High Elevation Ecosystem Responses to Atmospheric Deposition of Nitrogen in the Colorado Rocky Mountains, USA

  • Jill S. Baron
  • Koren R. Nydick
  • Heather M. Rueth
  • Brenda Moraska Lafrançois
  • Alexander P. Wolfe
Part of the Advances in Global Change Research book series (AGLO, volume 23)


The rapid rise in human populations and technological advances since 1850 have caused changes in several global scale biogeochemical cycles, including the global nitrogen cycle. The Haber-Bosch process to convert atmospheric nitrogen gas (N2) to ammonia (NH3) is now almost universally used to fertilize food crops. The production of nitrogen oxides (NOx) from combustion for industrial purposes, energy production, and transportation is the other large source of reactive nitrogen to the atmosphere. Combined, these two human alterations have added approximately 140 Tg N yr1 to the global reactive N pool, a value that now exceeds natural source contributions of about 100 Tg N yr1 (Galloway and Cowling 2002).


Acidification Eutrophication Forests Lakes Nitrogen Rocky Mountains 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Bemtson, G., Kamakea M., McNulty, S., Currie, W., Rustad, L., and Fernandez, I. (1998). Nitrogen saturation in temperate forest ecosystems: Hypothesis revisited. BioScience 48, 921–934.CrossRefGoogle Scholar
  2. Anderson, N. J., Renberg, I., and Segerstrom, U. (1995). Diatom production responses to the development of early agriculture in a boreal forest catchment (Kassjön, northern Sweden). Journal of Ecology 83, 809–822.CrossRefGoogle Scholar
  3. Baron, J. S., Rueth, H. M., Wolfe, A. P., Nydick, K. R., Allstott, E. J., Minear, J. T., and Moraska, B. (2000a). Ecosystem responses to nitrogen deposition in the Colorado front range. Ecosystems 3, 352–368.CrossRefGoogle Scholar
  4. Baron, J. S., Hartman, M. D., Band, L. E., and Lammers, R. B. (2000b). Sensitivity of a high-elevation Rocky Mountain watershed to altered climate and CO2. Water Resources Research 36, 89–99.CrossRefGoogle Scholar
  5. Galloway, J. N., and Cowling, E. B. (2002). Reactive nitrogen and the world: 200 years of change. Ambio 31, 64–71.Google Scholar
  6. Hall, R. I., Leavitt, P. R., Quinlan, R., Dixit, A. S., and Smol, J. P. (1999). Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnology and Oceanography 44, 739–756.CrossRefGoogle Scholar
  7. Lafrançois, B. M. (2002).”Algal and invertebrate responses to atmospheric nitrogen deposition in Rocky Mountain lakes.” Ph.D. dissertation, Colorado State University, Fort Collins, Colorado.Google Scholar
  8. Lafrançois, B. M., Carlisle, D. M., Nydick, K. R., Johnson, B. M., and Baron, J. S. (2002). Environmental characteristics and benthic invertebrates in Colorado mountains lakes. Western North American Naturalist (in press).Google Scholar
  9. Neff, J. C., Townsend, A. R., Gleixner, G., Lehman, S. J., Turnbull, J., and Bowman, W. D. (2002). Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419, 915–917.CrossRefGoogle Scholar
  10. Nydick, K. R. (2002). “Mountain lake responses to elevated nitrogen deposition.” Ph. D. dissertation, Colorado State University, Fort Collins. Colorado.Google Scholar
  11. Parrish, D. D., Hahn, C. H., Fahey, D. W., Williams, E. J., Bollinger, M. J., Hübler, G., Buhr, M. P., Murphy, P. C., Trainer, M., Hsie, E. Y., Liu, S. C., and Fehsenfeid, F. C. (1990). Systematic variations in the concentration of NOx (NO plus N02) at Niwot Ridge, Colorado. Journal of Geophysical Research 95, 1817–1836.CrossRefGoogle Scholar
  12. Rueth, H. M., and Baron, J. S. (2002). Differences in Englemann spruce forest biogeochemistry east and west of the Continental Divide in Colorado, USA. Ecosystems 5, 45–57.CrossRefGoogle Scholar
  13. Rueth, H. M., Baron, J. S., and Allstott, E. J. (2003). Responses of old-growth Engelmann spruce forests to nitrogen fertilization. Ecological Applications (in press).Google Scholar
  14. Vitousek, P. M., Aber, J. D., Howarth, R. W, Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., and Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications 7, 737–750.Google Scholar
  15. Williams, M. W., Baron, J. S., Caine, N., Sommerfeld, R., and Sanford, R. (1996). Nitrogen saturation in the Rocky Mountains. Environmental Science and Technology 30, 640–646.CrossRefGoogle Scholar
  16. Williams, M. W., and Tonnessen, K. A. (2000). Critical loads for inorganic nitrogen deposition in the Colorado Front Range, USA. Ecological Applications 10, 1648–1665.CrossRefGoogle Scholar
  17. Wolfe, A. P., Baron, J. S., and Cornett, R. J. (2001). Unprecedented changes in alpine ecosystems related to anthropogenic nitrogen deposition. Journal of Paleolimnology 25, 1–7.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Jill S. Baron
    • 1
    • 2
  • Koren R. Nydick
    • 1
    • 3
  • Heather M. Rueth
    • 4
  • Brenda Moraska Lafrançois
    • 5
    • 6
  • Alexander P. Wolfe
    • 7
  1. 1.Natural Resource Ecology LaboratoryColorado State UniversityFort CollinsUSA
  2. 2.United States Geological SurveyUSA
  3. 3.Marine Biological LaboratoryEcosystem CenterWoods HoleUSA
  4. 4.Department of Fishery and Wildlife BiologyColorado State UniversityFort CollinsUSA
  5. 5.Dof Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada
  6. 6.Aquatic, Watershed and Earth Resources DepartmentUtah State UniversityLoganUSA
  7. 7.St. Croix Watershed Research StationNational Park ServiceMarine on St. CroixUSA

Personalised recommendations