Advertisement

Mountain Lakes as Indicators of the Cumulative Impacts of Ultraviolet Radiation and other Environmental Stressors

  • Rolf D. Vinebrooke
  • Peter R. Leavitt
Part of the Advances in Global Change Research book series (AGLO, volume 23)

Abstract

High elevation lake ecosystems are regarded as potentially sensitive indicators of global change because of their cold and dilute abiotic environment, low biodiversity, poor functional redundancy, and relative lack of local human perturbations (Skjelkvâle and Wright 1998; Sommaruga 2001; Battarbee et al. 2002; Psenner et al. 2002). Mountain lakes located near treeline are expected to be the most responsive to long-term impacts of stratospheric ozone depletion and increased flux of solar ultraviolet-B radiation (UV-B; 290–320 nm), climatic warming, and other stressors because of sharp transitions in control processes (Fig. 1) associated with vegetation development and snowpack albedo (Vinebrooke and Leavitt 1998; 1999a; Fyke and Flato 1999). As detailed below, increased flux of solar UV-B and global warming may be already interacting to restructure food webs and biogeochemical cycles in many mountain lakes (Leavitt et al. 1997; Sommaruga-Wögrath et al. 1997).

Keywords

Climate change Dissolved organic matter Ecotonal sensitivity hypothesis Multiple stressors Paleoecology Treeline lakes Ultraviolet radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammann, B., Birks, H. J. B., Brooks, S. J., Eicher, U., von Grafenstein, U., Hofmann, W., Lemhadl, G., Schwander, J., Tobolski, K., and Wick, L. (2000). Quantification of biotic responses to rapid climate changes around the Younger Dryas: A synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 159, 313–347.CrossRefGoogle Scholar
  2. Battarbee, R. W., Thompson, R., Catalan, J., Grytnes, J.-A., and Birks, H. J. B. (2002). Climate variability and ecosytem dynamics of remote alpine and arctic lakes: The MOLAR project. Journal of Paleolimnology 28, 1–6.CrossRefGoogle Scholar
  3. Blumthaler, M., Ambach, W., and Rehwald, W. (1992). Solar UV-A and UV-B radiation flux at two alpine stations at different altitudes. Theoretical and Applied Climatology 46, 39–44.CrossRefGoogle Scholar
  4. Cabrera, S., Lopez, M., and Tartarotti, B. (1997). Phytoplankton and Zooplankton response to ultraviolet radiation in a high-altitude Andean lake: Short- versus long-term effects. Journal of Plankton Research 19, 1565–1582.CrossRefGoogle Scholar
  5. Donahue, W. F., Schindler, D. W., Page, S. J., and Stainton, M. P. (1998). Acid-induced changes in DOC quality in an experimental whole-lake manipulation. Environmental Science and Technology 32, 2954–2960.CrossRefGoogle Scholar
  6. Donald, D. B., Vinebrooke, R. D., Anderson, R. S., Syrgiannis, J., and Graham, M. D. (2001). Recovery of Zooplankton asssemblages in mountain lakes from the effects of introduced sport fish. Canadian Journal of Fisheries and Aquatic Sciences 58, 1822–1830.CrossRefGoogle Scholar
  7. Fyke, J. C., and Flato, G. M. (1999). Enhanced climate change and its detection over the Rocky Mountains. Journal of Climate 12, 230–243.CrossRefGoogle Scholar
  8. Halac, S., Felip, M., Camarero, L., Sommaruga-Wögarth, S., Psenner, R., Catalan, J., and Sommaruga, R. (1997). An in situ enclosure experiment to test the solar UV-B impact on microplankton in a highaltitude mountain lake. I. Lack of effect on phytoplankton species composition and growth. Journal of Plankton Research 19, 1671–1686.CrossRefGoogle Scholar
  9. Hansson, L.-A. (2000). Induced pigmentation in Zooplankton: A trade-off between threats from predation and ultraviolet radiation. Proceedings of the Royal Society of London B 267, 2327–2332.CrossRefGoogle Scholar
  10. Hessen, D. O. (1996). Competitive trade-off strategies in Arctic Daphnia linked to melanism and UV-B stress. Polar Biology 16, 573–579.CrossRefGoogle Scholar
  11. Karentz, D., Bothwell, M. L., Coffin, R. B., Hanson, A., Herndl, G. J., Kilham, S. S., Lesser, M. P., Lindell, M., Moeller, R. E., Morris, D. P., Neale, P. J., Sanders, R. W., Weiler, C. S., and Wetzel, R. G. (1994). Impact of UV-B radiation on pelagic freshwater ecosystems: Report of working group on bacteria and phytoplankton. Ergebnisse der Limnologie 43, 31–69.Google Scholar
  12. Laurion, I., Ventura, M., Catalan, J., Psenner, R., and Sommaruga, R. (2000). Attenuation of ultraviolet radiation in mountain lakes: Factors controlling the among- and within-lake variability. Limnology and Oceanography 45, 1274–1288.CrossRefGoogle Scholar
  13. Leavitt, P. R., Vinebrooke, R. D., Donald, D. B., Smol, J. P., and Schindler, D. W. (1997). Past ultraviolet radiation environments in lakes derived from fossil pigments. Nature 388, 457–459.CrossRefGoogle Scholar
