscapes. Ecological Modelling 113, 167–178.CrossRefGoogle Scholar
  4. DeFries, R. S, Hansen, M. C., Townshend, J. R. G., Janetos, A. C., and Loveland, T. R. (2000). A new global 1 -km dataset of percentage tree cover derived from remote sensing. Global Change Biology 6, 247–254.CrossRefGoogle Scholar
  5. Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P., Berbigier, P., Bernhofer, C., Burba, G., Clement, R., Davis, K. J., Elbers, J. A., Goldstein, A. H., Grelle, A., Granier, A., Guomundsson, J., Hollinger, D., Kowalski, A. S., Katul, G., Law, B. E., Malhi, Y., Meyers, T., Monson, R. K., Munger, J. W., Oechel, W., Paw, K. T., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Valentini, R., Wilson, K., and Wofsy, S. (2002). Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology 113, 53–74.CrossRefGoogle Scholar
  6. Fan, S., Gloor, M., Mahlman, J., Pacala, S., Sarmiento, J., Takahashi, T, and Tans, P. (1998). A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282, 442–446.CrossRefGoogle Scholar
  7. Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y. H., Ciais, P., Fan, S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B. C., Randerson, J., Sarmiento, J., Taguchi, S., Takahashi, T., and Yuen, C. W. (2002). Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626–630.CrossRefGoogle Scholar
  8. Jenkins, J. C., Birdsey, R. A., and Pan, Y (2001). Biomass and NPP estimation for the mid-Atlantic region (USA) using plot-level forest inventory data. Ecological Applications 11, 1174–1193.CrossRefGoogle Scholar
  9. Pacala, S. W., Hurtt, G. C., Baker, D., Peylin, P., Houghton, R. A., Birdsey, R. A., Heath, L., Sundquist, E. T., Stallard, R. F., Ciais, P., Moorcroft, P., Caspersen, J. R., Shevliakova, E., Moore, B., Kohlmaier, G., Holland, E., Gloor, M., Harmon, M. E., Fan, S. M., Sarmiento, J. L., Goodale, C. L., Schimel, D., and Field, C. B. (2001). Consistent land- and atmosphere-based US carbon sink estimates. Science 292, 2316–2320.CrossRefGoogle Scholar
  10. Pyne, S. (1982). “Fire in America: A cultural history of wildland and rural fire.” University of Washington Press, Washington.Google Scholar
  11. Schimel, D. S., Emanuel, W., Rizzo, B., Smith, T., Woodward, F. I., Fisher, H., Kittel, T. G. F., McKeown, R., Painter, T., Rosenbloom, N., Ojima, D. S., Parton, W. J., Kicklighter, D. W., McGuire, A. D., Melillo, J. M., Pan, Y., Haxeltine, A., Prentice, C., Sitch, S., Hibbard, K., Nemani, R., Pierce, L., Running, S., Borchers, J., Chaney, J., Neilson, R., and Braswell, B. H. (1997). Continental scale variability in ecosystem processes: Models, data, and the role of disturbance. Ecological Monographs 67, 251–271.CrossRefGoogle Scholar
  12. Schimel, D., Melillo, J., Tian, H. Q., McGuire, A. D., Kicklighter, D., Kittel, T., Rosenbloom, N., Running, S., Thornton, P., Ojima, D., Parton, W., Kelly, R., Sykes, M., Neilson, R., and Rizzo, B. (2000). Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287, 2004–2006.CrossRefGoogle Scholar
  13. Schimel, D. S., Kittel, T. G. F., Running, S., Monson, R., Turnipseed, A., and Anderson, D. (2002). Carbon sequestration studied in Western US mountains. EOS 83, 445–449.CrossRefGoogle Scholar
  14. Tilman, D., Reich, P., Phillips, H., Menton, M., Patel, A., Vos, E., Peterson, D., and Knops, J. (2000). Fire suppression and ecosystem carbon storage. Ecology 81, 2680–2685.CrossRefGoogle Scholar
  15. Turnipseed, A. A., Blanken, P. D., Anderson, D. E., and Monson, R. K. (2002). Energy budget above a high-elevation subalpine forest in complex topography. Agricultural and Forest Meteorology 110, 177–201.CrossRefGoogle Scholar
  16. Veblen, T. T., and Lorenz, D. C. (1991). “The Colorado Front Range: A century of ecological change.” University of Utah Press, Salt Lake City.Google Scholar
  17. Wofsy, S. C., and Harriss, R., Eds. (2002). “The North American Carbon Program.” UCAR, Boulder CO.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • David Schimel
    • 1
  • B. H. Braswell
    • 2
  1. 1.National Center for Atmospheric ResearchBoulderUSA
  2. 2.Morse HallUniversity of New HampshireDurhamUSA

Personalised recommendations