  14. Leavitt, P. R., Hodgson, D. A., and Pienitz, R. (2002). Past UV environments and impacts on lakes. In “UV effects in aquatic organisms and ecosystems.” (E. W. Helbling, and H. Zagarese, Eds.). Vol 2 in Comprehensive Series in Photosciences, Royal Society of Chemistry (in press).Google Scholar
  15. Pienitz, R., and Vincent, W. F. (2000). Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes. Nature 404, 484–487.CrossRefGoogle Scholar
  16. Psenner, R., Rosseland, B. O., and Sommaruga, R. (2002). Preface. High mountain lakes and streams: Indicators of a changing world. Water, Air, and Soil Pollution: Focus 2, 1–4.CrossRefGoogle Scholar
  17. Schindler, D. W. (2001). The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences 49, 1431–1438.Google Scholar
  18. Schindler, D. W., and Parker, B. R. (2002). Biological pollutants: Alien fish in mountain lakes. Water, Air, and Soil Pollution: Focus 2, 379–397.CrossRefGoogle Scholar
  19. Skjelkvále, B. L., and Wright, R. F. (1998). Mountain lakes: Sensitivity to acid deposition and global climate change. Ambio 27, 280–286.Google Scholar
  20. Sommaruga, R. (2001). The role of solar UV radiation in the ecology of alpine lakes. Journal of Photochemistry and Photobiology B: Biology 62, 35–62.CrossRefGoogle Scholar
  21. Sommaruga, R., Psenner, R., Schafferer, E., Konig, K. A., and Sommaruga-Wögrath, S. (1999). Dissolved organic carbon concentration and phytoplankton biomass in high-mountain lakes of the Austrian Alps: Potential effect of climatic warming on UV underwater radiation. Arctic, Antarctic, and Alpine Research 31, 247–253.CrossRefGoogle Scholar
  22. Sommaruga-Wögrath, S., Koinig, K. A., Schmidt, R., Sommaruga, R., Tessadri, R., and Psenner, R. (1997). Temperature effects on the acidity of remote alpine lakes. Nature 387, 64–67.CrossRefGoogle Scholar
  23. Tartarotti, B., Laurion, I., and Sommaruga, R. (2001). Large variability in the concentration of mycosporinelike amino acids among Zooplankton from lakes located across an altitude gradient. Limnology and Oceanography 46, 1546–1552.CrossRefGoogle Scholar
  24. Villafane, V E., Andrade, M., Lairana, F., Zaratti, F., and Helbing, E. W. (1999). Inhibition of phytoplankton photosynthesis by solar ultraviolet radiation: Studies in Lake Titicaca, Bolivia. Freshwater Biology 42, 215–224.CrossRefGoogle Scholar
  25. Vinebrooke, R. D., and Leavitt, P. R. (1996). Effects of ultraviolet radiation on periphyton in an alpine lake. Limnology and Oceanography 41, 1035–1040.CrossRefGoogle Scholar
  26. Vinebrooke, R. D., and Leavitt, P. R. (1998). Direct and interactive effects of allochthonous dissolved organic matter, inorganic nutrients and ultraviolet radiation on an alpine littoral food web. Limnology and Oceangraphy 43, 1065–1081.CrossRefGoogle Scholar
  27. Vinebrooke, R. D., and Leavitt, P. R. (1999a). Differential responses of littoral communities to ultraviolet radiation in an alpine lake. Ecology 80, 223–237.CrossRefGoogle Scholar
  28. Vinebrooke, R. D., and Leavitt, P. R. (1999b). Phytobenthos and phytoplankton as potential indicators of climate change in mountain lakes and ponds: A HPLC-based pigment approach. Journal of the North American Benthological Society 18, 15–33.CrossRefGoogle Scholar
  29. Vinebrooke, R. D., Schindler, D. W., Turner, M. A., Findlay, D. L., Paterson, M., and Mills, K. H. (2003). Trophic dependence of ecosystem resistance and species compensation in experimentally acidified Lake 302S (Canada). Ecosystems 6 (in press).Google Scholar
  30. Watson, S. B., Satchwill, T., Dixon, E., and McCauley, E. (2001). Under-ice blooms and source-water odour in a nutrient-poor reservoir: Biological, ecological, and applied perspectives. Freshwater Biology 46, 1553–1567.CrossRefGoogle Scholar
  31. Williamson, C. E., Grad, G., De Lange, H. J., Gilroy, S., and Karapelou, D. M. (2002). Temperature-dependent ultraviolet radiation responses in Zooplankton: Implications for climate change. Limnology and Oceanography 47, 1844–1848.CrossRefGoogle Scholar
  32. Williamson, C. E., Hargreaves, B. R., Orr, P. S., and Lovera, P. A. (1999). Does UV play a role in predation and Zooplankton community structure in acidified lakes? Limnology and Oceanography 44, 774–783.CrossRefGoogle Scholar
  33. Xenopoulos, M. A., Prairie, Y. T., and Bird, D. F. (2000). Influence of ultraviolet-b radiation, stratospheric ozone variability, and thermal stratification on the phytoplankton biomass dynamics in a mesohumic lake. Canadian Journal of Fisheries and Aquatic Sciences 57, 600–609.CrossRefGoogle Scholar
  34. Xenopoulos, M. A., Frost, P. C., and Elser, J. J. (2002). Joint effects of UV radiation and phosphorus supply on algal growth rate and elemental composition. Ecology 83, 423–435.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Rolf D. Vinebrooke
    • 1
  • Peter R. Leavitt
    • 1
  1. 1.Department of BiologyUniversity of ReginaReginaCanada

Personalised recommendations